#### The Vision 21 Planner:

#### A New Modeling Tool for Preliminary Cost and Performance Assessments of Vision 21 Plants

#### Edward S. Rubin

Department of Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, Pennsylvania

28<sup>th</sup> International Conference on Coal Utilization & Fuel Systems
Clearwater, Florida
March 12, 2003

# Vision 21 Modeling Needs

- A hierarchy of models tailored to the needs of different users and applications, ranging from:
  - Preliminary design and screening analysis, to
  - Detailed design of a "virtual" plant
- A range of capabilities for predicting the performance, reliability and cost of:
  - Individual plant components
  - Integrated Vision 21 plant designs

#### The Vision 21 Planner Would ...

- Bring together performance and cost models for a variety of enabling technologies and Vision 21 system designs
- Run quickly and easily on a desktop or laptop computer for preliminary design and analysis
- Allow new process concepts and components to be easily incorporated into new Vision 21 designs
- Allow uncertainties to be characterized explicitly
- Facilitate rapid analysis of "what if" questions and the selection of promising designs for further study

### Attributes of Different Models



## Modeling Approach

- Systems Analysis Framework
- Process Technology Models
- Engineering Economic Models
- Advanced Software Capabilities
  - Probabilistic analysis capability
  - User-friendly graphical interface
  - Easy to add or update models

#### Framework for the V21 Planner:

The Integrated Environmental Control Model (IECM)



# Current IECM Technologies

#### **Furnace Types**

- Tangential
- Wall
- Cyclone

#### Furnace NO<sub>x</sub> Controls

- LNB
- SNCR
- SNCR + LNB
- Gas reburn

#### NO<sub>x</sub> Removal

• Hot-side SCR

#### Mercury Removal

- Carbon injection
- Carbon + water

#### Particulate Removal

- Cold-side ESP
- Fabric filter
  - Reverse Air
  - Pulse Jet

#### SO<sub>2</sub> Removal

- Wet limestone
  - Conventional
  - Forced oxidation
  - Additives
- Wet lime
- Lime spray dryer

#### Combined SO<sub>2</sub>/NO<sub>x</sub> Removal

- Copper oxide
- NOXSO

#### Solids Management

- Ash pond
- Landfill
- Stacking
- Co-mixing
- Byproducts
  - Ash
  - Gypsum
  - Sulfuric Acid

# Model Software Package



### IECM User Group

**ABB AEP-SCR** Engineering Airborne Technologies Akzo Nobel Functional Chem Alberta Economic Development Alberta Environment ALCOA Power Generating, Inc. Allegheny Energy Supply **Alliant Energy** Alstom Power Inc. American Electric Power Apogee Scientific, Inc. **Applied Technology Services** Argonne National Laboratory ATCO Power Babcock Borsig Power, Inc. Babcock & Wilcox Co. Bechtel Power Corp. Black & Veatch Corp. **BOC Gases Boiler Systems Engineering** Canada Environment Canada Natural Resources Carnegie Mellon University Cinergy Power Generation Clean Energy Int. Cogentrix Energy, Inc. CONSOL Energy, Inc. Consumers Energy CP&L CPG, Inc.

CO, Inc.

Croll-Reynolds Department of Environmental Prot Detroit Edison Co. Diamond Power Specialty Co Doyen & Associates, Inc. Duke Engineering & Services. **Duke Fluor Daniel Dynegy Midwest Generation** Electric Energy, Inc. (EEI) Electricte de France Emera Inc. Emery Recycling Corporation **Enel Produzione** EnerenUE Energy & Environ Research Corp. Energy & Environ Strategies Energy Systems Associates Energy Technology Enterprises ENSR. Inc. Environmental Defense Envirol & Renewable Energy Syst EPRI, Palo Alto Exportech Company, Inc. FirstEnergy Corp. Florida Power & Light Co. FLS Miljo A/S Fortum Power and Heat Oy Fossil Energy Research Corp. Foster Wheeler Development Foster Wheeler USA Corp. Fuel Tech, Inc.

General Electric Company

Goodwin Environmental **Great River Energy** Gyeongsang National University **H&W Management Science** Hamon Research Cottrell, Inc. Harza Engineering Holland Board of Public Works **IEA Coal Research** Illinois Clean Coal Institute Illinois Dept. of Natural Resources Illinois EPA Illinois Institute of Technology Indiana Dept. of Env. Mgt. Intermountain Power Service Corp. Jack R. McDonald, Inc. Kansas City Power & Light Co. KEMA Nederland B.V. Kinectrics Korea Electric Power Corporation Korea Institute of Energy Research Korea Western Power Co. Krupp Polysius Corp. LAB SA Lehigh University Lower Colorado River Authority Mail Station PAß358 McDermott Technology, Inc. MidAmerican Energy Co. Minnkota Power Cooperative, Inc. Mitsubishi Heavy Industries, Ltd. Mitsui Babcock Energy Ltd. National Park Service

