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Abstract 
The use of log-linear experience curves (or learning curves) relating reductions in the 
unit cost of energy and environmental technologies to their cumulative production or 
installed capacity has become a common method of representing endogenous technical 
change in energy-economic models used for policy analysis. Yet, there are significant 
uncertainties in such formulations whose impact on key model results have been 
insufficiently examined or considered. This paper characterizes and discusses the major 
types of uncertainties and their implications. We first review the literature on theoretical 
and empirical foundations for the log-linear experience curve formulation and its implied 
causality. We then review the recent literature presenting other models of causality and 
evidence for other (non-linear) shapes of an experience curve. The latter includes data 
on historical cost trends in the early deployment of environmental technologies for 
power plants, which depart substantially from the log-linear model. Ignoring these and 
other types of uncertainties that are discussed can result in erroneous or misleading 
model conclusions with policy implications. Suggestions are offered on ways to improve 
the characterization and reporting of uncertainties and their impact on the results of 
energy-economic models. 
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1.   Introduction 

Assumptions concerning the nature and rates of technological change are arguably 
among the most critical assumptions for assessments of long-term energy and 
environmental issues such as global climate change. In the past, large-scale modeling 
efforts commonly treated technological change as an autonomous process in which 
factors like the efficiency of energy production and utilization improved with the passage 
of time at a specified rate, independent of other factors [1-4]. More recently, however, 
many (but not all) long-term integrated assessment models for energy and climate 
policy analysis have incorporated some mechanism of endogenous technological 
learning in which the rate of technological improvement and/or cost reduction depends 
on other parameters in the model. The influences of experience from learning-by-doing, 
knowledge spillovers from other industries and the level of research and development 
(R&D) expenditures are among the factors that have been most often modeled [5-8].  
 
Models of learning-by-doing are most often presented in the form of a learning curve or 
experience curve. Technology experience curves relate changes in specific investment 
cost (or other cost measure) to the cumulative installed capacity of the technology. 
While this is regarded as an important step toward more realistically representing the 
dependency of cost reductions on other variables, experience curves remain an 
imperfect representation of technical change. It is argued, for example, that the 
statistical correlations between a reduction in unit cost and the cumulative installed 
capacity of an energy technology offers little explanation for the underlying process of 
technological change and the causality between these two variables [6, 8-10].  
 
Aside from the issue of causality, the use of experience curves for forecasting or 
modeling future cost trends in energy-related technologies is beset by a number of other 
uncertainties. For example, for the models currently in use, what is the “correct” learning 
rate for a new energy or environmental technology, or for a currently mature technology 
at some time in the future? More generally, what is the appropriate functional form of an 
experience curve for a selected technology? Does the learning rate remain constant 
over time, or does it change over the modeling period? Do costs always decline, or 
might they also increase and if so, why or how? Because there are still no definitive 
answers to such questions, it is important to recognize that these are sources of 
uncertainty that can significantly influence the results of energy-economic models. In 
this paper we explore the nature of these uncertainties. 
 
In Section 2, we briefly review the origins of technology experience curves used most 
widely for modeling and forecasting. In Section 3 we survey alternative functional forms 
of an experience curve and the theoretical and empirical basis for these formulations 
and the choice of explanatory variables. In Section 4, we focus on uncertainties in the 
shape of experience curves, especially as they apply to environmental technologies in 
the early stages of commercialization. Finally, in Section 5 we summarize and discuss 
the implications of these uncertainties for large-scale integrated assessments and 
energy-economic modeling.   
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2.  Origins of the Technology Experience Curve 

In 1936, the aeronautical engineer Thomas P. Wright published a landmark paper in 
which he observed that the average direct man-hours required to manufacture a given 
model of Boeing aircraft dropped systematically with each unit produced [11]. Wright 
captured this phenomenon with an equation representing what he termed a “progress 
curve”: 

           Y = axb                          (Equation 1) 

where, Y is the estimated average direct man-hours per unit for x units; a is the direct 
man-hours needed to manufacture the first unit; and b (b<0) is a parametric constant. 
Wright demonstrated that the labor input, Y, dropped by 20 percent for every doubling of 
cumulative output, x —an 80 percent “progress ratio,” where the exponent b was –0.32. 
 
Wright’s work remained relatively obscure until it was revisited a decade later by a 
group of economists at the then recently founded RAND Corporation (a “think tank” 
created by the U.S. Air Force in 1946 to develop a complete “science of warfare” during 
the Cold War era). The RAND economists became vitally interested in the application of 
Wright’s work to the production of war materials—a phenomenon they would eventually 
call “learning-by-doing.” When later applied to an industry or class of product (rather  
than to a specific manufacturing process), Wright’s “learning curve” equation became 
referred to as an “experience curve.”  
 
