Carbon Capture and Storage Technology

Edward S. Rubin Department of Engineering and Public Policy Carnegie Mellon University Pittsburgh, Pennsylvania

Presentation to The George Washington University Greenhouse Gas Symposium Washington, DC April 15, 2009

Outline of Talk

- Why the interest in CO₂ capture and storage (CCS)?
- Current status and cost of CCS technology
- Potential for improved technology
- Barriers to CCS deployment
- Future outlook

The most recent IPCC assessment indicates potentially serious impacts for more that a 2°C rise in average global temperature

Global avg.	Atmospheric	Required change
temperature	stabilization	in global CO ₂
increase over	CO _{2-equiv} (ppm)	emissions from
pre-industrial	(2005=375 ppm)	2000 to 2050
2.0 – 2.4º C	445 – 490	-85% to -50%

Source: IPCC, 2003

Fossil fuels provide over 80% of our energy and are the dominant source of CO_2 (a third of U.S. emissions is from burning coal for electricity generation)

Leading Candidates for CCS

• Fossil fuel power plants

- Pulverized coal combustion (PC)
- Natural gas combined cycle (NGCC)
- Integrated coal gasification combined cycle (IGCC)
- Other large industrial sources of CO₂ such as:
 - Refineries, fuel processing, and petrochemical plants
 - Hydrogen and ammonia production plants
 - Pulp and paper plants
 - Cement plants

- Main focus is on power plants, the dominant source of CO_2 -

CO₂ Capture Options for Power Plants

Status of CCS Technology • Pre- and post-combustion CO₂ capture technologies are commercial and widely used in industrial processes; also at several gas-fired and coal-fired power plants, at small scale (\sim 50 MW); CO₂ capture efficiencies are typically 85-90%. Oxyfuel capture still under development. • CO₂ pipelines are a mature technology • Geological storage is commercial on a limited basis, mainly for EOR; several sequestration projects are now operating at scale of ~1 Mt $\dot{C}O_2$ /yr Integration of CO₂ capture, transport and geological • sequestration has been demonstrated in several industrial applications—but not yet at an electric power plant, and not yet in the U.S.

CO₂ Capture Projects

Examples of Post-Combustion CO₂ Capture at Coal-Fired Plants

Shady Point Power Plant (Panama, Oklahoma, USA) E.S. Rubin, Carnegie Mellon Warrior Run Power Plant (Cumberland, Maryland, USA)

Examples of Post-Combustion CO₂ Capture at Gas-Fired Plants

Bellingham Cogeneration Plant (Bellingham, Massachusetts, USA) E.S. Rubin, Carnegie Mellon

Petronas Urea Plant Flue Gas (Keda, Malaysia)

Examples of Pre-Combustion CO₂ Capture Systems

Petcoke Gasification to Produce H₂ (Coffeyville, Kansas, USA)

Coal Gasification to Produce SNG (Beulah, North Dakota, USA)

E.S. Rubin, Carnegie Mellon

Global Storage Capacity Estimates

Reservoir Type	Lower Estimate (GtCO ₂)	Upper Estimate (GtCO ₂)		
Deep saline formations	1000	Uncertain, but possibly ~10 ⁴		
Oil and gas fields	675*	900*		
Unminable coal seams	3–15	200		

* Estimates are 25% larger if "undiscovered reserves" are included. (Source: IPCC, 2005)

Existing/Proposed CO₂ Storage Sites

Geological Storage of Captured CO₂ with Enhanced Oil Recovery (EOR)

Trapping Mechanisms Provide Increasing Storage Security with Time

- Storage security depends on a combination of physical and geochemical trapping mechanisms
- Over time, CO₂ trapping mechanisms increase the security of storage
- Appropriate site selection and management are the key to secure storage

Many Factors Affect CCS Costs

- Choice of Power Plant and CCS Technology
- Process Design and Operating Variables
- Economic and Financial Parameters
- Choice of System Boundaries; *e.g.*,
 - One facility vs. multi-plant system (regional, national, global)
 - GHG gases considered (CO₂ only vs. all GHGs)
 - Power plant only vs. partial or complete life cycle
- Time Frame of Interest
 - Current technology vs. future (improved) systems
 - Consideration of technological "learning"

Ten Ways to Reduce the Estimated Cost of CO₂ Abatement

- 10. Assume high power plant efficiency
- 9. Assume high-quality fuel properties
- 8. Assume low fuel costs
- 7. Assume EOR credits for CO_2 storage
- 6. Omit certain capital costs
- 5. Report $\frac{1}{2}$ based on short tons
- 4. Assume long plant lifetime
- 3. Assume low interest rate (discount rate)
- 2. Assume high plant utilization (capacity factor)
- 1. Assume all of the above !

... and we have not yet considered the CCS technology!

