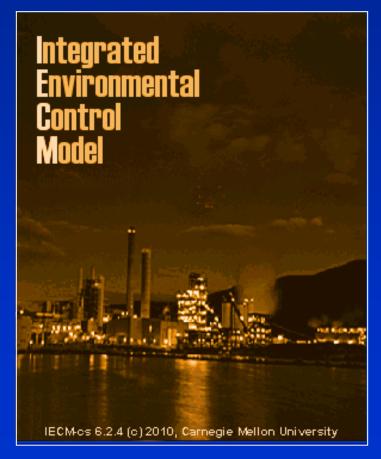
The IECM:

A Plant-Level Simulation Model for Evaluating CO₂ Capture Options

> Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

> > Presentation to the UK-US CCS R&D Workshop Pittsburgh, PA May 10, 2010

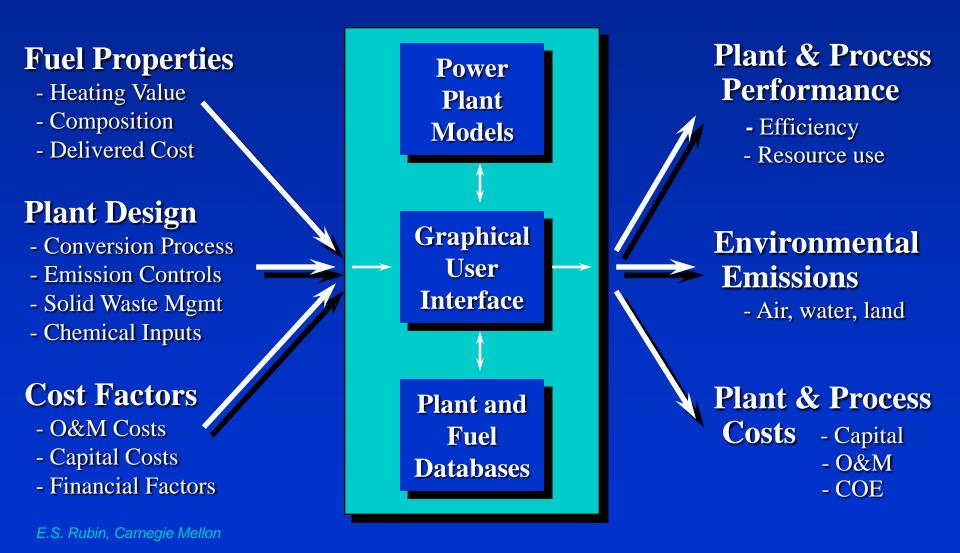
Outline


- Brief overview of the IECM
- Highlights of new model capabilities
- Illustrative applications
- Planned future enhancements

IECM Overview

E.S. Rubin, Carnegie Mellon

The IECM: Integrated Environmental Control Model


- A desktop/laptop computer model developed for DOE/NETL; free and available at: <u>www.iecm-online.com</u>
- Provides systematic estimates of performance, emissions, costs and uncertainties using <u>user-specified</u> <u>designs and parameter values</u> for:
 - PC, IGCC and NGCC plants
 - All flue/fuel gas treatment systems
 - CO₂ capture and storage options (pre- and post-combustion, oxycombustion; transport, storage)

Modeling Approach

- Systems Analysis Approach
- Process Performance Models
- Engineering Economic Models
- Advanced Software Capabilities
 - Probabilistic analysis capability
 - User-friendly graphical interface
 - Built-in graphs/charts capability
 - Easy to add or update models

IECM Software Package

IECM Technologies for PC Plants

(excluding CO₂ capture, transport and sequestration)

