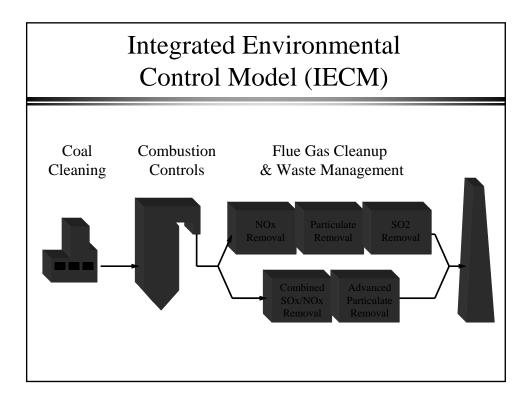
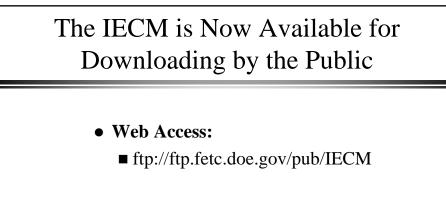
Report on Recent Accomplishments and Future Directions


Ed Rubin, Mike Berkenpas, Urmila Diwekar, and Karen Kietzke Carnegie Mellon University and Chris Frey North Carolina State University

October 18, 1999

F	799 Projects and Funding
	nents to the Integrated Environmental Iodel (IECM)
Sponsor: Amount: COR:	Process Analysis Division \$50 k Gerst Gibbon
-	ent of a Framework for the Preliminary Id Analysis of Vision 21 Plants
Sponsor: Amount: COR:	Advanced Research & Technology Development \$150 k Gerst Gibbon (Bob Romanosky)


Highlights of Activities to Date

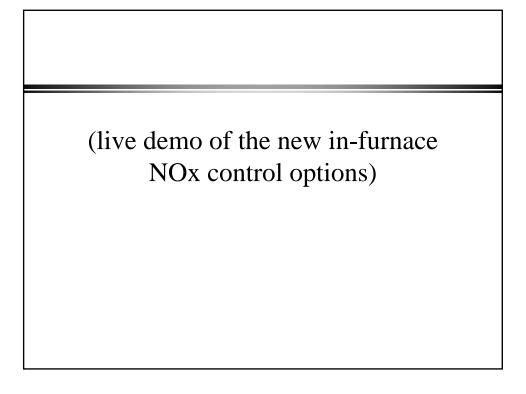
- Completed IECM Version 3.1 plus associated technical documentation and user manuals
- Developed new performance and cost models of selected process technologies for the IECM
- Began implementing new models in the IECM code and graphical interface
- Developed a plan to add process optimization options
- Developed a conceptual framework for a Vision 21 preliminary planning model

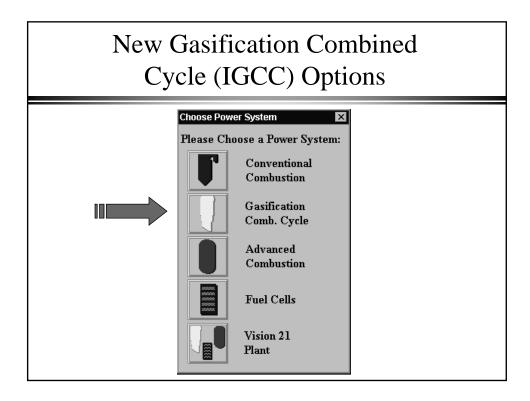
IECM Performance and Cost Models

- Detailed mass and energy balances, plus empirical relationships for complex process chemistry
- Calculates mass flows, energy flows, efficiency, and multi-media environmental emissions
- Component cost models (5-10 process areas per technology) explicitly linked to flowsheet performance parameters
- Calculates total capital cost, O&M costs, and COE
- Approximately 10-20 performance parameters and 10-20 cost parameters for each technology

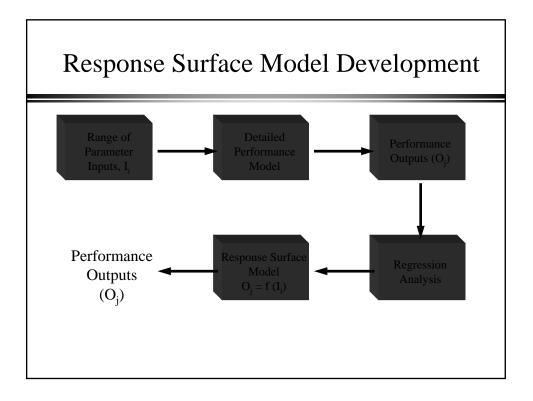
• FTP Access:

