Carbon Capture and Sequestration Technologies for Greenhouse Gas Control

Edward S. Rubin
Carnegie Mellon University

CEEPR Workshop
Massachusetts Institute of Technology
May 3, 2001
Topics

- Technology Overview
- Current R&D Activities
- A Multi-Pollutant Perspective
- An Evaluation Framework
- Technology Innovation
- Public Perception
Why Bother with CCS?

CCS technology may be a way to:

- Have your cake and eat it: use fossil fuels without CO$_2$ emissions
- Minimize the overall cost of reducing greenhouse gas emissions
- Provide a bridge to a more sustainable energy future
CO$_2$ Capture Technology is Commercially Available

Current industrial applications include:

- Enhanced oil recovery (EOR)
- Fertilizer production
- Soda ash
- Food processing
- Hydrogen production
Scale of CO₂ Capture Applications

<table>
<thead>
<tr>
<th>Process</th>
<th>Year</th>
<th>Location</th>
<th>Status</th>
<th>EOR (ton CO₂/day)</th>
<th>Fertilizer (ton CO₂/day)</th>
<th>Soda Ash (ton CO₂/day)</th>
<th>Food-grade (ton CO₂/day)</th>
<th>Sleipner West (ton CO₂/day)</th>
<th>500MW Coal-based (ton CO₂/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOR</td>
<td>'80s</td>
<td>TX & NM</td>
<td>shut down</td>
<td>1200</td>
<td>150</td>
<td>800</td>
<td>320</td>
<td>3000</td>
<td>9600</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>?</td>
<td>IGFC</td>
<td>operational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soda Ash</td>
<td>1978</td>
<td>NACC</td>
<td>operational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food-grade</td>
<td>?</td>
<td>NEEA, MA</td>
<td>operational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleipner West</td>
<td>1996</td>
<td>Norway</td>
<td>operational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td>1996</td>
</tr>
<tr>
<td>500MW Coal-based</td>
<td>2010?</td>
<td>?</td>
<td>prospective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9600</td>
<td></td>
</tr>
</tbody>
</table>

- EOR: Enhanced Oil Recovery
- Fertilizer
- Soda Ash
- Food-grade
- Sleipner West Gasfield, Norway
- 500MW Coal-based Power plant

- Process: Dow MEA, Kerr-McGee, Dow MEA, MEA based, MEA based
- Location: TX & NM, IGFC, NACC, NEEA, MA, Norway, ?
- Status: shut down, operational, operational, operational, prospective
Effect of CO$_2$ Capture on Cost

- **Capital Cost ($/kW_{gross}$)**
 - Ref. Plant
 - w/CO$_2$ Capture

- **Capital Cost ($/kW_{net}$)**
 - Ref. Plant
 - w/CO$_2$ Capture

- **Cost of Electricity ($/MWh_{net}$)**
 - Ref. Plant
 - w/CO$_2$ Capture
Key R&D Needs

• Reduce the cost of CO₂ separation and capture technology
• Determine the environmental acceptability of CO₂ storage (sequestration) methods
• Evaluate the true cost of alternative sequestration methods
Current R&D Initiatives:
U.S. Department of Energy

• Carbon Sequestration Program
 ($9M FY00, $19M FY01, $21M FY02r)
• 13 projects in first round awards
 ▪ Separation and capture (2)
 ▪ Geologic sequestration (4)
 ▪ Ocean sequestration (2)
 ▪ Terrestrial sequestration (1)
 ▪ Other sequestration concepts (2)
 ▪ Modeling and assessments (2)
• Round 2 projects to be announced
Current R&D Initiatives: Carbon Capture Project

- Consortium of 9 companies:
 - BP, Chevron, ENI, Norsk Hydro, Pan Canada, Shell, Suncor, Statoil, Texaco

- Goals:
 - Reduce the cost of CO₂ capture (by 50% - 75%)
 - Demonstrate CO₂ sequestration
 - Commercial processes within 10 years

- Budget: $20M / 3 years + gov’t grants
Targets of Opportunity

- Oil and gas production
- Petroleum refineries
- Industrial chemicals (hydrogen, ammonia, etc.)
- Fossil fuel power plants
Power Generation Options

- Combustion-based
 - Coal
 - Combustion-based
 - Gasification-based
 - Natural Gas
 - Direct Combustion
 - Gas Reforming
 - Gas Turbines
 - Coal Gasification
 - Fuel Cells
 - Other

- Gas Reforming
- Air
- Oxygen

- Simple Cycle
 - Pulverized Coal Gas Turbines
- Combined Cycle
CO₂ Capture Technologies

CO₂ Separation and Capture

Absorption
 - Chemical
 - MEA
 - Caustic
 - Other
 - Physical
 - Selexol
 - Rectisol
 - Other

Adsorption
 - Adsorber Beds
 - Alumina
 - Zeolite
 - Activated C
 - Regeneration Method
 - Pressure Swing
 - Temperature Swing
 - Washing

Cryogenics

Membranes
 - Gas Separation
 - Polyphenyleneoxide
 - Polydimethylsiloxane
 - Gas Absorption
 - Polypropylene
 - Ceramic Based Systems

Microbial/Algal Systems
CO$_2$ Sequestration Options

CO$_2$ Disposal / Storage Options

Geological Sequestration
- Deep Saline Reservoirs
- Depleted Oil and Gas Wells
- Abandoned Coal Seams

Ocean Sequestration
- Very Deep Ocean Injection
- Unconfined Release (@ ~ 1000 m)
- Dense Plume Formation (shallow)
- Dry Ice Injection