Boiler Types

- Subcritical
- Supercritical
- Ultra-supercritical

Furnace Firing Types

- Tangential
- Wall
- Cyclone

Furnace NO_x Controls

- LNB
- SNCR
- SNCR + LNB
- Gas reburn

NO_x Removal

- Hot-side SCR
- Combined SO₂/NO_x systems

Mercury Removal

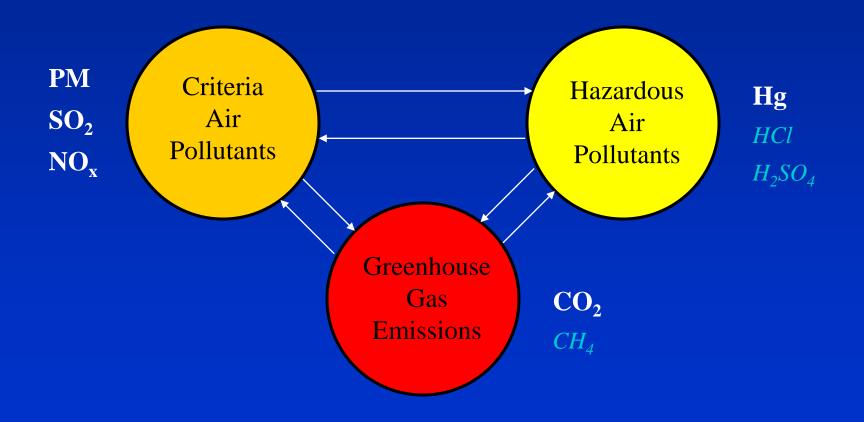
Carbon/sorbent injection

Particulate Removal

- Cold-side ESP
- Fabric filter
 - Reverse Air
 - Pulse Jet

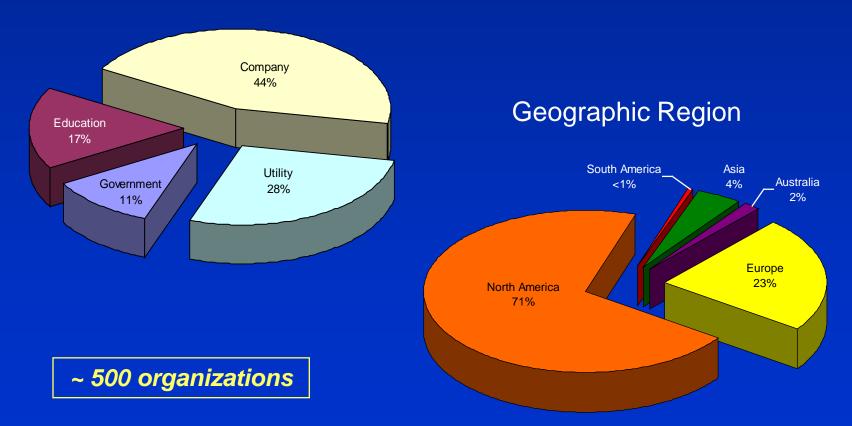
<u>SO₂ Removal</u>

- Wet limestone
 - Conventional
 - Forced oxidation
 - Additives
- Wet lime
- Lime spray dryer
- Combined SO₂/NO_x systems


Solids Management

- Ash pond
- Landfill
- Stacking
- Co-mixing
- Byproducts

IECM Technologies for CCS


- <u>CO₂ Capture Options</u>
 - <u>PC Plants</u>: Amine systems (post-combustion) (w/optional aux. NG boiler)
 - Oxyfuel combustion w/ flue gas recycle
 - <u>NGCC Plants</u>: Amine systems (post-combustion)
 - *IGCC Plants*: Water gas shift + CO₂ capture (pre-combustion)
- <u>CO₂ Transport Options</u>
 - Pipelines (six U.S. regions)
 - Other (user-specified)
- <u>CO₂ Sequestration Options</u>
 - Geological: Enhanced Oil Recovery (EOR)
 - Geological: Deep Saline Formation
 - Others (user-specified): ECBM; Ocean

Models Account for Multi-Pollutant Interactions

Profile of Recent IECM Users

Type of Organization

Model Applications

- Process design
- Technology evaluation
- Cost estimation
- R&D management

- Risk analysis
- Environmental compliance
- Marketing studies
- Strategic planning