Representative CCS Costs for New Power Plants Using Current Technology

Levelized costs in constant 2007 US\$

Incremental Cost of CCS <u>relative</u> <u>to same plant type</u> without CCS <u>based on bituminous coals</u>	Supercritical Pulverized Coal Plant	Integrated Gasification Combined Cycle Plant
Increases in capital cost (\$/kW) and generation cost (\$/kWh)	~ 60–80%	~ 30–50%

VERY IMPORTANT TO NOTE :

The added cost to <u>consumers</u> will be much smaller, reflecting the number and type of CCS plants in the power generation mix at any given time

Levelized cost in 2	2007 US\$ per tonne C	CO_2 avoided
Power Plant System (<u>relative to a SCPC</u> <u>plant without CCS)</u>	New Supercritical Pulverized Coal Plant	New Integrated Gasification Combined Cycle Plant
Deep aquifer storage	~ \$70 /tCO ₂	~ \$50 /tCO ₂
Enhanced oil recovery (EOR) storage	Cost reduced by	y ~ \$20–30 /tCO ₂

Estimated CCS Cost Reductions Based on Learning Curves

(after 100 GW of cumulative CCS capacity worldwide)

Technology innovation tends to lower costs as experience is gained from manufacture and use of a technology, and R&D is sustained.

Cost reduction estimates are similar to those from "bottom-up analyses.

– –	Dubin	Car		Mallan	
E.O.	rsuum.	Jan	ieoie.	Nellon	

Curront	Project Name	Location	Feedstock	Size MW	Capture Process	CO2 Fate	Start-up
Current	Total Lacq	France	Oil	35	Оху	Seq	2008
A	Vattenfall Oxyfuel	Germany	Coal	30/300/1000	Оху	Undecided	2008
A ctivity	AEP Alstom Mountaineer	USA	Coal	30	Post	Seq	2008
7 ICLIVILY	Callide-A Oxy Fuel	Australia	Coal	30	Оху	Seq	2009
	GreenGen	China	Coal	250/800	Pre	Seq	2009
	Williston	USA	Coal	450	Post	EOR	2009-15
	NZEC	China	Coal	Undecided	Undecided	Seq	2010
	E.ON Killingholme	UK	Coal	450	Pre	Seq	2011
	AEP Alstom Northeastern	USA	Coal	200	Post	EOR	2011
• A variety of	Sargas Husnes	Norway	Coal	400	Post	EOR	2011
	Scottish& So Ferrybridge	UK	Coal	500	Post	Seq	2011-2012
CCS projects	Naturkraft Kårstø	Norway	Gas	420	Post	Undecided	2011-2012
ees projeets	ZeroGen	Australia	Coal	100	Pre	Seq	2012
are proposed	WA Parish	USA	Coal	125	Post	EOR	2012
are proposed	Coastal Energy	UK	Coal/Petcoke	800	Pre	EOR	2012
or planned in	UAE Project	UAE	Gas	420	Pre	EOR	2012
or praimed in	Appalachian Power	USA	Coal	629	Pre	Undecided	2012
1.00	Waliula Energy	USA	Coal	600-700	Pre	Seq	2013
different parts	Tenacka		Coal	600	Post	EOP	2013
	BB Bio Tinto Kuinana	Auetralia	Coal	500	Pro	Sog	2014
of the world	UK CCS project	UK	Coal	300-400	Post	Seq	2014
	Statoil Mongstad	Norway	Gas	630 CHP	Post	Seq	2014
(nere is a sample)	RWE Zero CO2	Germany	Coal	450	Pre	Seq	2015
	8 Monash Energy	Australia	Coal	60 k bpd	Pre	Seq	2016
	Powerfuel Hatfield	UK	Coal	900	Pre	EOR	Undecided
	ZENG Worsham-Steed	USA	Gas	70	Оху	EOR	Undecided
	Polygen Project	Canada	Coal/Petcoke	300	Pre	Undecided	Undecided
	ZENG Risavika	Norway	Gas	50-70	Оху	Undecided	Undecided
	E.ON Karlshamn	Sweden	Oil	5	Post	Undecided	Undecided

Many Government Programs and Public-Private Partnerships Are Already In Place

Some of the government programs supporting CCS:

- Australia
- Canada
- China
- European Union
- United Kingdom
- United States

Funding levels and scale of projects vary widely

It might be the GreenGen Project (Tianjin, China)

Barriers to CCS Deployment

- No current policy mandate or strong incentives for large reductions in CO₂ emissions
- High cost of current technology
- Lack of experience in utility applications
- No established regulatory framework for licensing large-scale geological sequestration projects in U.S.
- Uncertainties about public acceptance
- Unresolved legal issues related to CO₂ pipelines, sub-surface property rights and long-term liabilities

Will CCS be Used to Mitigate Global Climate Change ?

- Will very likely see successful demo of CCS technology in next ~5 years; but ...
- Widespread CCS deployment will not occur without a strong policy driver
- WATCH THIS SPACE FOR UPDATES

rubin@cmu.edu