National Power Plc. **NESCAUM** New Hampshire Dept. of Env. New Jersey DEP Nicholson Environmental, Inc. Niksa Energy Associates **NIPSCO** Niro A/S North Carolina DENR North Carolina State Univ **Ontario Power Generation** Pacific Corp. Parsons Technology Pavillon Technologies, Inc. Pennsylvania Electric Assoc **PEPCO** PG&E National Energy Group Pinnacle West Energy Potomac Electric Power Co. PowerGen PPL Generation, LLC PPL Montana, LLC Predict Maintenance Tech **Princeton University** Progress Materials, Inc. **PSEG Power LLC** Public Power Institute Reaction Engineering Intl Research Triangle Institute Rheinbraun Brennstoff GmbH Sargent & Lundy, LLC

SaskPower Savvy Engineering, LLC Scientech Sierra Pacific Power Co. Southern Company Services, Inc. State of New Jersey Stone & Webster Engineering Corp. Superior Adsorbents, Inc. Syncrude Tampa Electric Co. Tennessee Valley Authority Texas Natural Resource Conv Comm TNO Envit, Energy & Process Innov TransAlta TXU Electric U.S. DOE U.S. EPA University of California University of New Orleans University of Pittsburgh **URS** Corporation Utah Dept. of Env. Quality W.L. Gore & Associates, Inc. **Washington Power** Western Kentucky Energy Corp. Wheelabrator Air PollControl Wisconsin Dept. of Nat Resources Wisconsin Electric Power Co. Wisconsin Energy Corp. Wisconsin Public Service Corp. Wisvest-Connecticut, LLC

# Expanding the Framework to Vision 21 Plants

## Major Components of V21 Plants

- Gasifiers
- Combustors
- Fuel Cells
- Gas Turbines
- Steam Turbines
- Air Separation Units
- Byproduct Recovery Systems

- Gas Purification Systems for:
  - Solids (ash)
  - Sulfur compounds
  - Nitrogen oxides
  - Mercury
  - Other trace elements
  - Carbon dioxide

## Current Modeling Activities

- Enhanced Software Capabilities
- Plant Component Models (perf & cost)
  - Air separation units
  - Oxygen-blown gasifiers
  - Advanced gas turbines
  - Solid oxide fuel cells
  - CO<sub>2</sub> capture systems
- Integrated Plant Models
  - Current IGCC with cold gas cleanup
  - Advanced IGCC with CO<sub>2</sub> capture and storage
  - Combustion-based systems w/ CO<sub>2</sub> capture
  - Hybrid plants with SOFC/gas turbines

#### Water-Gas Shift Reactor Model



# CO<sub>2</sub> Capture System Model

(Selexol Process)



#### Gasifier Models



#### Gasifier Model Parameters

- Independent variables for V21 Planner include:
  - Gasifier type (Texaco, E-Gas, Shell, KRW)
  - Coal type (6 coal choices)
  - Water-to-coal input ratio
  - Oxygen-to-coal input ratio
  - Gasifier temperature
  - Carbon loss in gasifier
- Performance models derived from ASPEN-based IGCC flowsheets developed by DOE/NETL

### Gasifier Response Surface Model

(Carbon partitioning to CO, E-Gas gasifier, PRB coal)



## Linking Performance and Cost



## Example IGCC Capital Cost Process Areas and their Dependent Variables

#### AIR SEPARATION UNIT

oxygen feed rate to gasifier

#### COAL HANDLING AND SLURRY PREPARATION

coal feed rate to gasifier

#### **GASIFICATION**

as-received coal flow rate

percent moisture in coal

percent ash in coal feed

solids mass flow leaving gasifier

#### LOW TEMPERATURE GAS COOLING

syngas mass flow rate

SELEXOL UNIT

syngas mass flow rate

**CLAUS PLANT** 

recovered sulfur mass flow rate

#### **BEAVON-STRETFORD UNIT**

mass flow rate sulfur produced

#### **BOILER FEEDWATER SYSTEM**

raw water flow to demineralizer polished water flow to polisher

#### PROCESS CONDENSATE TREATMENT

scrubber blowdown flow rate

#### **GAS TURBINE**

net gas turbine shaft work

#### HEAT RECOVERY STEAM GENERATOR

high pressure flow to steam turbine

#### STEAM TURBINE

net steam turbine shaft work

#### **AUXILIARY EQUIPMENT**

miscellaneous power consumption steam cycle auxiliary power consumption

Prototype Graphical Interface



# Open a New Session





















# Case Study Results for Cost of CO<sub>2</sub> Avoided



Coming Soon . . .

### Solid Oxide Fuel Cell Model



### Stand-Alone Fuel Cell Plant



# Fuel Cell – Gas Turbine Hybrid



### Gasification + Fuel Cell Plant



Coming Later...

# Other Vision 21 Flowsheets



# Configure a New System



## Looking Ahead

- Finish implementing and testing prototype V21P model (including SOFC); distribute for beta testing and user feedback
- Continue to develop and improve modeling of:
  - Individual plant components (Performance/Cost)
  - Interactions and integration across components
- Develop "seamless" linkages with higher-level models
  - CFD models of key components (e.g., gasifiers)
  - Virtual Engineering simulation of an entire plant