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Focus onFocus on
Environmental TechnologiesEnvironmental Technologies

• “Environmental technologies” are those employed 
solely for the purpose of reducing or eliminating 
emissions to an environmental medium (air, water, land)

• Common examples include:
 Sulfur dioxide scrubbers and other emission control systems 

used at coal-fired power plants

 Catalytic converters installed on automobiles

• No “natural” markets for these technologies; rather, 
major markets are established via government policies 
or regulations that restrict environmental emissions, 
requiring new technology for compliance
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CCarbon arbon CCapture and apture and SStorage         torage         
(or Sequestration) Technology(or Sequestration) Technology

• CCS is an environmental technology that could be 
used to eliminate most of the atmospheric CO2
emissions from a power plant or other large industrial 
process (including “clean fuels” production)

• CCS is widely viewed as a critical technology for 
achieving climate change policy goals at the lowest 
cost, in conjunction with other mitigation measures 

• However, CCS has not yet been demonstrated at a 
full-scale power plant; commercial applications have 
been mainly in industrial settings at scales smaller than 
typical electric utility situations.

E.S. Rubin, Carnegie Mellon

QuestionsQuestions

• How best to represent in climate policy models the 
future cost trajectory of energy systems with new 
environmental technologies, esp. power plants with 
carbon capture and storage (CCS)?

• What are the uncertainties associated with use of a 
traditional one-factor log-linear model?  

• How big of an impact do these uncertainties have on 
projected energy costs of plants w/CCS?
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Results from Results from 
prior case studies prior case studies 

E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Trends in Use of PostTrends in Use of Post--Combustion SOCombustion SO22
and NOand NOxx Capture at CoalCapture at Coal--Fired PlantsFired Plants
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BestBest--Fit Experience Curves for Fit Experience Curves for 
FGD and SCR Capital CostsFGD and SCR Capital Costs
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E.S. Rubin, Carnegie Mellon
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Common Uncertainties inCommon Uncertainties in
the Onethe One--Factor ModelFactor Model

• Starting point for experience curve

• End point for experience curve

• Measure of cumulative experience

• Basis for cumulative experience data 

• Basis for associated cost data

• Shape of the experience curve

E.S. Rubin, Carnegie Mellon

Early Trend of FGD Capital CostEarly Trend of FGD Capital Cost
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Early Trend of SCR Cost EstimatesEarly Trend of SCR Cost Estimates
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Other Examples of Early Other Examples of Early 
Increases in Capital CostIncreases in Capital Cost

PR~75% (1991-1997)

PR>100% (1981-1991)

Cumulative installed capacity, MW

In
ve

st
m

en
t 

P
ri

ce
 U

SD
 (

19
90

$/
k

W
)

10000 100000

300

400

500

600

700

800
900

1000

Gas Turbine 
Combined Cycles

Source: Colpier and Cornland (2002).

PR~75% (1991-1997)

PR>100% (1981-1991)

Cumulative installed capacity, MW

In
ve

st
m

en
t 

P
ri

ce
 U

SD
 (

19
90

$/
k

W
)

10000 100000

300

400

500

600

700

800
900

1000

Gas Turbine 
Combined Cycles

Source: Colpier and Cornland (2002).

PR~75% (1991-1997)

PR>100% (1981-1991)

Cumulative installed capacity, MW

In
ve

st
m

en
t 

P
ri

ce
 U

SD
 (

19
90

$/
k

W
)

10000 100000

300

400

500

600

700

800
900

1000

Gas Turbine 
Combined Cycles

Source: Colpier and Cornland (2002).

PR~75% (1991-1997)

PR>100% (1981-1991)

Cumulative installed capacity, MW

In
ve

st
m

en
t 

P
ri

ce
 U

SD
 (

19
90

$/
k

W
)

10000 100000

300

400

500

600

700

800
900

1000

Gas Turbine 
Combined Cycles

PR~75% (1991-1997)

PR>100% (1981-1991)

Cumulative installed capacity, MW

In
ve

st
m

en
t 

P
ri

ce
 U

SD
 (

19
90

$/
k

W
)

10000 100000

300

400

500

600

700

800
900

1000

PR~75% (1991-1997)

PR>100% (1981-1991)

Cumulative installed capacity, MW

In
ve

st
m

en
t 

P
ri

ce
 U

SD
 (

19
90

$/
k

W
)

10000 100000

300

400

500

600

700

800
900

1000

Gas Turbine 
Combined Cycles

Source: Colpier and Cornland (2002).

y = 269x-0.22

R2 = 0.52

10.0

100.0

1000.0

0.1 1 10 100

Cumulative LNG produced (Mta)

L
iq

u
ef

ac
tio

n
 c

ap
ita

l c
o

st
 ($

/tp
a
)