Subsequent work by the Boston Consulting Group [12] applied Wright’s equation to the 
relationship between the average unit price and cumulative output of 24 selected 
industrial products. Since then, this formulation (Equation 1) has been adopted in 
empirical studies to characterize learning phenomena in a wide range of sectors [13-
15], including manufacturing [16], ship production [17, 18], consumer products [19], 
energy supply technologies [20-28], fuel technology [29-34], energy demand 
technologies [35] and environmental control technologies [36-38].  
 
Equation 1 can be re-written as:  

                           log(Y) = b log(x) + log(a)    (Equation 2) 

Today, this log-linear form of the experience curve remains the most popular equation 
used to represent the expected cost improvements of a technology. Studies of 
conventional and renewable energy systems also have employed this equation to 
calculate technology progress ratios based on cumulative installed capacity [20, 39-41]. 
Any nonlinearities in the underlying empirical data most often are ignored, however and 
only the “best fit” progress ratio (the value of 2–b

 in Equation 1) or learning rate (the 
value of one minus the progress ratio) is typically reported. On this basis, Dutton and 
Thomas [42] surveyed 100 empirical and theoretical studies of progress functions in 
industrial engineering, economics and management. Reported progress ratios generally 
fell in the range of 60% to 94% (i.e., learning rates of 6% to 40%). However, studies 
showing price increases were not included in their analysis. For energy-related 
technologies, McDonald and Schrattenholzer [43] found a range of learning rates 
varying from –14% to 34% with a median value of 16%. In all energy-related studies, 
the cumulative installed capacity of a technology is most commonly used as the 
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independent variable and the reported progress ratio typically applies to a period after 
the technology is commercialized. 
 
3.   Alternative Models of Causality  

When applied to a class of technology like a particular energy or environmental control  
system, experience curves based on Equation 1 say that cost reductions depend solely 
on increased deployment of the technology. Clearly, that is an oversimplification. While 
Wright’s initial formulation of a one-parameter model may have accurately explained 
observed decreases in the time needed to manufacture a particular airplane, extension 
of that learning curve model to experience curves for a class of technology certainly is 
not as simple. At best, the parameter of cumulative installed capacity of a technology 
serves only as a surrogate for a combination of factors that contribute to cost 
reductions—including not only learning-by-doing and learning-by-using, but also 
continued investments in R&D, spillovers from other activities, plus a host of other 
possible factors. 
 
Despite several decades of research, our understanding of the factors that contribute to 
technological learning and cost reductions is still rather limited. Various theories have 
been proposed to explain observed reductions in unit cost as cumulative output 
increases. Generally, they fall into three categories: (1) costs fall due to changes in 
production that include process innovations, worker familiarity in the use of tooling, 
improved management and economies of scale; (2) costs fall due to changes in the 
product itself including product innovations, re-design and standardization; and (3) costs 
fall due to changes in input prices. While intuitively satisfying, most of these 
explanations are only qualitatively descriptive and provide little quantification of the 
direct relationships or contributions of each factor to overall learning or cost reductions.  
 
Some researchers also suggest that the overall learning rates derived from empirical 
experience curves many overestimate the actual contribution of true learning-by-doing. 
Others present theoretical arguments that the feedback mechanisms between cost 
reduction and cumulative production can be explained by other factors including R&D 
(or learning-by-researching) [6, 44-46], knowledge spillovers [6], increased capital 
investments [47, 48] and economies-of-scale [25, 49, 50]. Studies suggest that ignoring 
such variables provides a false sense of precision and overestimates the true 
contribution of learning [6, 10, 46]. A particular concern voiced by Nordhaus [6] is that 
models that “miss critical pathways or ascribe influence inappropriately could potentially 
arrive at erroneous, incomplete, or misleading policy conclusions.”  
 
To take into account additional factors that contribute to learning, alternative models 
have been developed. Here we review several of these formulations, focusing on their 
applications to energy and environmental technologies and policies. 
 
 3.1  Two-factor learning curve models 

Two-factor learning curve models describe a relationship in which cumulative R&D 
expenditures as well as cumulative production or capacity are assumed to be the main 
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drivers of technology cost reductions [46]. R&D contributes to an expanded knowledge 
base, which in turn can stimulate further technological innovation, cost reductions and 
technology diffusion. The relative importance of these two factors may vary, depending 
on the stage of product development: R&D may play a larger role at early stages of 
development, while learning-by-doing may dominate as the product or technology 
matures. The model of Equation 2 is now expanded to include an additional factor: 

 log(Y) = bLBD log(x) + bLBR log(RD) + log()   (Equation 3) 
where:  

bLBD  = learning-by-doing parameter 
bLBR  = learning-by-researching (R&D) parameter 
RD  = cumulative R&D investment or knowledge stock 
  = specific cost at unit cumulative capacity and unit knowledge stock. 