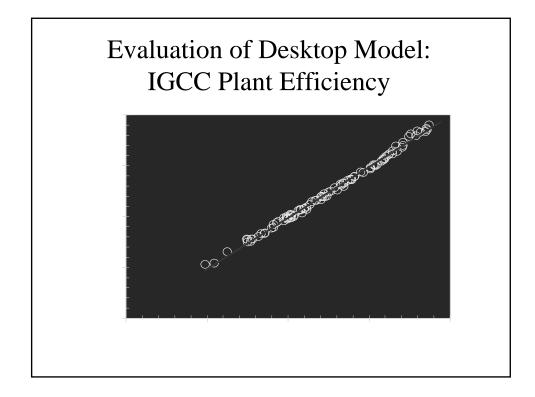
- ftp.fetc.doe.gov/pub/IECM
 - anonymous login
 - any password

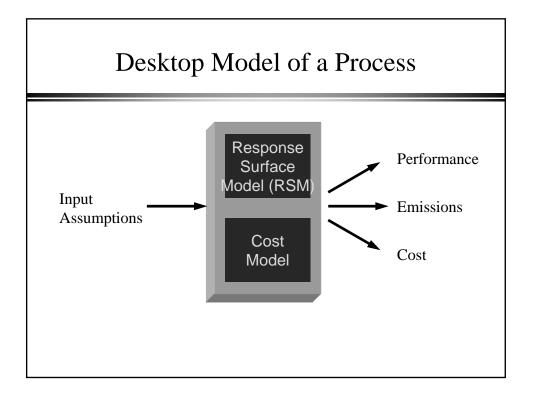

Preliminary IECM User Group

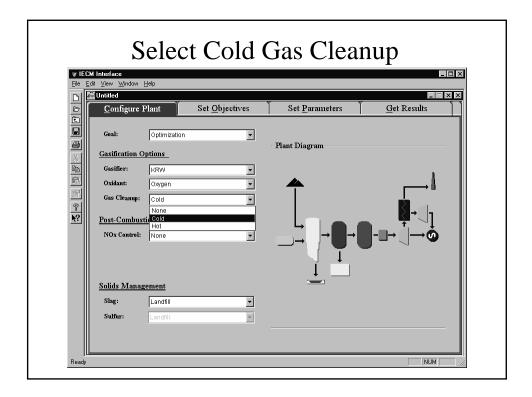

- ABB Power Plant Control
- American Electric Power
- Consol, Inc.
- Energy & Env. Research Corp.
- Exportech Company, Inc.
- FirstEnergy Corp.
- FLS Miljo A/S
- Foster Wheeler Development Corp.
- Lehigh University
- Lower Colorado River Authority
- McDermott Technology, Inc.
- Mitsui Babcock Energy Ltd.

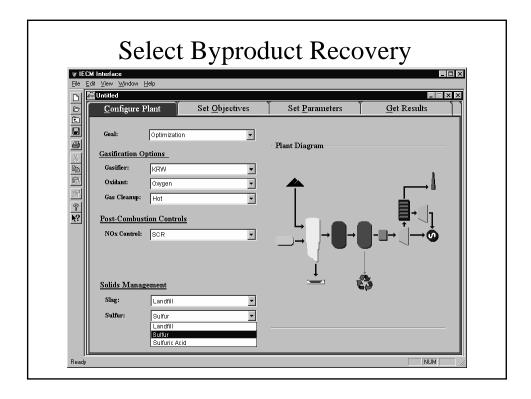
- National Power Plc.
- Niksa Energy Associates
- Pacific Corp.
- Pennsylvania Electric Association
- Potomac Electric Power Co.
- Private Consultants
- Savvy Engineering
- Sierra Pacific Power Co.
- Southern Company Services, Inc.
- Stone & Webster Engineering Corp.
- Tampa Electric Co.
- University of California, Berkeley