Recent Developments

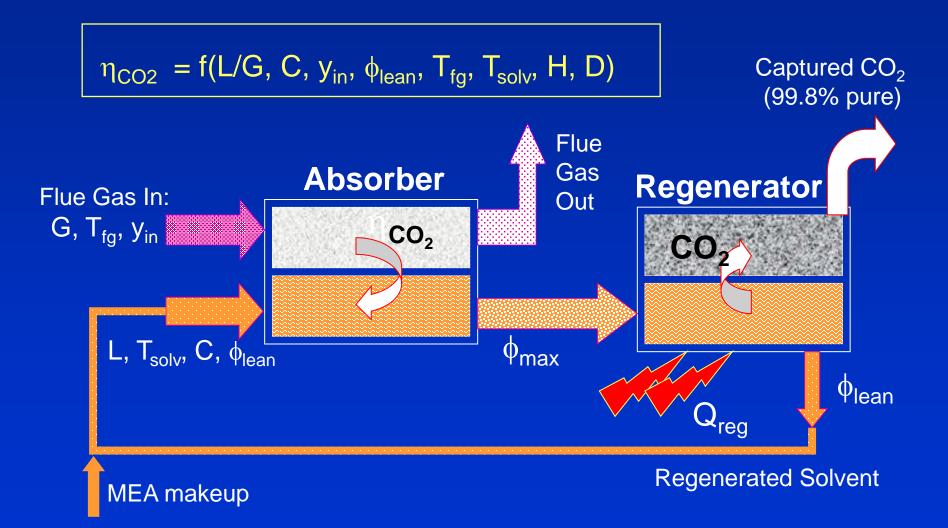
New IECM Release

(Version 6.2.4, May 2010)

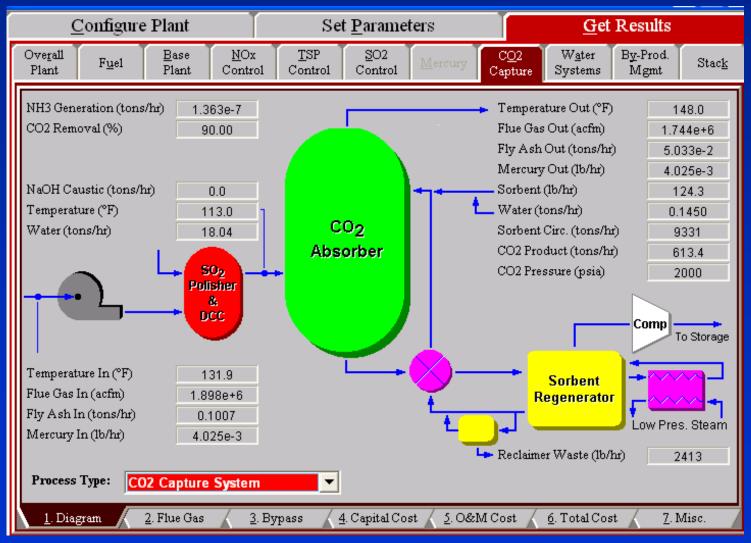
New Technology Options

- Advanced amine system for CO₂ capture
- Improved steam cycle models (subC-, SC-, USC-PC)
- Dry feed gasifier and sulfur capture system (Shell)
- Added gas turbine option for IGCC plants (GE 7FB)
- Wet tower, dry tower and once-thru cooling water systems
- Wastewater treatment systems for PC plants
- Updated Capital and O&M Cost Models
 - Aligned to NETL 2007 baseline studies
 - New default values for a number of model parameters
- New Software Capabilities
 - Additional user-friendly screens for data entry
 - Advanced graphing and uncertainty analysis capabilities

A quick tour of some model features


PC Plant with CCS

<u>C</u> onfigu	re Plant	Set <u>P</u> arameters	<u>G</u> et Results			
Ove <u>r</u> ail Plant						
		Configuration: <user defined<="" th=""><th>></th></user>	>			
Combustion Co	ontrols					
Fuel Type	Coal	▼ No Fly Ash Co-Disposal (C)	S)			
NOx Control	None		1			
Post-Combusti	on Controls		1			
NOx Control	Hot-Side SCR					
Particulates	Cold-Side ESP	▼ <u>∛</u> (
SO2 Control	Wet FGD					
Mercury	None	ਤ│ L <mark>≝</mark> ᠯ→,,,,→,,,,–	→▥ਁ→ <mark> </mark> → <mark> </mark>			
CO2 Capture	Amine System	ਤ∣ ੱ ♥←੶੶੶ ⊸∾¶	Ψ Τ Τ			
Water and Soli	ids Management					
Cooling System	Wet Cooling Tower	- ↓				
Wastewater	Once-Through					
Flyash Disposal	Wet Cooling Tower Air Cooled Condenser		Storage			
<u>1</u> . Diagram	/					