 
There has been some work to validate this formulation with empirical data [46, 51-53]. 
Jamasb [46] examined the impact of R&D spending on technology cost reductions using 
estimates of the combined government and private R&D expenditures in the UK. This 
was coupled with cumulative installed capacity data (representing learning-by-doing) for 
twelve power generation technologies for the period 1980–2001. These included mature 
technologies (e.g., pulverized coal plants, natural gas combined cycle gas plants, large 
hydropower), reviving technologies (e.g., new combined cycle plants, combined heat 
and power, small hydropower), evolving technologies (e.g., nuclear power and wind 
power) and emerging technologies (e.g., solar thermal power and offshore wind 
turbines). R&D expenditures were estimated from a broad survey of sources including 
government R&D databases, R&D expenditure estimates for specialized companies, 
plus several indirect methods of estimating private R&D investments [54]. The results 
show that the importance of R&D versus learning-by-doing varied across the different 
categories of technology, but in general, R&D contributed more to cost reductions than 
learning-by-doing in all stage of technological development. In addition, the study found 
very little elasticity of substitution between the two factors, i.e., R&D expenditure and 
capacity expansion were distinctly different and non-interchangable. Other studies also 
found significant correlations between time-lagged cost reductions and cumulative R&D 
expenses and/or R&D-based knowledge stock [46, 51-53].  
 
Two-factor experience curves have been used in models including MERGE [55], ERIS 
[56] and other simulation-based tools [57]. In general, studies found that incorporating 
these two factors tended to lower the cost of environmental policies and achieve higher 
emission abatement levels than with no learning model or with only one of the factors 
alone [45, 57-60]. It was also found that the incorporation of R&D may lead to less 
aggressive near-term actions due to the increased level of near-term societal costs [56].    
 
While the concept of a two-factor learning curve is theoretically appealing, others have 
noted two significant problems with this approach. The first is data availability. Reliable 
data on public and (especially) private-sector R&D spending is hard to collect and the 
quality of available data is often an issue [54]. The use of such data to estimate a 
“knowledge stock” (time lagged and depreciated R&D investment) is approximate at 
best and sensitive to the assumed rate of knowledge depreciation [56].  
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The second major shortcoming is the high degree of co-linearity between the two 
variables. That is, both R&D investments and cumulative production or capacity may 
respond to the same drivers and/or directly influence one another [53, 56]. An increase 
in product sales, for example, may stimulate R&D spending to further improve the 
product. In addition, from a policy point of view there is a distinct difference between 
government-funded and private-sector R&D. Since these funding sources can have very 
different impacts on the cost and performance of a specific technology [61], R&D policy 
conclusions based on a single (combined public/private) R&D indicator can be quite 
misleading.   
 
 3.2   Three-factor or multi-factor learning curve models 

Several studies have used regression analysis or decomposition techniques to estimate 
unit cost reductions for a technology. Explanatory variables in addition to cumulative 
production or capacity have included economies-of-scale [25, 51, 62], input prices for 
materials [25, 51, 62], labor costs [62], efficiency improvement [25, 62] and other 
factors. Not surprisingly, these studies typically find smaller learning rate impacts for 
cumulative installed capacity compared with studies using the one-factor learning curve.  
Multi-factor models of this type offer improved explanations of the processes that 
contribute to cost reductions for the technology under study. Thus, they provide greater 
precision in projecting the effect of a given factor change on the future cost of that 
technology. A key drawback, however, is that the formulation and results from these 
models cannot be easily extrapolated or used to make cost projections for other 
technologies with different characteristics. 
 
 3.3   Component-based learning curves 

Component-based learning curves are essentially an extension of the one-factor model, 
in which the overall cost of a technology at any given point is the sum of the costs of 
individual components or sub-systems of the technology. Thus:   

     
Y =

       (Equation 4) 
where:  
 n   = a given technology component 
 an  = specific cost at unit cumulative capacity for cost component n 
 bn  = learning parameter characterizing cost component n.  
 