Actual liquefaction unit cost

Theoretical liquefaction unit cost

LNG Production

y = 269x-0.22

R2 = 0.52

10.0

100.0

1000.0

0.1 1 10 100

Cumulative LNG produced (Mta)

L
iq

u
e
fa

c
ti
o

n
 c

a
p

it
a
l c

o
s
t (

$
/t
p

a
)

Actual liquefaction unit cost

Theoretical liquefaction unit costLNG Production

y = 269x-0.22

R2 = 0.52

10.0

100.0

1000.0

0.1 1 10 100

Cumulative LNG produced (Mta)

L
iq

u
ef

ac
tio

n
 c

ap
ita

l c
o

st
 ($

/tp
a
)

Actual liquefaction unit cost

Theoretical liquefaction unit cost

y = 269x-0.22

R2 = 0.52

10.0

100.0

1000.0

0.1 1 10 100

Cumulative LNG produced (Mta)

L
iq

u
ef

ac
tio

n
 c

ap
ita

l c
o

st
 ($

/tp
a
)

Actual liquefaction unit cost

Theoretical liquefaction unit cost

LNG Production

y = 269x-0.22

R2 = 0.52

10.0

100.0

1000.0

0.1 1 10 100

Cumulative LNG produced (Mta)

L
iq

u
e
fa

c
ti
o

n
 c

a
p

it
a
l c

o
s
t (

$
/t
p

a
)

Actual liquefaction unit cost

Theoretical liquefaction unit cost

y = 269x-0.22

R2 = 0.52

10.0

100.0

1000.0

0.1 1 10 100

Cumulative LNG produced (Mta)

L
iq

u
e
fa

c
ti
o

n
 c

a
p

it
a
l c

o
s
t (

$
/t
p

a
)

Actual liquefaction unit cost

Theoretical liquefaction unit costLNG Production



7

E.S. Rubin, Carnegie Mellon

Case Study Learning RatesCase Study Learning Rates

0.050.10Oxygen production (ASU)

0.120.14LNG production

0.180.05Pulverized coal (PC) boilers

0.060.10Gas turbine combined cycle (GTCC)

0.130.12Selective catalytic reduction (SCR)

0.220.11Flue gas desulfurization (FGD)

O&M 
Cost

Capital   
Cost

“Best Estimate”
Learning Rates

Technology

Application to power plants Application to power plants 
with COwith CO22 capturecapture

E.S. Rubin, Carnegie Mellon



8

E.S. Rubin, Carnegie Mellon

Power Plants with COPower Plants with CO22 CaptureCapture
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Power Plants with COPower Plants with CO22 CaptureCapture
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ApproachApproach

• Apply best-estimate learning rates to 
major plant components, then aggregate 
to estimate learning curves for the overall 
power plant with CO2 capture

E.S. Rubin, Carnegie Mellon

Step 1Step 1: Specify baseline plant : Specify baseline plant 
characteristics and costscharacteristics and costs

• 500 MW net output (approximate)

• Supercritical PC and Quench gasifier IGCC

• Pittsburgh #8 bituminous coal

• Annual average capacity factor

• All costs from IECM in constant dollars
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Step 2Step 2: Disaggregate each plant : Disaggregate each plant 
into major subinto major sub--sections sections 

For example:

• IGCC Plant Components
 Air separation unit

 Gasifier area

 Sulfur removal/recovery system

 CO2 capture system 

 CO2 compression

 Gas turbine comb. cycle power block

 Fuel cost

E.S. Rubin, Carnegie Mellon

Step 3Step 3: Select learning rate analogues : Select learning rate analogues 
for each plant componentfor each plant component

XGTCC (power block)

CO2 compression

XXCO2 capture system

XXSulfur removal/recovery

XGasifier area

XAir separation unit

IGCC Plant

O2
prod

LNG 
prodGTCCSCRFGDPlant Type & 

Technology
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Step 4Step 4: Estimate contribution of each : Estimate contribution of each 
subsub--section to current plant costssection to current plant costs

19 %54%--Fuel cost

25 %9 %34 %GTCC (power block)

2 %2 %2%CO2 compression

11 %7 %13 %CO2 capture system

5 %3 %6 %Sulfur removal/recovery

24 %17 %27 %Gasifier area

14 %8 %18 %Air separation unit

$/MWh$/MWh$/kWIGCC Plant w/ Capture

Levelized 
Cost of

Electricity*

Annual O&M 
Cost*

Capital 
Cost 

Plant Type & Technology

*Excluding T&S cost

E.S. Rubin, Carnegie Mellon

Step 5Step 5: Estimate current capacity : Estimate current capacity 
of major plant componentsof major plant components

240,000GTCC (power block)

10,000CO2 compression

10,000CO2 capture system

50,000Sulfur removal/recovery

10,000Gasifier area

50,000Air separation units

IGCC Plant Components

Current 
MWnet

Equiv.
Plant Type &Technology
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Steps 6&7Steps 6&7: Specify start and stop           : Specify start and stop           
of the learning curve of the learning curve 