Biological Sequestration
- Forests and Terrestrial Systems
- Marine Alga

Other Methods
- Storage as a solid in an Insulated Repository
- Utilization Schemes (e.g. Polymerization)
Some Questions to be Addressed

- How do alternative CCS options and technologies compare in terms of performance, emissions and cost?
- What are the key parameters that most affect the performance and cost of a given option?
- What are the uncertainties and technological risks of different options?
- What are the priorities and payoffs of R&D to reduce key uncertainties?
- What are the most promising markets for advanced separation and capture technologies?
A Process Assessment Framework

Focus on fossil fuel power systems

• Develop a flexible, easy-to-use computer model to evaluate the performance and cost of CCS options at the level of an individual plant
• Incorporate both current (baseline) technologies plus potential future options
• Characterize key uncertainties in performance and cost parameters
• Integrate carbon management technologies with other environmental control systems
Multi-Pollutant Interactions

Criteria Air Pollutants
- PM
- SO₂
- NOₓ

Hazardous Air Pollutants
- Hg
- HCl
- H₂SO₄

Greenhouse Gas Emissions
- CO₂
- CH₄
Process Evaluation Framework

Energy Conversion

CO₂ Capture

CO₂ Transport

CO₂ Storage or Disposal

Coal or Natural Gas

Air or Oxygen
Model Software Package

Fuel Properties
- Heating Value
- Composition
- Delivered Cost

Plant Design
- Conversion Process
- Emission Controls
- Solid Waste Mgmt
- Chemical Inputs

Cost Data
- O&M Costs
- Capital Costs
- Financial Factors

Power Plant Models

Graphical User Interface

Plant and Fuel Databases

Plant & Process Performance
- Efficiency
- Resource Use

Environmental Emissions
- Air, Water, Land

Plant & Process Costs
- Capital
- O&M
- COE
The Model is Available at . . .

- Web Access:

Gasification Combined Cycle System

Gasification Options
Gasifier: KRW
Oxidant: Oxygen
Gas Cleanup: Hot

Post-Combustion Controls
NOx Control: SCR
CO2 Control: None

Solids Management
Slag: Landfill
Sulfur: Sulfur, Landfill, Sulfuric Acid

Plant Diagram
NGCC Plant with CO$_2$ Capture

Gasification Options
- **Plant Type:** Combined Cycle

Post-Combustion Controls
- **NOx Control:** SCR
- **CO2 Control:** None, Absorption - MEA

Solids Management
- **Slag:** Landfill
- **Sulfur:** Landfill
Geologic Sequestration (EOR)
Applications

- Process design
- Technology evaluation
- Cost estimation
- R&D management
- Risk analysis
- Environmental compliance
- Marketing studies
- Strategic planning
Benefits of R&D

Cumulative probability vs. Mitigation cost ($/ton CO₂ avoided)

- **At present**
- **Hypothetical R&D case**
Role of Technological Innovation

- How will the cost and performance of CCS technologies change over time?
- How will improvements in CCS technologies compare to those in other domains?
- What factors will most influence (or inhibit) the rate of technology innovation?
Inventive Activity in SO$_2$ Capture
(Class-Based Patent Dataset)
Improvements in SO$_2$ Capture Efficiency

$y = 5.6917 \ln(x) + 68.449$

$r^2 = 0.9561$
Reductions in FGD System Capital Cost
(500 MWe, 3.5% sulfur coal, 90% SO₂ removal)

\[y = 0.0005x^3 - 0.0767x^2 + 1.2978x + 249.07 \]
\[r^2 = 0.9992 \]
The Bigger Picture

- How does carbon capture and sequestration compare to other options for greenhouse gas mitigation?
- Under what circumstances is CCS most attractive?
- What is the carbon sequestration potential of this technology?
A Hierarchy of Policy Analysis Models

Options for a single facility (tech feasibility, efficiency, emissions, cost)

Multi-facility (or multi-sector) optimization or simulation (dynamic)

Integrated assessment models (including measures of impacts)
Role of Public Perception

Will the public accept CO₂ sequestration as a viable method of GHG control?

• Preliminary (pilot) study (C. Palmgren, G. Morgan, D. Keith, 2000) showed mixed public attitudes toward CO₂ sequestration

• Principal concerns of critics:
 - CO₂ pipeline issues
 - Slow leaks over long time
 - Hydrogen safety
 - Fast “burps” in short time
 - Ocean ecology
Conclusions

• Carbon capture and sequestration technology is a potentially important player in GHG control
• Its role will be shaped largely by:
 ▪ The stringency of future emission reduction requirements for greenhouse gases
 ▪ The success of R&D efforts to lower the costs of CO₂ capture and sequestration
 ▪ Public acceptance of sequestration as a safe and viable approach to greenhouse gas control
Conclusions

- Carbon capture and sequestration technology is a potentially important player in GHG control.
- Its role will be shaped largely by:
 - The stringency of future emission reduction requirements for greenhouse gases.
 - The success of R&D efforts to lower the costs of CO₂ capture and sequestration.
- Public acceptance of sequestration as a safe and viable approach to greenhouse gas control.
Conclusions

• Carbon capture and sequestration technology is a potentially important player in GHG control
• Its role will be shaped largely by:
 ▪ The stringency of future emission reduction requirements for greenhouse gases
 ▪ The success of R&D efforts to lower the costs of CO₂ capture and sequestration
 ▪ Public acceptance of sequestration as an approach to greenhouse gas control