New Performance and Cost Models Under Development

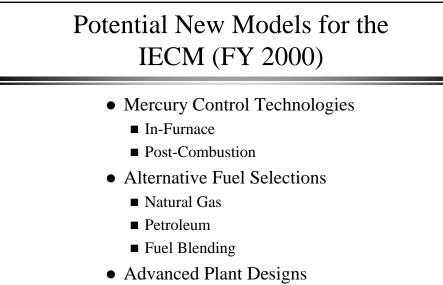

- In-Furnace NO_x Controls
 - Low NOx Burners (LNB)
 - LNB + Overfire air
 - Gas Reburn
 - Selective Non-Catalytic Reduction (SNCR)
 - $\blacksquare LNB + SNCR$
 - Tangential, Wall, and Cyclone Firing
- Gasification Combined Cycle Systems
 - KRW Gasifier with Hot Gas Cleanup
 - Texaco Gasifier with Cold Gas Cleanup





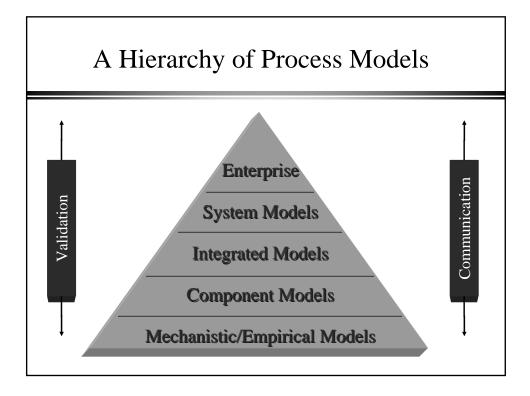


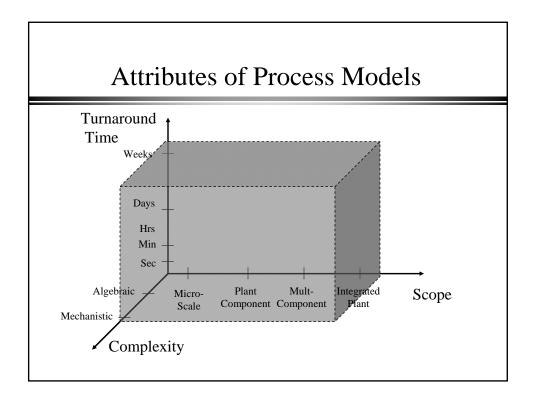
CM Interface Edit ⊻iew Window <u>H</u> elp			
Untitled Configure Plant	Set <u>O</u> bjectives	Set Parameters	Get Results
<u>configure r fait</u>	<u> </u>	<u>set r</u> atameters	Or restars
Goal: Optimiza	tion 💌		
Gasification Options		Plant Diagram	
Gasifier: KRW	-		
Oxidant: KRW Lurgi			Å
Gas Cleanup: Texaco			
Post-Combustion Cont	rols		2,→√1
NOx Control: None		$Air \rightarrow$	—— — → ́ → ́ o
Solids Management		· · · · · ·	
Slag: Landfill	•		
Sulfur: Landfill			

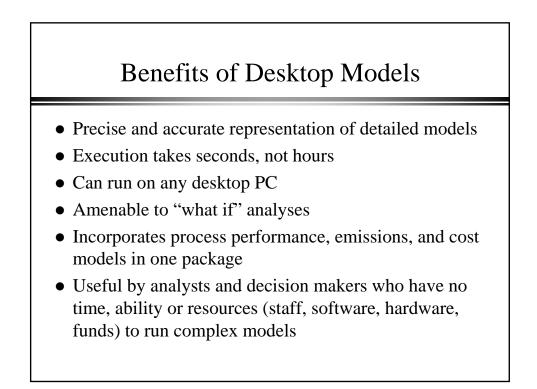

IECM Interface e <u>E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> el		ygen Plai		
Untitled <u>C</u> onfigure Pla	mt Set <u>O</u> bjectives	Set <u>P</u> arameters	<u>G</u> et Results	
Gasification Opt Gasifier: Oxidant: Gas Cleanup: Post-Combustio NOx Control: Solids Managen Slag:	KRW V Oxygen v Air Oxygen n Controls None v	Plant Diagram		