In this case, the capacity or experience base, x, is usually a projected future value 
rather than an observed historical value. This method of estimating the future cost of a 
technology has been applied to cost projections for several types of power plants with 
carbon capture systems [63], as well as to micro-cogeneration of heat and power [35]. 
In each case, the overall plant is disaggregated into a number of sub-sections (such as 
boilers, gasifiers and air pollution control systems for power plants). The cost of each 
sub-section is then projected based on the historical learning rate for the same or 
similar technology components. The future cost of each component (after some 
specified increment of cumulative capacity) is then summed to obtain the future cost of 
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the overall plant. The rationale for this approach is that for complex technologies like a 
coal-fired power plant, different components are currently at different levels of maturity. 
Thus, the cost of newer components like a carbon capture system may fall more rapidly 
than the cost of mature component like boilers or steam turbines. Disaggregation is thus 
believed to give the best estimate of a learning rate for the overall system.  
 
Uncertainties at the component level give rise to uncertainties in the overall result.  
Such uncertainties derive from the same set of questions that apply to any application of 
a one-factor experience curve: When does learning begin (and end)? What is the 
appropriate learning rate or progress ratio? What is the appropriate measure of capacity 
or experience? The latter question, in turn, raises the additional issue of “spillover” 
effects, i.e., the extent to which learning is shared across a range of technologies or 
applications. For example, experience with carbon capture systems in the oil and gas 
industries may directly benefit similar applications in the electric utility industry. This 
concept of “clustered learning” has been used in integrated assessment models such as 
found in Seebregts et al. [64].    
 
Another type of component-level learning model [65] projects the cost of gas turbine 
technology based on learning vs. non-learning for different types of costs. Here, some 
cost components such as raw materials and labor may experience no learning or even 
become more expensive over time. As in all cases where projections are based on past 
rates of technological change, there is inherent uncertainty as to whether past 
experience is indeed the best indicator of future rates of change in complex systems.   
 
 3.4   Other models of technological learning  

Other recent approaches to modeling technological change incorporate time in the 
experience curve formulation so as explicitly separate the effect of true learning from 
that of progress that occurs exogenously over time [10, 46, 65, 66]. Such an approach 
argues that there is a constant rate of exogenous technological change that is 
independent of learning-by-doing, such as inter alia spillovers from outside the industry, 
returns to research and development, economies of scale or scope and exogenous 
fundamental inventions. The incorporation of these factors implies a much smaller rate 
of true learning for a technology [10]. To date, this model has been tested only at a high 
level of technological aggregation (economic sectors). As with other multi-variate 
formulations, empirical data to develop and test such models for specific technologies 
(or classes of technology) is currently limited or unavailable. 
 
Another more recent development is the integration of technical growth (diffusion) into 
the experience curve—the so-called endogenous learning-diffusion model [9, 46, 53, 
56]. This model accounts for the fact that reductions in unit cost can increase the 
diffusion and adoption of a technology in the marketplace [46]. In turn, faster adoption of 
the technology may stimulate higher learning rates and vice versa. This approach 
provides a greater ability to explain changes in the learning rate over time (or with 
cumulative production), controlled by the rates of growth and cost reduction. We discuss 
this further and offer empirical examples of variable learning rates in the following 
section of this paper.  
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4.  Uncertainty in the Shape of an Experience Curve 

Historically, a number of authors have suggested alternative models for the shape of an 
experience curve, especially deviations from log-linearity (Equation 2) at the beginning 
and tail end of the curve. Here we review some of the earlier literature on that topic as 
well as evidence of deviations from a log-linear model in a number of cases. 
 
 4.1  The S-Shaped learning curve 

Long ago, Carr [67] argued that based on empirical observations the cumulative 
average learning curve for airplane production was best represented by an “S-shaped” 
curve in which slow initial improvements were followed by a more rapid rate of 
improvement, followed by an eventual leveling off. Concavity in the initial phase of a 
learning curve also was recognized independently by the Boeing Airplane Company [68] 
and the Stanford Research Institute [69, 70]. The SRI researchers proposed adding a 
term, called the “B” factor, to the conventional formula (Equation 1) to represent the 
equivalent units of experience available at the start of a manufacturing program. The 
SRI studies claimed that the revised formula, Y = a (x+B)b, described the empirical 
production data better than the conventional log-linear function. Other recent studies 
also show significant deviation from linearity at the beginning of a learning curve, where 
much lower learning rates were observed [29, 30].  
 
