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Focus on
Environmental Technologies

* “Environmental technologies” are those employed
solely for the purpose of reducing or eliminating
emissions to an environmental medium (air, water, land)

* Common examples include:
= Sulfur dioxide scrubbers and other emission control systems
used at coal-fired power plants

= Catalytic converters installed on automobiles

* No “natural” markets for these technologies; rather,
major markets are established via government policies
or regulations that restrict environmental emissions,
requiring new technology for compliance
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Carbon Capture and Storage
(or Sequestration) Technology

* CCS is an environmental technology that could be
used to eliminate most of the atmospheric CO,
emissions from a power plant or other large industrial
process (including “clean fuels” production)

* CCS is widely viewed as a critical technology for
achieving climate change policy goals at the lowest
cost, in conjunction with other mitigation measures

* However, CCS has not yet been demonstrated at a
full-scale power plant; commercial applications have
been mainly in industrial settings at scales smaller than
typical electric utility situations.
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Questions

* How best to represent in climate policy models the
future cost trajectory of energy systems with new
environmental technologies, esp. power plants with
carbon capture and storage (CCS)?

®* What are the uncertainties associated with use of a
traditional one-factor log-linear model?

* How big of an impact do these uncertainties have on
projected energy costs of plants w/CCS?
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Results from
prior case studies
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Trends in Use of Post-Combustion SO,
and NO, Capture at Coal-Fired Plants
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Best-Fit Experience Curves for
FGD and SCR Capital Costs
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U.S. Patenting Activity in
SO, and NO, Control Technology
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Common Uncertainties in
the One-Factor Model

* Starting point for experience curve

* End point for experience curve

® Measure of cumulative experience

® Basis for cumulative experience data
* Basis for associated cost data

* Shape of the experience curve
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Early Trend of FGD Capital Cost
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Early Trend of SCR Cost Estimates
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Other Examples of Early
Increases in Capital Cost
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Case Study Learning Rates

“Best Estimate”

Learning Rates
Technology ngistfl 832{'
Flue gas desulfurization (FGD) 0.11 0.22
Selective catalytic reduction (SCR) 0.12 0.13
Gas turbine combined cycle (GTCC) 0.10 0.06
Pulverized coal (PC) boilers 0.05 0.18
LNG production 0.14 0.12
Oxygen production (ASU) 0.10 0.05
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Application to power plants
with CO, capture
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Power Plants with CO, Capture
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Power Plants with CO, Capture
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Approach

* Apply best-estimate learning rates to
major plant components, then aggregate
to estimate learning curves for the overall
power plant with CO, capture
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Step 1: Specify baseline plant
characteristics and costs

* 500 MW net output (approximate)

® Supercritical PC and Quench gasifier IGCC
* Pittsburgh #8 bituminous coal

* Annual average capacity factor

® All costs from IECM in constant dollars
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Step 2: Disaggregate each plant
into major sub-sections

For example:
* IGCC Plant Components

= Air separation unit

= QGasifier area

= Sulfur removal/recovery system

= CO, capture system

» CO, compression

= Gas turbine comb. cycle power block
= Fuel cost

E.S. Rubin, Carnegie Mellon

Step 3: Select learning rate analogues
for each plant component

LNG O,

Plant Type &
FGD SCR GTCC prod prod

Technology

IGCC Plant
Air separation unit X
Gasifier area X
Sulfur removal/recovery X X
CO, capture system X X
CO, compression
GTCC (power block) X
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Step 4: Estimate contribution of each
sub-section to current plant costs

Plant Type & Technology ngi;:al An né’glst?&M Lce:\{)eslplzc_)efd
Electricity*
IGCC Plant w/ Capture $kW $/MWh $/MWh
Air separation unit 18 % 8% 14 %
Gasifier area 27 % 17 % 24 %
Sulfur removal/recovery 6 % 3% 5%
CO, capture system 13 % 7% 11%
CO, compression 2% 2% 2%
GTCC (power block) 34 % 9% 25 %
Fuel cost - 54% 19 %

*Excluding T&S cost
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Current
Plant Type &Technology MW et
Equiv.