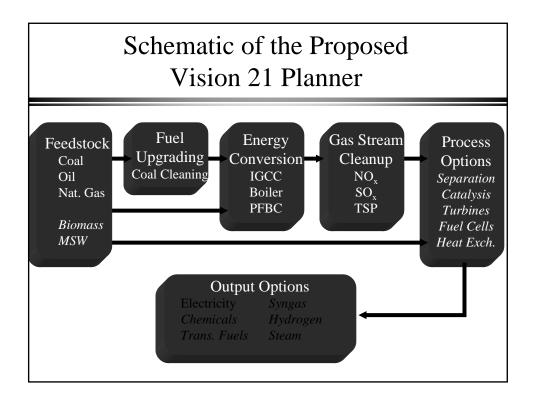
CM Interface Edit View Window Help			
🚰 Untitled	-		_ []
<u>C</u> onfigure Plant	Set <u>O</u> bjectives	Set <u>P</u> arameters	<u>G</u> et Results
Goal: Optimizati	on 💌	Plant Diagram	
Gasification Options		Ū	
Gasifier: KRW	•		1
Oxidant: Oxygen	•	4	┎──→║
Gas Cleanup: Cold	•		
Post-Combustic			_ ■⁺√]
NOx Control: SCR	•	\rightarrow	→ ́ → ŏ
None SCR			
Solids Management		+	
Slag: Landfill			
Sulfur:			

M Interfa dit <u>V</u> iew	ace Window Help							
🖉 Untitle		/			5			
	Configure Plant	<u>S</u> et Pa	arame	ters			<u>G</u> et R	esults.
Over P <u>l</u> ar			ussion Istr <u>a</u> int:	Cont		Particulate Control	s <u>o</u> 2 Co	ontrol Solio
	Title	Units	Unc	Value	Calc	Min	Max	Default
1								
2		%		95.0		90.0	98.0	95.0
3		mo1 O2 / mo1 C		0.46		0.45	0.47	0.46
4	Gasifier Steam to Carbon Ratio	mol H2O / mol C		0.46	_	0.445	0.455	0.46
5		%		10.0	_	5.0	15.0	10.0
6		n %		90.0	_	80.0	95.0	90.0
7								
8					-			
9	Calcium to Sulfur Ratio	molCa/molC %		2.60		2.10	3.00	2.60
10				95.0 90.0	-	90.0 50.0	98.0 90.0	95.0 90.0
$\frac{11}{12}$		96		90.0		50.0	90.0	90.0
12	-			10.0	-	5.0	20.0	10.0
14		ppmw		10.0		2.0	20.0	10.0
15					-			
16					-			
17					-			
18								

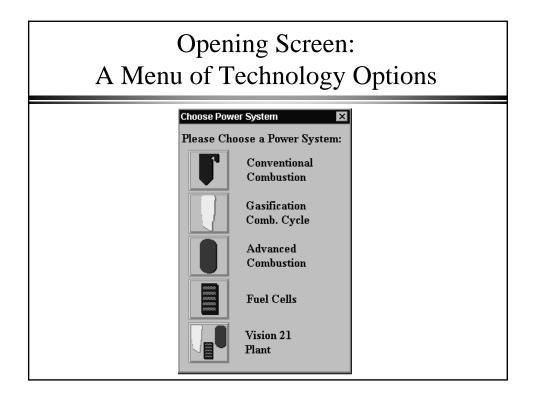

- Additional Model Parameters
- Additional Process Technologies

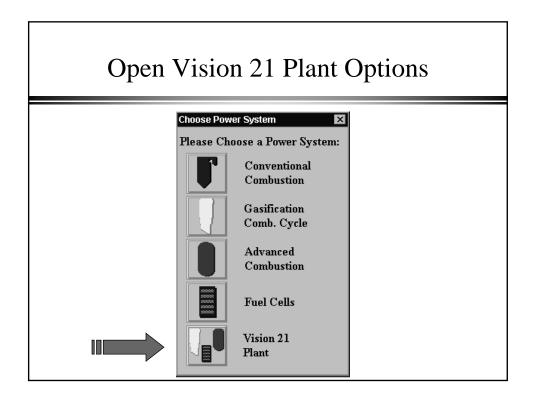


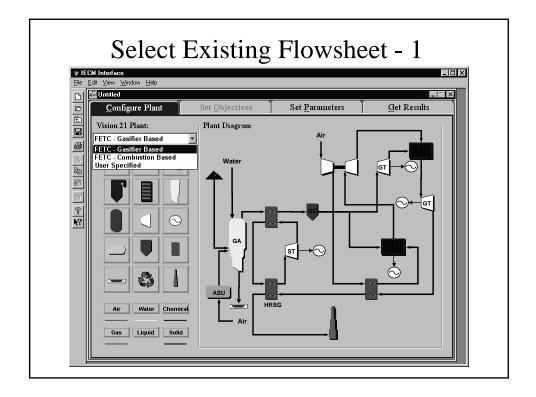

- A preliminary design model to analyze:
 - -Process Components
 - -Systems Integration
 - -Performance and Cost
 - -Process Optimization
 - -Current Uncertainties