Prior studies of environmental technologies at coal-fired power plants [36], also found 
that experience curves with initial concavity best fit the data for two widely used 
technologies—flue gas desulfurization (FGD) systems for sulfur dioxide (SO2) control 
and selective catalytic reduction (SCR) systems for nitrogen oxides (NOx) control (see 
Figure 1) [32]. We hypothesize that these low initial learning rates resulted in large part 
from the rapid deployment of “first generation” technology in response to new 
environmental regulatory requirements, with little time for learning. This was followed by 
improvements in succeeding generations of the technology based on factors including 
continued R&D and experience with existing installations, as documented by Taylor, et 
al for FGD systems [71, 72] and by Yeh, et al. for SCR systems [32, 38]. 
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Figure 1.  Best-fit experience curves for capital costs of flue gas desulfurization (FGD) and 
selective catalytic reduction (SCR) systems at standardized U.S. coal-fired power plants (as 
defined in Figures 2 and 3) [32]. Also shown on the right is the experience curve for Brazilian 
ethanol production [30], which exhibits similar characteristics.  
 
Others have challenged the log-linearity assumption for the latter part of an experience 
curve. Guibert [73] viewed the progress curve as having a horizontal asymptote that 
was approached after a large number of aircraft units had been produced. A study by 
Boeing of cost reductions on the L-15 airplane concluded that the unit cost curve 
became flat (exhibiting “level-off”) at large cumulative output. They believed this was 
due to limitations imposed by a given set of tooling. They also found that the level-off 
point seemed to occur sooner for processes exhibiting steeper learning rates prior to 
level-off and for the manufacture of small aircraft compared to large planes. Similarly, 
Asher [74] analyzed data for nine models of fighter aircraft and found that the learning 
curve began to level off after about 125 units; extrapolating from 100 units out to 1000 
units would result in an error of about 25%. 
 
An extensive survey by Conway and Schultz [75] studied the existence of learning in 
four firms manufacturing products with complex as well as simple designs and 
cumulative production quantities from fifty to two hundred million units. Their survey also 
found leveling-off, or a decrease in the learning curve slope, when large cumulative 
production quantities were reached. More recently, Klepper and Graddy [76] assembled 
data on the number of firms, outputs and prices for 46 new products from their initial 
introduction through the year 1972. They developed both quantitative and qualitative 
measures characterizing the evolution of new industries. They found that all products 
appeared to follow a similar pattern over time, though with considerable quantitative 
variations. The study found that during both the growth and shakeout stages, the 
number of firms and total output grew while prices fell. However, once the number of 
firms stabilized, the rates of price reduction and increase in output leveled off and 
remained constant over time, typically after 30 to 40 years.  
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In the case of energy technologies, some have proposed that resource, market and 
theoretical technical constraints eventually put a floor on technology-specific costs [21, 
65]. Many large-scale energy-economic models, which project costs many decades into 
the future, have imposed long-run price floors for specific energy technologies, below 
which learning curve projections cannot fall [7, 77]. This, in essence, changes the 
assumed shape of the long-run experience curve. 
 
 4.2   Cost increases during early commercialization 

For many large-scale technologies such as power plants and their environmental control 
systems, initial cost estimates for new technologies based on experience from smaller-
scale projects or pilot plants are typically lower than the costs subsequently realized for 
the initial set of full-scale commercial plants. Thus, costs often increase rather than 
decrease in the early phase of commercial deployment. The reasons for such increases 
are typically linked to shortfalls in performance and/or reliability resulting from 
insufficient data for scale-up and detailed design, or from new problems that arise 
during full-scale construction and operation. 
 
Although this phenomenon has been long recognized and often described qualitatively 
[78], there are relatively few empirical studies that document such trends for energy and 
environmental technologies. One recent study, however, reported an experience curve 
progress ratio above 100 percent for natural gas combined cycle (NGCC) systems for 
the period 1981-1991 [79]. This was followed by subsequent cost declines. Studies of 
British and German wind power [41] and photovoltaic technologies [80] also found 
progress ratios above 100 percent (i.e., cost increases) during early deployment. 
Though no explanations were provided in the original studies, these cost increases are 
consistent with the observation that the total cost of new technology often cannot be 
reduced as quickly as costs are added through design changes and product 
performance improvements in the early stages of commercialization [22]. 
 
Analysis of past experience for power plant FGD and SCR systems also revealed cost 
increases during early commercialization. We present this data below, along with 
reported cost estimates for CO2 capture at coal-fired power plants—a technology that 
has been widely studied but is not yet commercially deployed at power plants. 
 