Set Parameters for CO₂ Capture System

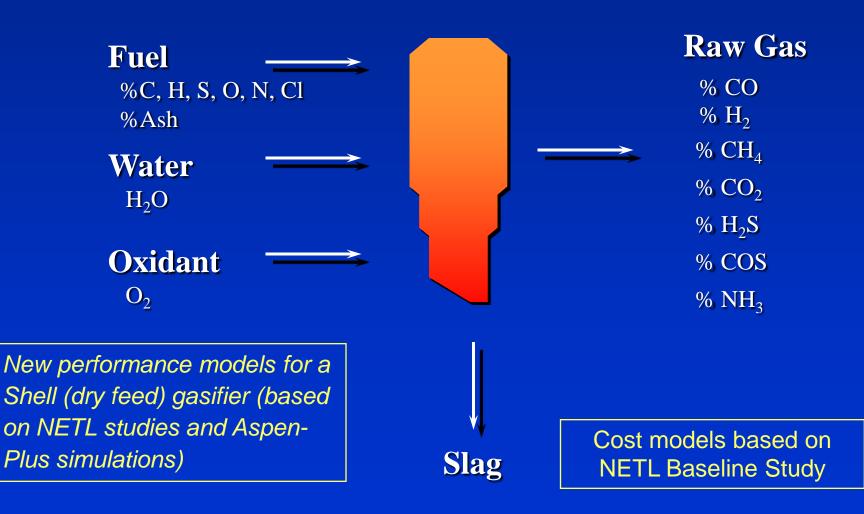
<u>C</u> onfigure Plant					Set	t <u>P</u> aran	net	ers				<u>G</u> et Re	sults			
Ove <u>r</u> all F <u>u</u> el <u>B</u> ase <u>N</u> Ox Plant F <u>u</u> el Plant Control				<u>T</u> SP Control	<u>S</u> O2 Contro	1	<u>M</u> ercury		C <u>O</u> 2 Captu				tac <u>k</u>			
			Title			Units	; T	Inc	Value	;	Calc	Min	Max	Default	ult	
		1	CO2 Absorber													
		2	Sorbent Used						Adv. Am 🔻			Menu Menu		Conv. MEA		
		3	Auxiliary Na	itural Gas Bo	oiler?				None	•		Menu	Menu	None		
		4	CO2 Produc	t Compresso	or Used?				Yes	•		Menu	Menu	Yes		
		5	Flue Gas By	pass Contro	1				Bypass	-		Menu	Menu	No Bypass		
		6	SO2 Polisher/Direct Contact Cooler						No Вур							
		7	Direct Contact Cooler (DCC) Used? SO2 Polisher Used? Temperature Exiting DCC						Bypass No 🔻			Menu	Menu	Yes		
		8										Menu	Menu	Yes		
		9														
		10				°F			113.0)		110.0	250.0	calc		
		11	Flue Gas Bypass													
		12	Maximum CO	D2 Removal	Efficiency	%			90.00			0.0	100.0	90.00		
		13	Overall CO2	Removal Ef	ficiency	%			90.00			0.0	100.0	calc		
		14	(Required by	v CO2 emis.	constraint)											
		15	Absorber C(D2 Removal	Efficiency	%			90.00)		60.00	99.00	calc		
		16	Minimum Bypass			%			0.0			0.0	100.0	0.0		
		17	7 Allowable Bypass			%			0.0			0.0	100.0	calc		
	18 Actual Bypass					%			0.0			0.0	100.0	calc		
	Process Type: CO2 Capture System 1. Config 2. Performance 3. Capture 4. CO2 Storage 5. Retrofit Cost 6. Capital Cost 7. O&M Cost															

Performance Model for Amine Capture Systems

Results for CO₂ Capture System

PC Plant w/ Oxy-Combustion

<u>C</u> onfigure Pl	ant	Set <u>P</u> arameters	<u>G</u> et Results
Overall Plant			
		Configuration: <a>Vser Defined	>
Combustion Control Fuel Type	<u>s</u>	No Fly Ash Co-Disposal (FG	(R)
	rnace Controls 💌	4	
Post-Combustion Co	ontrols		
NOx Control None			Recycle to Atm.
	-Side ESP 🗾 👻		
SO2 Control Wet F	GD 🔽		
Mercury None	• 🗾		
CO2 Capture 02-C	:02 Recycle 📃 💌	Let I	
Water and Solids M		to Atm.	
Cooling System Air Co	ooled Condenser 🚽		
Wastewater Ash F	Pond 🗾		Storage
Flyash Disposal No M	ixing 🗨		
<u>1</u> . Diagram			


