The Future Cost of Power Plants with CO₂ Capture

Edward S. Rubin Department of Engineering and Public Policy Carnegie Mellon University Pittsburgh, Pennsylvania

Presentation to the

Strategic Initiatives for Coal and Power Wye Workshop Queenstown, Maryland

December 15, 2006

Two Approaches to Estimating Future Technology Costs

- <u>Method 1</u>: Engineering-Economic Modeling
 - A "bottom up" approach based on engineering process models, informed by expert elicitations regarding potential improvements in key process parameters
- <u>Method 2</u>: Use of Historical Experience Curves
 - A "top down" approach based on use of mathematical "learning curves" or "experience curves" reflecting historical trends for analogous technologies or systems

This study employs the latter method

Case Study Technologies

- Flue gas desulfurization systems (FGD)
- Selective catalytic reduction systems (SCR)
- Gas turbine combined cycle system (GTCC)
- Pulverized coal-fired boilers (PC)
- Liquefied natural gas plants (LNG)
- Oxygen production plants (ASU)
- Hydrogen production plants (SMR)

Cuse Study Lear	inng r	laics	
	"Best Estimate" Learning Rates		
Technology	Capital Cost	O&M Cost	
Flue gas desulfurization (FGD)	0.11	0.22	
Selective catalytic reduction (SCR)	0.12	0.13	
Gas turbine combined cycle (GTCC)	0.10	0.06	
Pulverized coal (PC) boilers	0.05	0.18	
LNG production	0.14	0.12	
Oxygen production (ASU)	0.10	0.05	
Hydrogen production (SMR)	0.27	0.27	

Application to Power Plants with CO₂ Capture

Baseline Plant Characteristics

- Approximately 500 MW net output
- Supercritical PC and Quench gasifier IGCC
- Pittsburgh #8 bituminous coal
- 75% levelized capacity factor
- 14.8% fixed charge factor
- All costs in constant 2002 dollars

<u>Step 1</u>: Disaggregate each plant into major sub-sections

For example:

- IGCC Plant Components
 - Air separation unit
 - Gasifier area
 - Sulfur removal/recovery system
 - CO₂ capture system (WGS+Selexol)
 - CO₂ compression
 - GTCC (power block)
 - Fuel cost

E.S. Rubin, Carnegie Mellon

<u>Step 2</u>: Estimate current plant costs and contribution of each sub-section

Plant Type & Technology	Capital Cost	Annual O&M Cost*	Cost of Electricity*
IGCC Plant w/ Capture	1,831 \$/kW	21.3 \$/MWh	62.6 \$/MWh
Air separation unit	18 %	8 %	14 %
Gasifier area	27 %	17 %	24 %
Sulfur removal/recovery	6 %	3 %	5 %
CO ₂ capture system*	13 %	7 %	11 %
CO_2 compression	2%	2 %	2 %
GTCC (power block)	34 %	9 %	25 %
Fuel cost**		54%	19 %

<u>Step 3</u>: Select learning rate analogues for each plant component

Plant Type & Technology	FGD	SCR	GTCC	PC boiler	LNG prod	O₂ prod
IGCC Plant						
Air separation unit						Х
Gasifier area					Х	
Sulfur removal/recovery	Х	Х				
CO ₂ capture system	Х	Х				
CO ₂ compression						
GTCC (power block)			Х			

<u>Step 4</u>: Estimate current capacity of major plant components

Plant Type &Technology	Current MWnee Equiv.
IGCC Plant Components	
Air separation units	50,000
Gasifier area	10,000
Sulfur removal/recovery	50,000
CO ₂ capture system	10,000
CO ₂ compression	10,000
GTCC (power block)	240,000

<u>Step 5</u>: Set projection period and start of learning

Plant Type	Learning	Learning	
	1 st Plant	n th Plant	to:
NGCC Plant	432	3,000	100,000
PC Plant	500	5,000	100,000
IGCC Plant	490	7,000	100,000
Oxyfuel Plant	500	10,000	100,000