 4.2.1  Cost Trends for FGD Systems 
Under provisions of the Clean Air Act, the U.S. federal government funded research and 
development on SO2 removal processes from power plant flue gases starting in the 
1960s, including several conceptual design and cost studies [71]. Early cost evaluations 
for those technologies involved many assumptions since technical data were limited. 
Most vendors had yet to fabricate and erect the large gas scrubbing devices required for 
full-scale systems and very little data were available to properly select materials of 
construction for the service involved. In many cases, the “technological optimism” of 
process developers tended to maximize process potential and minimize problem areas 
such as corrosion, scaling, solids disposal, sulfite oxidation, mist elimination, gas 
reheat, operational turndown and pH control. Cost estimates in the early 1970s were 
subject to further uncertainties in scale-up factors based on experimental and prototype 

10 
 



To appear in, Proc. of NAS Workshop on Assessing the Economic Impacts of Climate Change, April 2010, and special issue of, Energy Economics 

installations. Despite some commercial applications on oil-fired power plants in Japan, 
there was no established basis to accurately assess the full-scale performance and cost 
of FGD installations on U.S. coal-fired plants. Thus, early FGD costs were considerably 
lower than later costs due to the optimistic view that system unknowns would be readily 
controlled and that inexpensive materials of construction could be utilized [81, 82].  As 
early FGD installations subsequently proved to be unreliable and unable to perform as 
required, the cost of re-designed systems increased considerably [83, 84]. Thus, in the 
1970s, the two issues of greatest concern to the utility industry regarding FGD systems 
were their reliability and cost [85, 86]. 
 
Figure 2 shows the historical trend of FGD costs for a typical coal-fired plant. The cost 
of early installations increased by as much as factor of five as designs were modified to 
achieve the system reliability and performance needed to comply with regulatory 
requirements. After a decade of experience and learning, costs finally began to decline 
in the 1980s. 
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Figure 2. Capital and annualized operating and maintenance (O&M) costs of a wet limestone FGD 
system for a standardized new coal-fired power plant (500 MW, 3.5% sulfur coal, 90% SO2 
removal) as of 1980. Many earlier plants did not achieve the high levels of availability and 
reliability required for utility operations, leading to more costly designs in later years [32, 71, 87]. 
 
 4.2.2  Cost Trends for SCR Systems 
Early economic evaluations of SCR costs for U.S. coal-fired power plant showed a trend 
similar to FGD systems, although in this case SCR technology was not actually 
deployed at U.S. coal plants until nearly two decades later. The earliest cost estimates 
were based on extrapolations of Japanese experience with SCR on oil and gas-fired 
plants [88]. Differences in plant operating conditions and fuel characteristics (such as 
sulfur and heavy metals content) were recognized, but not factored into these early 
estimates. Subsequent studies projected higher costs, which included contingencies for 
lack of experience with SCR systems and high-sulfur U.S. coals [89, 90]. 
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Figure 3 shows the historical trend in SCR cost estimates for a typical U.S. coal-fired 
plant. Note the initially optimistic assessments prior to the first commercial SCR 
installations. Cost estimates for U.S. facilities eventually declined after a decade of 
Japanese and German experience, together with U.S. pilot programs. These facilities 
demonstrated increasingly lower capital and operating costs, longer catalyst lifetimes 
and lower catalyst prices than assumed in earlier studies (the results of learning and 
competition in both non-U.S. and U.S. markets) [38]. 
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Figure 3. Capital cost and total levelized costs of SCR for a standardized new coal-fired power 
plant (500 MW, medium sulfur coal, 80% NOx removal), as of 1983. Solid diamond symbols are 
earlier studies based on low-sulfur coal plants, which have lower SCR capital cost. Empty circles 
are studies evaluated prior to any commercial SCR installation on a coal-fired utility plant. [32, 38] 
 
 4.2.3  Cost Trends for CO2 Capture Systems 
Environmental technologies that capture and sequester CO2 from power plant flue 
gases are of growing worldwide interest as a potential climate change mitigation 
measure [91]. Experience curves for CO2 capture technologies already have been 
incorporated into some large-scale energy-economic models [92, 93]. Current 
commercial technology for separating CO2 from flue gas streams utilize an amine-based 
absorption system of the type used worldwide for other gas purification applications, 
mainly in the petroleum and chemical industries. Flue gas scrubbing systems employing 
monoethanolamine (MEA) is thus one of the leading technologies proposed to control 
greenhouse gas emissions at fossil fuel power plants [94]. The earliest studies of CO2 

capture costs at coal-fired plants [95, 96] were motivated by the demand for CO2 for 
enhanced oil recovery (EOR) at a time when world oil prices were at their peak (around 
1976-1985). It was not until the 1990s that capturing CO2 at electric power plants (in 
conjunction with geological storage) gained serious attention as a greenhouse gas 
abatement option. 
 