NGCC Plant with CCS

<u>C</u> onfigure Plant	Set <u>P</u> arameters	<u>G</u> et Results			
Overall Plant					
	Configuration: User Defined 	>			
	- NGCC CO2 Configuration -				
Post-Combustion Controls CO2 Capture Amine System					
Water and Solids Management Cooling System Wet Cooling Tower	₽ ₽ ₽ Air				
		↓ To Storage			
<u>1</u> . Diagram					

IGCC Plant with CCS

<u>C</u> onfigure Plant	Set <u>P</u> arameters	<u>G</u> et Results
Overall Plant		
	Configuration:	>
	IGCC Sour Shift CO2 Confi	g
Gasification Options		1
Gasifier Shell H2S Control Selexol CO2 Capture Sour Shift + Selexol		
Post-Combustion Controls NOx Control None	$ \begin{array}{c} H_2 0 \\ Air \\ I \\ \hline \end{array} \rightarrow 1 \rightarrow 0 \rightarrow 0 \end{array} $	$\xrightarrow{\text{rAir}} - \bigcirc$
Water and Solids Management		Í
Cooling System Wet Cooling Tower Slag Landfill Sulfur Sulfur Plant		To Storage
<u>1</u> . Diagram		

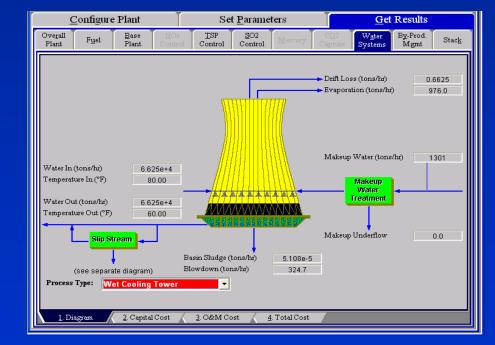
IECM Gasifier Model

Wet Tower Performance Model

Cooling water quantity:

 $m_c = \frac{(Hr_s - 3413) \cdot MWg \cdot 1000 \cdot (1 + \mu_{aux})}{\Delta T_w \cdot 2000}$

Makeup water quantity:

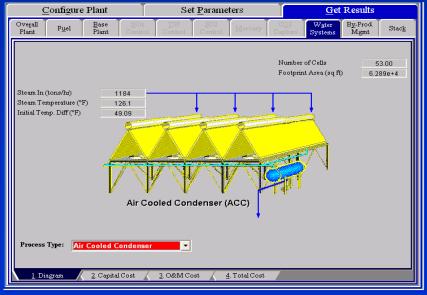

$$\begin{split} m_{makeup} &= m_{evap} + m_{drift} + m_{blowdown} \\ m_{drift} &= 0.001\% \cdot m_c \\ m_{blowdown} &= \frac{m_{evap}}{CC-1} - m_{drift} \end{split}$$

 $m_{evap} = m_a (W_2 - W_1)$

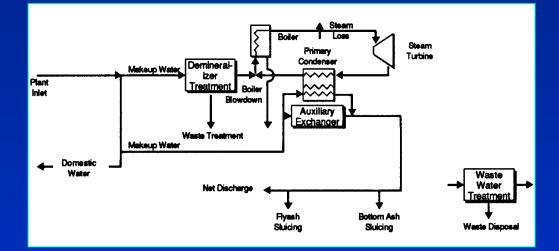
where:

- μ_{aux} = auxiliary cooling load
- Hr_s = steam cycle heat rate
- MW_{g} = plant gross output
- ΔT_{w} = water temp. change
- m_a = air flow rate
- W_1 = inlet air humidity
- W_2 = outlet air humidity
- ^{CC} = cycle of concentration