			Capital Co	st (\$/kW)			COE (\$/	MWh)	
	NGCC Sensitivity Case	Learning	Initial	Final	% Change	Learning	Initial	Final	% Change
		Rate	Value	Value	70 Onange	Rate	Value	Value	70 Onlange
	Nominal Base Case Assumptions	0.022	916	817	10.8%	0.033	59.1	49.9	15.5%
	Learning Starts with First Plant	0.014	916	811	11.5%	0.028	59.1	47.0	20.4%
	Learning up to 50 GVV	0.018	916	849	7.3%	0.031	59.1	52.0	12.0%
	Non CSS Exp. Multipliors = 2.0	0.029	016	700	14.2 /0	0.037	59.1	40.0	17.4/0
	Natural Gas Price = \$6 0/G I	0.030	910	826	10.7%	0.030	76.1	49.0	15.7%
	FCF = 11% CF = 85%	0.022	918	820	10.7%	0.034	51.6	43.3	16.1%
D + 1 = 1									
Defailed	PC Sensitivity Case	Learning	Capital Co	st (\$/kW)		Learning	COE (\$/	MWh)	
Detaneu	FC Sensitivity Case	Rate	Value	Value	% Change	Rate	Value	Value	% Change
	Nominal Base Case Assumptions	0.021	1.962	1.783	9.1%	0.035	73.4	62.8	14.4%
nogulta oro	Learning Starts with First Plant	0.013	1,962	1.764	10.1%	0.024	73.4	60.8	17.2%
	Learning up to 50 GW	0.018	1,962	1,846	5.9%	0.031	73.4	66.0	10.1%
	Current Capture Capacity = 0 GW	0.026	1,962	1,744	11.1%	0.042	73.4	60.9	17.1%
•1 1 1	Non-CSS Exp. Multipliers = 2.0	0.029	1,962	1,723	12.2%	0.068	73.4	60.4	17.8%
availahle	Coal Price = \$1.5/GJ	0.021	1,965	1,786	9.1%	0.035	79.6	68.2	14.3%
available	FCF = 11%, CF = 85%	0.021	1,963	1,785	9.1%	0.039	57.2	48.2	15.7%
		I	Capital Co	st (\$/kW)			COE (\$/	MWh)	
in full	IGCC Sensitivity Case	Learning	Initial	Final	% Change	Learning	Initial	Final	% Change
		Rate	Value	Value	70 Onange	Rate	Value	Value	70 Onlange
	Nominal Base Case Assumptions	0.050	1,831	1,505	17.8%	0.049	62.6	51.5	17.7%
	Learning Starts with First Plant	0.029	1,831	1,448	20.9%	0.032	62.6	48.6	22.4%
ronort	Learning up to 50 GW	0.044	1,831	1,610	12.1%	0.045	62.6	54.9	12.2%
ισροιί	Current Gasifier Capacity = 1 GW	0.057	1,831	1,460	20.3%	0.055	62.6	50.2	19.7%
L	Non-CSS Exp. Multipliers = 2.0	0.068	1,031	1,200	29.0%	0.076	62.6	45.9	20.0%
	Coal Price = \$1 5/G I	0.002	1,001	1,402	17.8%	0.034	68.4	56.6	17 3%
	FCF = 11%. CF = 85%	0.048	1.832	1,516	17.2%	0.047	47.2	39.2	16.9%
			Conital Co	ct (\$/k\M)			COE	MM/b)	
	Oxyfuel Sensitivity Case	Learning	Initial	Final		Learning	Initial	Final	
		Rate	Value	Value	% Change	Rate	Value	Value	% Change
	Nominal Base Case Assumptions	0.028	2,417	2,201	9.0%	0.030	78.8	71.2	9.6%
	Learning Starts with First Plant	0.013	2,417	2,160	10.7%	0.017	78.8	68.6	12.9%
	Learning up to 50 GW	0.023	2,417	2,291	5.2%	0.025	78.8	74.3	5.8%
	Current Boiler Capacity = 0	0.054	2,417	2,008	16.9%	0.056	78.8	65.1	17.5%
	Non-CSS Exp. Multipliers = 2.0	0.038	2,417	2,122	12.2%	0.044	78.8	68.8	12.7%
	Coal Price = \$1.5/G	0.028	2.421	2.204	9.0%	0.030	84.7	76.4	9.8%

Percentage Reduction in Overall Cost of CO₂ Capture

(Based on 100 GW of cumulative CCS capacity)

Technology	Capital Cost	Cost of Capture
NGCC, post-comb	20	40
PC, post-comb	15	26
IGCC, pre-comb	15	20
Oxyfuel comb	13	13

Capture cost is the difference between plants with and without capture at any point in time. This cost falls more rapidly than the total cost of plants with capture.

\$/tonne CO ₂ avo	ided relativ	e to a SCF	PC plant w	/o CCS			
Technology	Aquifer Storage EOR Storag Start End Start En				Aquifer Storage Start End		<u>torage</u> End
SCPC Plant	57	48	13	4			
IGCC Plant	38	29	0	-8			
Transport + aquifer storag Transport + EOR storage End = 100 GW cumulative	ge = \$10/t CO ₂ (c = -\$15/t CO ₂ (c e capacity	constant) onstant)					

