Designing for Energy and the Environment

Edward S. Rubin
Department of Engineering and Public Policy
Department of Mechanical Engineering
Carnegie Mellon University

Guest Lecture
Design for Manufacturing and the Environment (24-683)
Carnegie Mellon University
November 9, 2010

Outline of Talk

- Overview of energy and the environment
- Drivers of innovation
- Opportunities and needs

Human Demands for Energy

- Comfort / Safety
- Food production
- Manufacturing / Commerce
- Mobility
- Recreation
Trend in U.S. Energy Consumption

Sources of Energy

- "Renewables"
 - Biomass
 - Hydropower
 - Wind
 - Solar
 - Geothermal

- Fossil Fuels
 - Coal
 - Petroleum
 - Natural Gas

- Nuclear
 - Uranium

The U.S. Energy System

(2008 energy flows in quadrillion Btu)

~85% from fossil fuels

Most of the World’s Primary Energy Comes from Fossil Fuels

Key Drivers of Innovation

- Reduce the cost (and/or increase the convenience and reliability) of energy services
- Movement toward “sustainability”
- Reduce dependency on oil imports
- Reduce greenhouse gas emissions

Drivers of Innovation
U.S. Energy Imports

Oil imports = 66% of total (vs. 36% in 1973)

Global Climate Change

- Concentrations of greenhouse gases in the atmosphere are rising sharply due to GHG emissions from human activities
- The resulting heat-trapping effect leads to climate change on a global scale

CO₂ from Energy Use is the Dominant Greenhouse Gas

U.S. Greenhouse Gas Emissions
weighted by 100-yr Global Warming Potential (GWP)

- 7.4% CO₂
- 6.5% CH₄
- 2.2% N₂O
- 83.9% Others

The Climate Change Policy Driver

- 1992 U.N. Framework Convention on Climate Change called for “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system”
Stabilization Requires Large Emission Reductions, Soon

Recent assessments indicate potentially serious impacts for more than a 2°C rise in average global temperature

Required change in global CO₂ equiv emissions from 2000 to 2050

−85% to −50%

Source: IPCC, 2007

Stabilizing climate change will require urgent action

Opportunities and needs for innovation

Innovation Opportunities

New or Improved Methods to:

• Reduce CO₂ emissions from energy use
• Reduce other GHG emissions from:
 • Industrial processes
 • Agricultural activities
 • Landfills /Other sources
• Enhance natural sinks
 • Afforestation /Reforestation
 • Soil management
• “Geoengineering”

General Strategies to Reduce Energy-Related Emissions

The Kaya Identity

\[
\frac{\text{CO}_2 \text{ emissions}}{\text{per year}} = \frac{\text{Population} \text{ per year}}{\text{GDP \ per \ capita}} \times \frac{\text{Energy \ use \ per \ GDP}}{\text{CO}_2 \text{ emissions \ per \ unit \ energy}}
\]

Measures to reduce the last two terms are the focus of current policies
Sources of CO₂ Emissions

U.S. CO₂ Emissions

<table>
<thead>
<tr>
<th>End-Use Energy Sectors</th>
<th>Residential</th>
<th>Commercial</th>
<th>Industrial</th>
<th>Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity + Vehicles</td>
<td>38.1%</td>
<td>17.1%</td>
<td>28.9%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

Electricity + Vehicles emit ≈ 75% of all CO₂ (and 70% of U.S. electricity)

Innovation Opportunities:

Demand-Side Measures (I)

- Design more efficient technologies to reduce the demands for energy in all end-use sectors

<table>
<thead>
<tr>
<th>Energy Demand Sectors and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential & Commercial Blgds.</td>
</tr>
<tr>
<td>Lighting</td>
</tr>
<tr>
<td>Water heating</td>
</tr>
<tr>
<td>Cooking</td>
</tr>
<tr>
<td>Refrigeration</td>
</tr>
<tr>
<td>Space heating</td>
</tr>
<tr>
<td>Air conditioning</td>
</tr>
<tr>
<td>Ventilation</td>
</tr>
<tr>
<td>Appliances</td>
</tr>
<tr>
<td>Building structures</td>
</tr>
</tbody>
</table>

Improving and Phasing Out Incandescent Lamps

CFLs - Federal (Harmon) Tier 1 (2012 - 2014)

Best Fit to Existing Lamps

Rechargeable LED Flashlights and Task Lights Already Available

- Monkeyhead
- RiGo
- Girls XB
- Miguylight
- Treasure
- Sedge
- Craze
- Cylint
- Yuga
- Impulse
- Thuk XP

Source: A.Rosenfeld, CEC, 2007
Cool Colors Reduce Energy Demand

Cool Colors Reflect Invisible Near-Infrared Sunlight

Cool (increased solar reflectance)

Standard

Concrete Tiles
(Courtesy American Rooftile Coatings)

Old (flat, white)

New (pitched, cool, colored)

COOL ROOF TECHNOLOGIES

Coming Next: Cool Color Cars

- Toyota experiment (surface temperature 18°F cooler)
- Ford, BMW, Fiat also working on this technology

Per Capita Electricity Sales: California vs. U.S. Average

United States

California

1975-2005 Difference = 5,300kWh/capita = $165/capita

Per Capita Income in Constant 2000 $

1975 2005 % change

US GDP/capita

16,241 31,442 94%

Cal GSP/capita

18,760 33,536 79%

1975-2005 Difference = 5,300kWh/capita = $165/capita

Source: A. Rosenfeld, CEC, 2007

Per Capita Electricity Sales (kWh/person) (excluding self-generation)

Source: A. Rosenfeld, CEC, 2007

Refrigerator Energy Use in U.S.

Source: A. Rosenfeld, CEC, 2007

E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon
Vehicle Ownership Around the World is Growing (Rapidly)

Fuel Economy for New U.S. Vehicles

Technology for Reducing Automotive Emissions

Available Now
- Improved fuel economy for conventional ICE vehicles (gasoline and diesel)
- Hybrid-electric vehicles
- Biofuels (corn/sugarcane ethanol)

Under Development
- Plug-in hybrid electric vehicles*
- Hydrogen fuel cell vehicles*
- Advanced biofuels (cellulosic ethanol)

Innovation Opportunities: Demand-Side Measures (2)

- Reduce demand for energy-intensive services and products through changes in:
 - Community planning and development
 - Transportation systems & infrastructure
 - Industrial & manufacturing infrastructure
 - Agricultural practices and products
 - Personal life-style and amenities

* Need low-carbon electricity and H₂ to get low CO₂

Some measures may require significant behavioral changes, not just new technology
Innovation Opportunities: Supply-Side Measures (1)

- Use more efficient technologies for generating and distributing electricity and other energy carriers
- Utilize alternative energy sources with lower or no GHG emissions:
 - Renewables: wind, biomass, geothermal, solar, hydro
 - Natural gas
 - Nuclear power

All options can be expanded, but deployment may be limited by technical, economic and/or societal constraints.

Innovation Opportunities: Supply-Side Measures (2)

- Capture and sequester the CO₂ produced at power plants and other large industrial sources
 - Until recently, the term “carbon sequestration” referred only to the natural uptake of CO₂ by trees and other biomass (terrestrial sequestration)
 - Today this term includes technology to capture and sequester CO₂ from industrial processes—commonly referred to as carbon capture and storage, or CCS

This option has not been seriously considered until recently, but now getting significant attention.

Conclusion

- Many opportunities energy-related design and innovations to address societal issues
- Still a need for effective/firm policy drivers
- CMU well-positioned to lead in this field

Thanks

rubin@cmu.edu