IECM User Interface

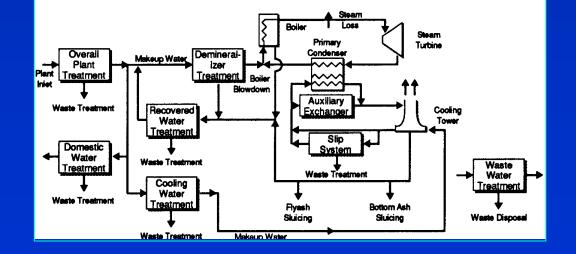

ACC Performance Model

• *Configuration:* A-frame force-drafted ACC with doublerow tubes. Each ACC cell consists of multiple bundles serviced by a fan

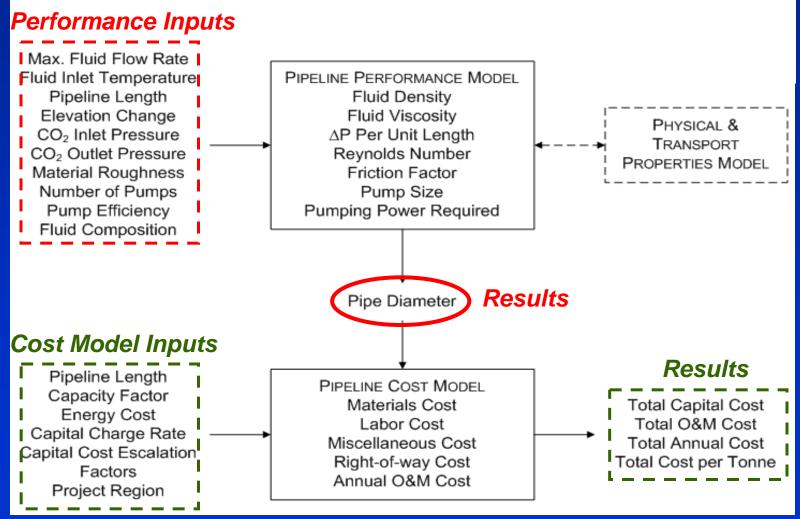

• Key input parameters:

- Air dry bulb temperature
- Turbine backpressure
- Inlet steam temperature
- Fan efficiency
- Auxiliary cooling load
- Key output parameters:
 - Footprint area
 - Number of ACC cells
 - Fan power required

