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A Few Simple Questions

* How “green” is U.S. electricity today In terms of
greenhouse gas (GHG) emissions?

* What has been the recent trend in power sector
emissions and carbon intensity?

* What is the outlook for low-carbon electricity and
plug-in hybrid electric vehicles (PHEVS) ?

* In light of the above, would adoption of PHEVS
significantly reduce U.S. GHG emissions?
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The Current Situation
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CO, from Energy Use Is the
Dominant Greenhouse Gas

U.S. Greenhouse Gas Emissions
weighted by 100-yr Global Warming Potential (GWP)
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83.9%

Source: USEPA, 2007

[1CO2 B CH4 B N20 M Others

E.S. Rubin, Carnegie Mellon



U.S. CO, Emissions
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Residential Commercial Industrial Transportation

(a) End-Use Energy Sectors (b) Electric Power Sector

* Fossil fuels supply 70% of all U.S. electricity
e Electricity + Transportation emit ~75% of all CO,



CO2 Emissions from U.S. Electric Sector

~
0
4
c
c
o
e
c
9
=
N—r’
%
c
9o
»
0
S
L
N
@)
@)




Direct Emissions
Power Plant Fuel and Type (g CO,/ kWh)

Coal (existing sub-critical) 1000
Coal (new super-critical) Average emission
Natural Gas (turbines) rate based on U.S.

Natural Gas (comb. cycle) 2008 fuel mix =
 Nuclear | 0 | 059tCO,/MWh
 Hdo = | 0




Carbon Intensity of U.S. Electricity
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Direct GHGs | Upstream GHGs | Total life cycle GHGs
Plant Type (g CO,/kWh) | (g CO,-eq/ kWh) (g CO,-eq/ kWh)
Coal (new 850
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Direct GHGs | Upstream GHGs | Total life cycle GHGs
Plant Type (g CO,/kWh) | (g CO,-eq/ kWh) (g CO,-eq/ kWh)

Coal w/ CCS 100 50 150
NGCC w/ CCS 50 75 125
Solar (PV) 0 60 60
Wind 0) 15 15
Nuclear 0 10 10
Hydro 0 8 8

At recent rates of decarbonization, getting to 100 g CO,/ kWh
(direct) would take ~ 100 —200 years!



Future Outlook
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Why Decarbonize ?

® Future decarbonization of U.S. electricity supplies
will be driven by traditional market forces (e.g.,
fuel prices and cost of technology), as well as by
government policies at the state and federal levels

(both “carrots” and “sticks’)

® Major policy drivers currently include:

= State-level renewable portfolio standards
= Federal incentives for low-carbon technologies

= State or regional C-caps and air pollutant limits

= State & federal regulatory commission actions
(can help or impede decarbonization)
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RPS Policies

(As of January 2011)
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Reference Case:
Current policies only
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Met electricity generation (trillion kilowatthours per year)

History Projections

45%

a Henewables NER
10% —

-23%: Natural gas

! : AT Sxi
Oil and other I_iqqi_ds;%ﬂ%l Nuclear E&S

1980 2000 2009




o
o
o

—é— EIA 2008 high
price oil
extended to
2050

~
o
o

£
=
i 4
o
=3
o
o
O
Q
=
)
s
9
)]
2
=
@
O
ik
G

0
2010 2020 2030 2040 2050
Year




Billion metric tons carbon dioxide equivalent
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History Projections
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Policy Cases:
PHEVs and Low-Carbon Power
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Recent Studies of Interest

* EPRI/NRDC, 2007. Environmental Assessment of Plug-In
Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas
Emissions, Report 1015325, Electric Power Research Institute,
Palo Alto, CA, July

® Samaras, 2008. C. Samaras, A life cycle approach to technology,
Infrastructure, and climate policy decision making: Transitioning
to plug-in hybrid electric vehicles and low-carbon electricity.
Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA.

®* EPRI, 2009. The Power to Reduce CO, Emissions: The Full
Portfolio, Technical Report 1020389, Electric Power Research
Institute, Palo Alto, CA, October.

® NAS, 2010. Transitions to Alternative Transportation
Technologies--Plug-in Hybrid Electric Vehicles, The National
Academies Press, Washington, DC.
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Estimates of PHEV Deployment
Vary Widely Across Studies

million PHEVs on the road in given year

2020 2030 2050

Study

Samaras, 2008

EPRI, 2009

NAS, 2010
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EPRI studies
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Retrofit m Gas ® Wind Demand Reduction
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Limited Portfolio Full Portfolio
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* Limited portfolio excludes CCS, new nuclear, and PHEVs
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Requires much faster decarbonization than business-as-usual
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National Academies study

E.S. Rubin, Carnegie Mellon



—— EIA 2008 high
price oil
=== EPRINRDC

=
=
-
g
i
=¥
o
Q
=z
]
=
=
]
=
=
i
O
I
&

0
2010 2020 2030 2040
Year




EIA 2008 grid mix EPRI-NRDC grid mix
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Samaras (CMU) stuay.
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EIA AEO: Total U.S. non-hydro renewable
generation in 2030 ~ 160,000 GWh
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Adding 1 Million PHEVs
on 120V/15A

Adding 1 Million PHEVs
on 240V/30A
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® | ow-carbon electricity Is key to achieving large GHG
reductions with PHEVs. New policy drivers will be needed
to accelerate the pace of decarbonizing the U.S. grid.

* Even with low-C electricity, GHG reductions compared to
conventional hybrid vehicles will be small unless PHEV
batteries with extended ranges are commercially viable.

® Achieving large GHG reductions with PHEVs also will
require advanced integration and planning of power system
capacity and transmission since the marginal fuels used to
charge batteries will vary by region, season and time of day.



Thank You

rubin@cmu.edu
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