The main challenge facing post-combustion CO2 capture technology is to reduce both 
capital and operating costs, especially the energy requirement for regenerating the 
amine solvent [94]. Toward this end, new amine formulations commercialized over the 
past several decades allowed the use of increasingly higher solvent concentrations 
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(Figure 4). This, in turn, significantly reduced the energy penalty associated with this 
technology. At the same time, requirements for corrosion-resistant materials contributed 
to higher capital costs during this period (Figure 5). By the early 2000s, however, 
improvements in overall system design led to a decline in the estimated capital cost of 
an MEA capture unit [94, 97-99]. It is anticipated that continued technology advances 
will lead to further long-term reductions in capital and operating costs [100, 101], 
although other factors, such as the recent worldwide escalation in raw materials cost, 
could offset gains from technology innovation. 
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Figure 4. Decreasing trend of regeneration heat requirement with increasing concentration of MEA 
solvent in CO2 capture systems [87]. Because of its corrosive nature, MEA is typically mixed with 
water, which also must be heated to regenerate the solvent, thus adding to the energy penalty. 
New developments such as “inhibited” amines have permitted higher solvent concentrations in 
commercial systems. 
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Figure 5. Estimated capital cost of an amine (MEA) carbon capture system at a standardized coal-
fired power plant (500 MW, 90% CO2 removal). These costs include the cost of CO2 compression 
(to about 2000 psia) and drying but do not include the cost of power plant capacity needed to 
supply the energy required for capture plant operation [87]. 
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Interestingly, the capital cost trend in Figure 5 shows an initial increase followed by a 
gradual decline, much like the earlier trends for FGD and SCR systems. However, 
unlike FGD and SCR systems, no CO2 capture systems have yet been built at coal-fired 
plants at the 500 MW scale (the basis for Figure 5). While a number of demonstration 
projects are currently planned, to date only a few commercial projects have captured 
CO2 from a small portion of the flue gas at coal-fired units, selling it as a commodity 
used in food processing [94]. Thus, all cost estimates shown in Figure 5 have yet to be 
validated by actual CO2 capture projects. The potential for cost increases with scale-up 
and early commercialization cannot be ruled out based on the experience with other 
power plant environmental technologies. 
 
 4.3   Discontinuities and forgetting 

Another uncertainty in the use of experience curves is the potential for organizational 
“forgetting” in which the knowledge acquired through learning-by-doing may decay or 
depreciate over time [16, 102, 103]. For example, Argote found that the unit production 
cost of the Lockheed L-1011 TriStar aircraft fell as production increased from 1972-
1975, but increased after a production cut in late 1975, after which costs rose to exceed 
price. This “forgetting-by-not-doing” was attributed to the loss of knowledge associated 
with laying off many experienced workers, leading to shortages of personnel and parts 
and a lack of experienced workers when production later resumed. 
 
Similarly, Sturm [104] analyzed the operating experience of nuclear power plants in 
Eastern and Western Europe, the former Soviet Union and the United States from 1981 
to 1991. He found that while all western countries reduced their unplanned outages, the 
former Soviet Union and all countries in Eastern Europe experienced increases in 
unplanned outages and a decrease in plant availability. He suggested this might have 
resulted from political and economic reorganizations that caused labor turnover, 
difficulties in maintaining plants or obtaining spare parts and a lack of incentives for 
adequate training programs—additional illustrations of organizational forgetting. 
 
 4.4   Social, economic and political factors 

The shape of an experience curve also can be affected by societal factors that influence 
the cost of a technology. For example, changes in work rules, or new environmental, 
health and safety standards can increase the cost of a technology even though the unit 
cost of wages, materials and equipment may be static or declining. Thus, Cantor and 
Hewlett [105] found that despite significant learning-by-doing benefits at the firm or  
constructor level, new regulations imposed by the Nuclear Regulatory Commission 
(NRC) contributed to unprecedented increases in construction costs for U.S. nuclear 
power plant from 1979-1988. 
 
Similarly, Hewlett [106] found that real O&M costs for U.S. nuclear plants escalated at 
an annual rate of about 11 percent from 1975-1987, primarily because of new safety 
regulations imposed by the NRC. In a study of U.S. coal-burning power plants, Joskow 
and Rose [62] found that the real construction cost per unit of plant capacity declined 
during the early and mid-1960s, stabilized in the late 1960s, then climbed substantially 
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during the 1970s and 1980s. The latter increases appeared to reflect the added costs of 
responding to new environmental, health and safety regulations during that period, 
coupled with increased construction times and a decline in construction productivity. 
 
Finally, societal factors such as public opposition to a technology also can strongly 
influence rates of technology diffusion and learning, hence, the shape of an experience 
curve. Perhaps the most well-known example is nuclear power, where public opposition 
has effectively halted the diffusion of this technology in many countries (e.g., no new 
plants constructed in the United States since 1978) [107]. Even renewable technologies 
are not immune to this phenomenon: in a number of countries (including Norway and 
the United States), the siting of new wind energy systems has been opposed on 
aesthetic and other grounds. Because the importance and nature of societal influences 
on technology experience curves can vary considerably across (as well as within) 
different countries, it is arguably one of the most uncertain sources of uncertainty. 
 