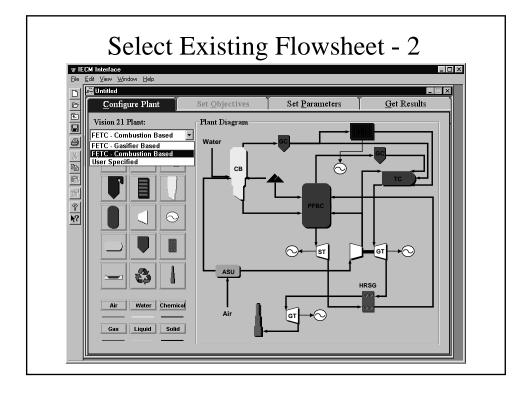

Objectives

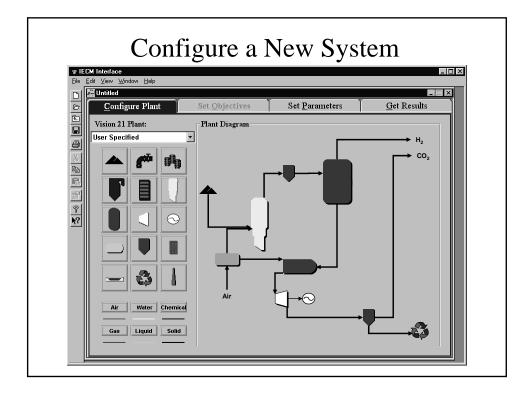
- Develop a flexible and easy-to-use modeling system to estimate the performance, environmental emissions and cost of a preliminary Vision 21 plant design
- Develop a framework for comparing alternative options and on a systematic basis, including effects of uncertainty