N Plants1st Plant

100,00010,000500Oxyfuel Plant

100,0007,000490IGCC Plant

100,0005,000500PC Plant

100,0003,000432NGCC Plant

Learning 
Projected 

to:

Learning Begins at:Plant Type

Cumulative CCS Capacity (MW)

E.S. Rubin, Carnegie Mellon

Results for IGCC Capital Cost  Results for IGCC Capital Cost  
(Assuming learning begins at first capture plant)(Assuming learning begins at first capture plant)
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Step 8Step 8: Sensitivity Analysis: Sensitivity Analysis

• Learning starts at either first or Nth plant

• Range of component learning rates

• Projection to 50 GW of worldwide capacity 

• Lower estimates of current component capacity

• Effect of additional non-CCS experience 

• Higher fuel prices for coal and natural gas 

• Lower financing costs + higher plant utilization 

E.S. Rubin, Carnegie Mellon

Range of Learning Rate ResultsRange of Learning Rate Results
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Summary of ResultsSummary of Results
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% COE REDUCTION AFTER 
100 GW EXPERIENCE• Learning rates for a 

given plant type vary 
by about a factor of 3

• Projected reductions in 
total cost of electricity 
(COE) production vary 
by factors of ~2 to 4

• Cost estimates from 
“bottom-up” models 
are generally at the 
high end of this range

Is the experience curve 
really log-linear?

E.S. Rubin, Carnegie Mellon
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BestBest--Fit Curves for Initial Deployment Fit Curves for Initial Deployment 
of Two Environmental Technologiesof Two Environmental Technologies
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Other Empirical Studies Also Find   Other Empirical Studies Also Find   
““SS--ShapedShaped”” Experience CurvesExperience Curves

• Carr ( 1946) 

• Stanford Research Institute (1949)

• Asher ( 1956) 

• Conway and Schultz (1959) 

• Klepper and Graddy (1990) 

• Claeson (1999)

• Goldemberg (2004) 

• Hettinga et al. (2009) 
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Many factors not explicitly modeled Many factors not explicitly modeled 
by traditional experience curvesby traditional experience curves

• Influence of R&D expenditures on product cost

• Knowledge “spillover” effects

• Discontinuities and organizational forgetting

• Societal influences on technology use or design, e.g.,
 New safety regulations that increase technology cost

 New emission regs that influence technology deployment

• Influence of competition on market dynamics

• Contribution of exogenous change vs. learning

How can we do better ?How can we do better ?

E.S. Rubin, Carnegie Mellon
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TwoTwo--Factor Learning CurvesFactor Learning Curves

• Model form: Ci = a (xi
–b,LBD) (RDi

–b,LBR)
where: C = unit cost of technology i

x = cumulative adoption of technology i
RD = cumulative R&D investment or knowledge stock for i
bLBD = learning-by-doing parameter
bLBR = learning-by-researching (R&D) parameter
a = unit cost at unit cumulative capacity and unit knowledge stock

• Example Applications:
 Bahn and Kypreos (2003) 
 Barreto and Klassen (2004)
 Klassen, Miketa et al. (2005) 
 Jamasb (2007) 
 Söderholm and Klassen (2007)
 Fischer and Newell (2008) 

E.S. Rubin, Carnegie Mellon

MultiMulti--Factor Models and FormulationsFactor Models and Formulations

• Linear regression models that fit unit cost reductions          
to changes in explanatory parameters (e.g., efficiency, 
material costs, labor costs, scale); e.g.,

 Joskow and Rose (1985) [US coal plants] 

 Nemet et al (2006)  [world PV]

 Söderholm and Sundqvist (2007) [European wind turbines]

• Endogenous learning-diffusion models; endogenous 
plus exogenous learning through time; e.g.,

 Jamasb (2007) 
 Ferioli et al. (2009)
 Nordhaus (2009, 2010) 
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Some Issues and LimitationsSome Issues and Limitations

• Availability of data

• Credibility of data 

• Co-linearity between R&D and adoption 

• Distinguishing between private and public R&D

• Extrapolating to other technologies

E.S. Rubin, Carnegie Mellon

So WhatSo What’’s a Modeler to Do ?s a Modeler to Do ?

• In the near term: Much stronger efforts to improve 
the transparency of complex models, e.g.,

 Quantify, incorporate and display the impacts on        
key results of uncertainties in model formulations, 
assumptions, and underlying data

 Admit (where applicable) that we just can’t answer 
(yet) many questions that are of policy interest

• Over the longer term: Develop a coherent research 
strategy to define and acquire the data needed to 
develop and validate improved modeling methods
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Typical Display of a Model RunTypical Display of a Model Run
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