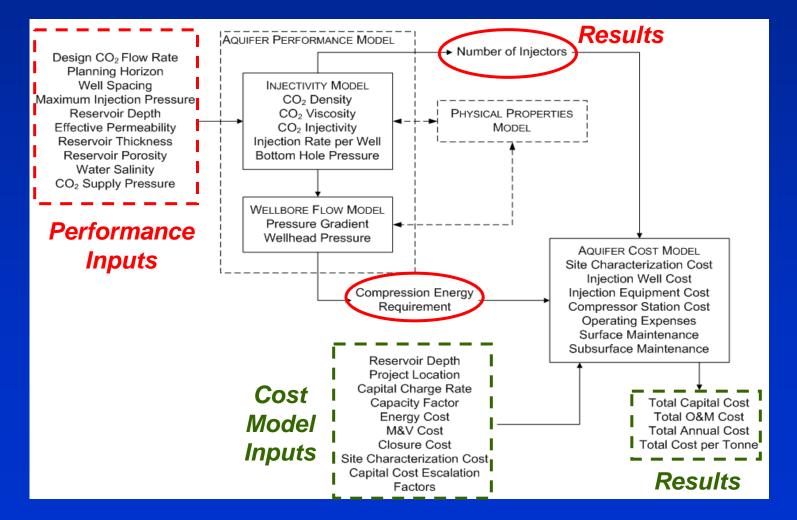
IECM User Interface



Model Allows a Range of Water Treatment System Options

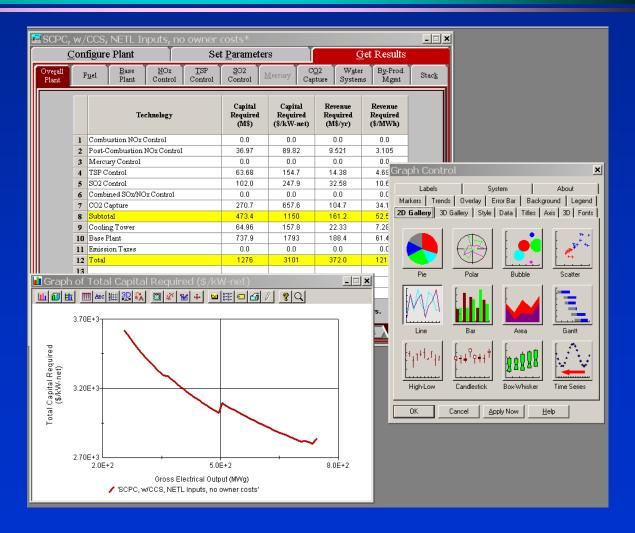

Once-Through Cooling with Basic Waste Water Treatment

Evaporative Cooling with Zero Discharge Water & Waste Water Systems



E.S. Rubin, Carnegie Mellon

IECM Pipeline Transport Model



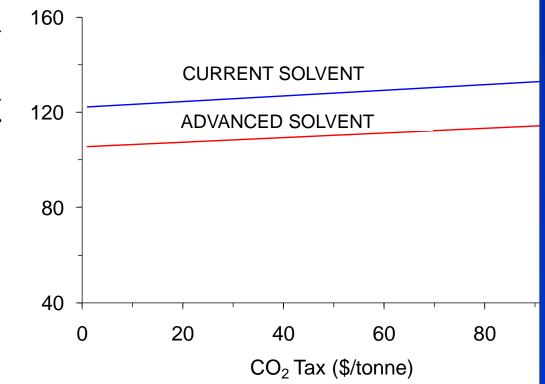
Saline Formation Storage Model

New Graphing Options

- Can easily and quickly plot any model variable as a function of any other variable
- Can display results from up to six different runs on same graph
- All graphs and data easily exported for display or further processing

Illustrative Application

	<u>(</u>	Configure	e Plant		Set <u>P</u> arameters					<u>G</u> et Results			
Overall Plant Fuel Base <u>N</u> Ox Plant Control					TSP SO2 Control Control Mercury			C <u>O</u> 2 Captu			Prod. gmt St		
		Title			Units		Unc	Value	Calc	Min	Max	Default	
	1		<u>Absorber</u>										
	2	Sorbent Concentration			wt%			40.00		15.00	100.0	calc	
	3	Lean CO2 L	oading		mol CO2/m	ol sorb		0.1900	V	0.0	0.5000	calc	
	4	Nominal So	rbent Loss		lb/ton C	02		0.5999	~	0.0	10.00	calc	
	5												
	6	Liquid-to-Gas Ratio			ratio			2.183	•	0.0	10.00	calc	
	7	Ammonia Generation			mol NH3/mol sorb			1.000	V	0.0	2.000	calc	
	8	Gas Phase Pressure Drop		psia			1.000		0.0	5.000	calc		
	9				%			75.00		50.00	100.0	75.00	
	10			% raw flu	e gas		0.8000		0.0	10.00	0.8000		
	11	Regenerator											
	12	12 Regen. Heat Requirement		Btu/Ib C	02		800.0		500.0	5000	calc		
	13	Regen. Steam Heat Content			Btu/lb st	eam		1373	•	500.0	1500	calc	
	14	Heat-to-Ele	ctricity Effici	ency	%			11.00		0.0	40.00	calc	
	15	Solvent Pur	mping Head		psia			30.00		0.0			
	16 Pump Efficiency 17 Percent Solids in Reclaimer Waste			%			75.00		50.00				
			%			40.00	V	0.0					
18 Capture System Cooling Duty				t H2O/t (202		91.20	V	0.0				
Process Type: CO2 Capture System								(
1. Config / 2. Performance 3. Capture 4. CO2 Storage 5. Retrofit Cost 6. Ca										1			


Hypothetical Advanced Solvent Properties:

-Higher concentration -Lower regen heat -Lower losses -Lower quality steam

Effect of Advanced Solvent on COE

SC PC, Illinois #6 Coal (650 MWg, 75% CF, 90% CO₂ Removal)

Cost of Electricity (\$/MWh)

Future Developments

Future Work

Work in Progress

- Ammonia-based capture system
- Chemical looping combustion

Planned Future Work

- Capabilities for advanced solvents
- Capabilities for solid sorbents
- Capabilities for membrane systems
- More detailed models of selected technologies

Thank You

rubin@cmu.edu

E.S. Rubin, Carnegie Mellon