5.   Discussion and Conclusion  

It is widely recognized that long-term cost projections for energy and environmental 
technologies are uncertain and highly sensitive to assumed rates of technological 
change—whether specified exogenously as a function of time, or endogenously in the 
form of a learning curve or experience curve. For the commonly used log-linear form of 
an experience curve (Equation 2), uncertainties in future technology costs are reflected 
by uncertainties in the learning coefficient, b, and the appropriate value of cumulative 
production or capacity of a technology (or cluster of technologies), x. Strictly speaking, 
the latter parameter represents only the influence of learning-by-doing. When used to 
derive an experience curve, however, it is a surrogate for all factors that influence 
technology costs. 
 
Efforts to better understand and explain the causes of observed cost reductions have 
led to a number of more complex formulations of experience curves, as reviewed in 
Section 3 of this paper. Notwithstanding these important efforts, future costs based on 
new model formulations remain highly uncertain [35, 63, 65].  
 
In this paper we also examined (in Section 4) empirical evidence that calls into question 
the common assumption of a log-linear shape of an experience curve, particularly 
during the early commercialization stage of a new technology. This was especially 
evident in case studies of environmental technologies for power plants, where the 
market for such technology was driven by the need to comply with new environmental 
regulations. The literature reviewed also showed that technology learning rates tended 
to decline at the later stages of technology development and diffusion, in essence 
putting a floor on the cost of a particular technology. This too contributes to non-
linearities in the experience curve. The overall result in many cases is an “S-shaped” 
experience curve rather than a log-linear form. Further studies applying new models 
developed in recent years, such as component-based experience curves and 
endogenous learning-diffusion models, may help explain some of the non-linear 
features of experience curves discussed in this paper.  
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The cost increases often observed for newly commercialized technologies and also 
seen in cases of institutional forgetting, are additional sources of uncertainty that can 
affect the outcomes of energy-economic models. To date, no large-scale models have 
yet incorporated such cost increases, though some have incorporated slow-downs or 
limits in technology diffusion rates to control the growth of emerging technologies. In 
contrast, a slow initial learning rate for a new technology (characteristic of an S-shaped 
experience curve) can discourage the early adoptions and investments needed for long-
term growth and innovation relative to competing technologies with more “optimistic” 
cost reduction profiles (such as the prevailing log-linear shape). As a result, some 
technologies may be “locked-out” of the longer-term picture, affecting the overall cost, 
technology mix and other outcomes of policy interest, including the role of R&D 
expenditures [108]. The latter factor is explicitly incorporated in some experience curve 
formulations (two-factor models) to distinguish the effects of R&D from those of 
learning-by-doing. In principle, these models can be used to address such questions as 
the amount and “persistence” of public and private-sector R&D spending needed to 
achieve a proposed climate goal at minimum cost. These models too, however, are 
beset with significant uncertainties, as discussed in Section 3 of this paper. 
 
So what are energy modelers to do in the face of all these uncertainties? In the near 
term, a broader set of sensitivity studies could be helpful to assess the impacts of 
different types of uncertainties on key model results. Although computationally more 
demanding, the use of input distributions of learning rates and other experience curve 
parameters, would better represent our limited understanding of the processes 
underlying technological progress. For example, Grubler and Gritsevskii [109] used a 
simple optimization model with endogenous technological change represented by a 
traditional log-linear experience curve, but added uncertainty in the learning rate, 
represented by a lognormal distribution function around the mean value. They showed 
that when the rate of learning was certain (i.e., perfect foresight), the optimal solution 
was to invest heavily and early in the “winning” technology. Barreto and Klaassen [59] 
found similar results. However, when learning rates were uncertain (as in the real 
world), the optimal solution also became less certain. As a result, there were broader 
investments in a portfolio of technologies, with slower diffusion and market entry of any 
particular technology. Messner et al. [110] also incorporated uncertainties in future 
technology performance and found that it tended to spread risk over a larger number of 
options to cope with uncertainties in technology development paths. 
 
Over the longer term, continued research into the underlying factors that govern or 
influence technological innovations may yield improved models that can reliably forecast 
the implications of proposed energy and environmental policy measures. In the 
meanwhile, more concerted efforts are needed to explore, understand and display the 
consequences of uncertainties in current formulations of technology experience curves 
(or other models) used to project the future cost of technology in energy-economic 
modeling and policy analysis. 
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