IGCC Plant Components
Air separation units 50,000
Gasifier area 10,000
Sulfur removal/recovery 50,000
CO, capture system 10,000
CO, compression 10,000
GTCC (power block) 240,000
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Step 5: Estimate current capacity
of major plant components
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Steps 6&7: Specify start and stop

of the learning curve

Cumulative CCS C

apacity (MW)

Plant Type Learning Begins at: Igl?oajlg(]:itg%
1st Plant N Plants to:

NGCC Plant 432 3,000 100,000

PC Plant 500 5,000 100,000

IGCC Plant 490 7,000 100,000

Oxyfuel Plant 500 10,000 100,000
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Results for IGCC Capital Cost

(Assuming learning begins at first capture plant)
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Step 8: Sensitivity Analysis

* Learning starts at either first or N plant

* Range of component learning rates

* Projection to 50 GW of worldwide capacity

* Lower estimates of current component capacity
* Effect of additional non-CCS experience

* Higher fuel prices for coal and natural gas

* Lower financing costs + higher plant utilization
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Range of Learning Rate Results
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* Learning rates for a
given plant type vary
by about a factor of 3

® Projected reductions in
total cost of electricity
(COE) production vary
by factors of ~2 to 4

® Cost estimates from
“bottom-up” models
are generally at the
high end of this range
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Is the experience curve
really log-linear?
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Best-Fit Curves for Initial Deployment
of Two Environmental Technologies

100% Hypothesis:
SCR The requlatory-driven
(1983-2000)
deployment of these

(1976.1605) technologies leads to
large initial increments
of capacity before the
subsequent benefits of
LBD, R&D, etc begin to
lower future costs

y =1—aebkx
(R2=0.92 - 0.99)

Normalized Capital Cost

10%

1 10 100 1000
Worldwide Installed Capacity at Coal-Fired
Utility Plant (GWe)

E.S. Rubin, Carnegie Mellon

Other Empirical Studies Also Find
“S-Shaped” Experience Curves

* Carr ( 1946)

¢ Stanford Research Institute (1949)
® Asher ( 1956)

* Conway and Schultz (1959)

* Klepper and Graddy (1990)

* Claeson (1999)

* Goldemberg (2004)

* Hettinga et al. (2009)
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Many factors not explicitly modeled
by traditional experience curves
* Influence of R&D expenditures on product cost
* Knowledge “spillover” effects
* Discontinuities and organizational forgetting

* Societal influences on technology use or design, e.g.,
= New safety regulations that increase technology cost

= New emission regs that influence technology deployment
* Influence of competition on market dynamics

* Contribution of exogenous change vs. learning
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How can we do better ?
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Two-Factor Learning Curves

®* Model form; Ci =a (Xi _b:LBD) (RDi —b,LBR)

where: C = unit cost of technology i
X = cumulative adoption of technology i
RD = cumulative R&D investment or knowledge stock for i
b gp = learning-by-doing parameter
b gr = learning-by-researching (R&D) parameter
a = unit cost at unit cumulative capacity and unit knowledge stock

* Example Applications:
= Bahn and Kypreos (2003)
= Barreto and Klassen (2004)
» Klassen, Miketa et al. (2005)
= Jamasb (2007)
= Soderholm and Klassen (2007)
= Fischer and Newell (2008)
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Multi-Factor Models and Formulations

* Linear regression models that fit unit cost reductions
to changes in explanatory parameters (e.g., efficiency,
material costs, labor costs, scale); e.g.,

= Joskow and Rose (1985) [US coal plants]

= Nemet et al (2006) [world PV]
= Soderholm and Sundqvist (2007) [European wind turbines]

* Endogenous learning-diffusion models; endogenous
plus exogenous learning through time; e.g.,

= Jamasb (2007)
= Ferioli et al. (2009)
= Nordhaus (2009, 2010)
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Some Issues and Limitations

Availability of data

Credibility of data

Co-linearity between R&D and adoption
Distinguishing between private and public R&D

Extrapolating to other technologies
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So What’s a Modeler to Do ?

* In the near term: Much stronger efforts to improve
the transparency of complex models, e.g.,

= Quantify, incorporate and display the impacts on
key results of uncertainties in model formulations,
assumptions, and underlying data

= Admit (where applicable) that we just can’t answer
(yet) many questions that are of policy interest

® Over the longer term: Develop a coherent research
strategy to define and acquire the data needed to
develop and validate improved modeling methods
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Typical Display of a Model Run
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What I’d Like to See
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