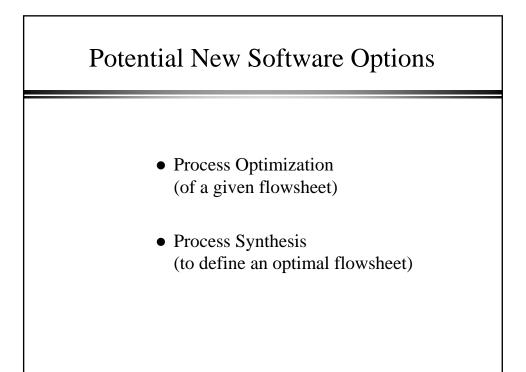


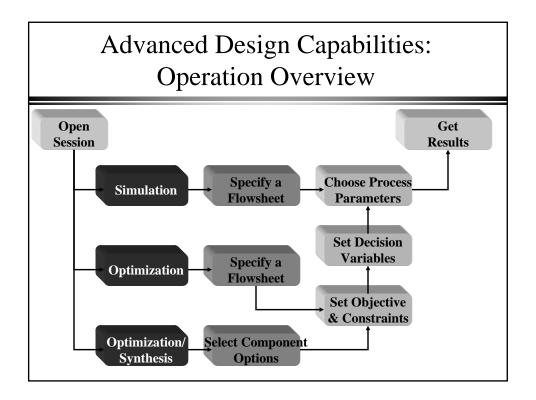


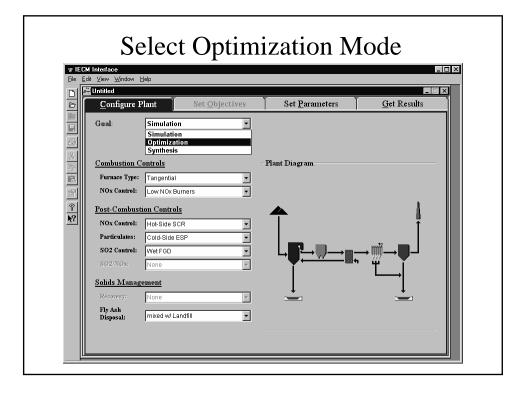




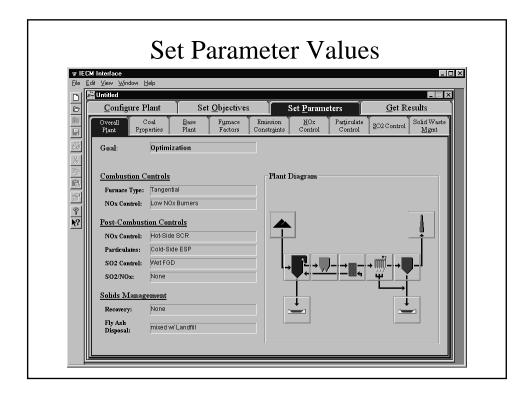


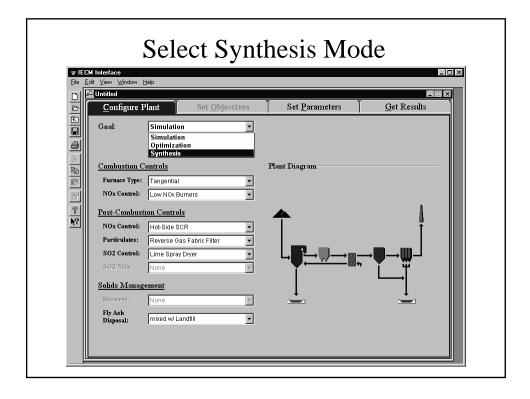


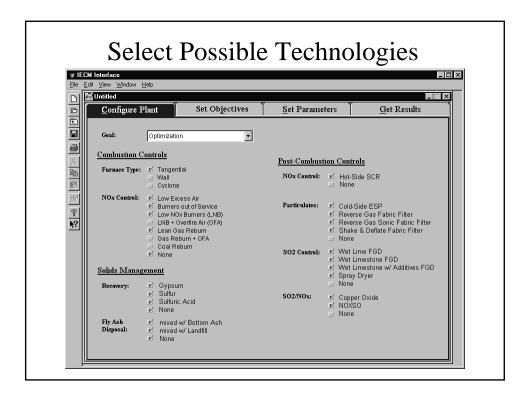




The Vision 21 Planner Would . . .

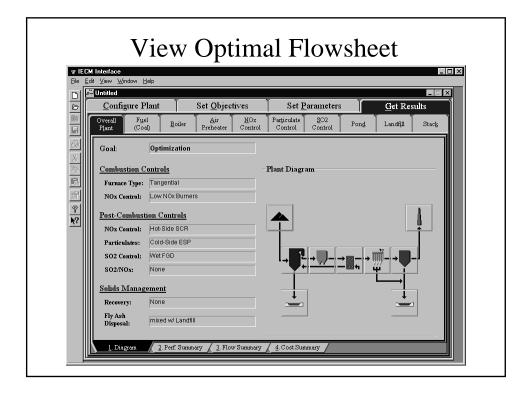

- Bring together a spectrum of performance and cost models for plant components and integrated systems, suitable for preliminary design and analysis
- Run quickly and easily on a desktop or laptop computer
- Allow new process concepts to be easily modeled
- Allow uncertainties to be characterized explicitly
- Facilitate selection of optimal (most promising) designs
- Be public domain software available to all

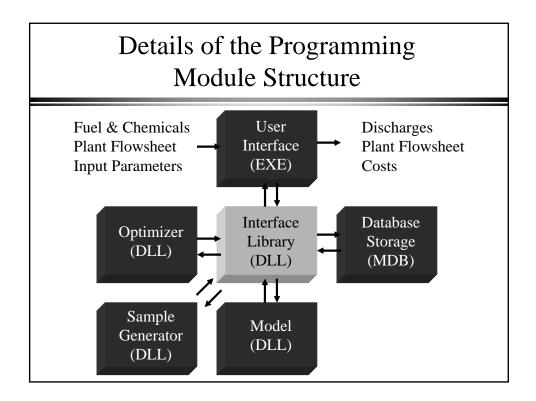

lit View Window Help					
Untitled					
<u>C</u> onfigure Plant	Set Objectives	Ĭ	<u>S</u> et Pa	arameter	s <u>G</u> et Result
Objective: Minimize Capits	1 Cost 💌				
Title	Units	cv	Min	Max	
1 Emissions (Fin					
2 Particulates	lb/MBtu				
3 Nitrogen Oxides	lb/MBtu	R	0.06	0.6	
4 Sulfur Dioxide	1b/MBtu		0.1	1.2	
5 Carbon Dioxide 6 Air Toxics	lb/MBtu	1			
7 Solids Wastes	1b/MBtu 1b/MBtu	-			
8	16/MBtu				
9 Net Thermal Efficiency	Btu/kWh				
10					
11 Overall Plant Co	osts				
12 Capital Cost					
13 O&M Cost	M\$/yr				
14 Cost of Electricity	mills/kWh				
15					
16					-
17					

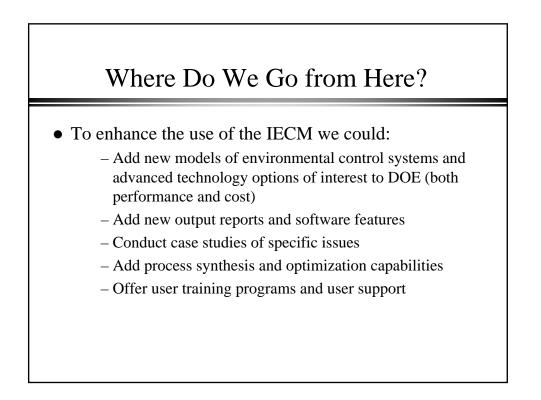


ø IECMInt ïle <u>E</u> dit ∖	terface <u>V</u> iew <u>W</u> indow <u>H</u> elp							
ר. ש שייים Ur	ntitled							-
	Configure Plant Se	et <u>O</u> bjectives	Ĭ	Set Pa	ramete	ers	G	et Results
	Overall Feedstocks		nergy iversio		s Strean leanup	n	Process Options	Co-Produ
	IGCC Cor	nventional Boiler		Fue	1 Ce11	Ĭ		PFBC
	Title	Units	Unc	Value	Calc	Min	Max	Default D
3	1 Gross Electrical Output	MWg		500		1	3000	500
3	2 Steam Cycle Heat Rate	Btu/kWh		7880		6000	11000	7880
7	3 Boiler Efficiency	%		89.21	Ľ	0	100	calc
	4 Capacity Factor	%		75		0	100	75
211111	5 Excess Air For Furnace	% stoich.		20.00	Ľ	0	40	calc
?	6 Leakage Air at Preheater	% stoich.		19.00	Ľ	0	60	calc
-	7 Gas Temp. Exiting Economizer	deg. F		700		250	1200	700
	8 Gas Temp. Exiting Air Preheater	deg. F		300		150	400	300
	9 Ambient Air Temperature	deg. F		80		-50	130	80
	10 Ambient Air Pressure	psia		14.7		12	15	14.7
	11 Ambient Air Humidity	1b H2O/1b dry air		0.018	-	0	0.03	0.018
	12 Collected Bottom Ash Solids 13 Base Plant Energy Requirement:	%		60.70	R	0	100	calc
	13 Base Plant Energy Requirement: 14 Coal Pulverizer	-		0.000	V	0	2	calc
	15 Steam Cycle Pumps	% MWg		0.6000	E	0	2	0.65
	15 Steam Cycle Pumps 16 Forced Draft Fans	% MWg % MWg		0.65		0	4	0.65
	16 Forced Draft Fans 17 Cooling System	% MWg		1.5		0	4	1.5
	17 Cooling System 18 Miscellaneous	% MWg		1.8		0	4	1.8

it ⊻iew <u>W</u> indow <u>H</u>	<u>t</u> elp					
Untitled						
Configure P	lant	Set (Obiectives T	Set Parameter	rs Ì	Get Results
Overall Fue	1	IECM Analysis	s Progress		×	
Plant (Co					<u>±</u>	Landf <u>i</u> ll Sta
		IECM Analysi	s Progress			
Goal:	Öptim	Iteration	Obj. Function Value	Optimizer Error Value	e	
		6	90.345 %	1.4e-01		
Combustion C	ontrols	7	90.462 %	2.4e-02		
Furnace Type:	Tanger	8	90.523 %	9.5e-04		
NOx Control:	Low N(9	90.549 %	5.4e-05		
NOX CORPUT:	LOWIN	10	90.563 %	4.0e-07		
Post-Combust	ion Cor	11	90.568 %	1.7e-07		1
		12	90.570 %	3.3e-09		
NOx Control:	Hot-Sic	13	90.570 %	6.2e-11		Î Î Î
Particulates:	Cold-S					
SO2 Control:	Wet FG				_ → ∭	i
SO2/NOx:	None		Calculating New Decis	ion Variables		
302/NOX:	140116		8			
Solids Manag	ement					
	None			Pause S	itop	I I I
Recovery:	None L					
Fly Ash Disposal:	mixed w/	Landfill				


dit <u>V</u> iew <u>W</u> indow <u>I</u>	<u>H</u> elp							
Untitled								
<u>C</u> onfigure I	Plant	Set <u>O</u> bject	ives] Set <u>P</u>	arameters		<u>G</u> et Res	sults
Overall Fu Plant (Co		<u>A</u> ir Preheater	<u>N</u> Ox Control	Particulate Control	<u>S</u> O2 Control	Pon <u>d</u>	Landf <u>i</u> ll	Stac <u>k</u>
Goal:	Optimization							
Combustion ([Plant Diagra	am			
Furnace Type:	Tangential							
NOx Control:	LOW NUX BUME	irs						•
Post-Combus								
NOx Control:	Hot-Side SCR							Ť
Particulates:	Cold-Side ESP							-
SO2 Control:	Wet FGD			L→ P	→╷ノ–→		∭- - ↓	-1
SO2/NOx:	None							
Solids Manag	ement				1			-
Recovery:	None							,
Fly Ash		111						





# IECM	Interface										_ 🗆
<u> </u>		<u>M</u> indow <u>H</u> elp									
olE	Untitled										
헤	Con	figure Plant	Set	Objectives	Ĭ	Set Pa	ramete	ers	G	iet Resul	ts
	Over: Plan				ènergy nversio	Ga	s Strean leanup		Process Options	Co-P	roducts
		IGCC	Conv	entional Boiler		Fue	1Ce11	ľ		PFBC	
ж.		Title		Units	Unc	Value	Calc	Min	Max	Default	DV
10	10	ross Electrical Output		MWg		500		1	3000	500	
	2 S	team Cycle Heat Rate		Btu/kWh		7880		6000	11000	7880	
	3 E	oiler Efficiency		%		89.21	V	0	100	calc	
ra ¹	4 C	apacity Factor		%		75		0	100	75	
?IIII	5 E	xcess Air For Furnace		% stoich.		20.00	V	0	40	calc	
<u>*?</u>	6 L	eakage Air at Preheater		% stoich.		19.00	Ľ	0	60	calc	
<u>~-</u>	7 0	as Temp. Exiting Econor	nizer	deg. F		700		250	1200	700	
	8 0	as Temp. Exiting Air Pre	heater	deg. F		300		150	400	300	
	9 A	mbient Air Temperature		deg. F		80		-50	130	80	
		mbient Air Pressure		psia		14.7		12	15	14.7	
		mbient Air Humidity		1b H2O/1b dry air		0.018		0	0.03	0.018	
		ollected Bottom Ash So		%		60.70	R	0	100	calc	
		<u>Base Plant Energy Requ</u>	irements								
		oal Pulverizer		% MWg		0.6000	R	0	2	calc	
		team Cycle Pumps		% MWg		0.65		0	2	0.65	
		orced Draft Fans		% MWg		1.5		0	4	1.5	
	17 0	ooling System		% MWg		1.8 1.3		0	2	1.8	
		liscellaneous		% MWg							

I nterface View Window <u>H</u> elp)					
Untitled						-
<u>C</u> onfigure Pla	nt	Set (<u>D</u> bjectives	Set <u>P</u> arameters	<u>G</u>	et Results
Overall Fuel Plant (Coal)	Boiler		<u>a</u> ir <u>N</u> Ox leater Control	Particulate <u>S</u> O2 Control Control	Pon <u>d</u> La	ndfijll Stac
		M Analysi	s Progress		×	
Goal: C	Optim	Iteration	Obj. Function Valu	e Optimizer Error Value		
Combustion Con	trols	6	787.3	1.4e-01		
	anger	7	702.0	2.4e-02		
		8	669.8	9.5e-04		
NOx Control:	.ow NC	9 10	619.3	5.4e-05 4.0e-07		
Post-Combustion	n Cor	11	580.5	1.7e-07		1
	lot-Sic	12	526.2	3.3e-09		
		13	526.2	6.2e-11		Ĩ
	old-S				74	_
SO2 Control: V	Vet FG				·→∭–	→□」−↓
SO2/NOx:	lone		Calculating New De	cision Variables	T Y	
Salida Managan						→
Solids Managem				Pause Sto		i l
Recovery:	lone				* <u> </u>	
Fly Ash Disposal:	nixed w/ Lar	dfill				

Where Do We Go from Here?

- To develop the Vision 21 Planner we would:
 - Implement preliminary versions of enabling technology models (both performance and cost)
 - Use the Vision 21 Planner as a testbed for systems integration development
 - Add process synthesis and optimization capabilities
 - Incorporate dynamics modeling of integrated systems
 - Develop linkages to more detailed models of process components and systems (modeling hierarchy)