Conceptual Design of a Vision 21 Planning Model

Ed Rubin, Mike Berkenpas, Urmila Diwekar and Karen Kietzke

Center for Energy and Environmental Studies Carnegie Mellon University

July 19, 1999

Objectives

- Develop a flexible and easy-to-use modeling system to estimate the performance, environmental emissions and cost of a preliminary Vision 21 plant design
- Develop a framework for comparing alternative options and on a systematic basis, including effects of uncertainty

Current FETC Projects

Development of the Integrated Environmental Control Model (IECM)

Duration:	September 1992 - April 1999
Amount:	\$1.3 million
COR:	Gerst Gibbon

Development and Application of Optimal Design Capability for Coal Gasification Systems

Duration:	September 1992 - February 2000
Amount:	\$1.5 million
COR:	Gerst Gibbon

Advanced Design and Analysis Methods are Needed

- Increasing complexity of advanced processes
- Multiple options for component design & selection
- Strong interactions among system components
- Significant uncertainties in the performance and cost of new technologies

Approach

- Process Technology Models
- Engineering Economic Models
- Advanced Software Capabilities
- Systems Analysis Framework

Technologies Modeled and Evaluated

Pulverized Coal Combustion Plants

- Selective catalytic reduction (SCR)
- Wet lime/limestone FGD
- Lime spray dryer
- Electrostatic precipitators
- Fabric filters
- Advanced Environmental Control Systems

 Combined SO₂/NO_x removal

 Coal Beneficiation Processes

Integrated Environmental Control Model (IECM)

Technologies Modeled (con't)

Integrated Gasification Combined Cycles (IGCC)

- Air and oxygen blown gasifiers
- Fixed bed and fluidized bed gasifiers
- Hot gas and cold gas cleanup systems
- Byproduct recovery options (e.g., sulfuric acid, Claus plant, direct sulfur reduction process)

– Other environmental controls (e.g., SCR)

- Pressurized Fluidized Bed Combustion (PFBC)
- Externally-Fired Combined Cycle (EFCC)

ASPEN Model of an IGCC System

Process Performance Models

- Employ detailed mass and energy balances
- Empirical relationships and models used for complex process chemistry
- Calculate component and system mass flows, energy flows, and efficiency
- Calculate multi-media environmental emissions
- Approximately 10-20 performance parameters for each process technology

Process Cost Models

- Direct cost models for each major process area (typically 5-10 areas per technology)
- Explicit links to process performance models
- Calculate total capital cost
- Calculate variable operating costs
- Calculate fixed operating costs
- Calculate annualized cost of electricity
- Approximately 20-30 cost parameters for each process technology

New Modeling Capabilities

System	Deterministic	Stochastic
Simulation	\checkmark	\checkmark
Optimization	\checkmark	\checkmark
Synthesis	\checkmark	\checkmark

Conventional Process Modeling (Deterministic Simulation)

Parameter Uncertainty Distributions

Stochastic Simulation

Externally-Fired Combined Cycle (EFCC) Plant Efficiency

Second Generation PFBC System Total Capital Cost

Some Questions Addressed by Stochastic Simulation

- What performance, emissions and cost can we expect given current uncertainties?
- What is the likelihood of performance shortfalls? Of cost overruns?
- What factors or process parameters contribute most to the overall uncertainty in performance and cost?
- How does this system or process compare to other competing technologies?
- What is the potential payoff of R&D to reduce the key uncertainties and risks?

Value of Targeted Research in Reducing the Cost of an IGCC System

Stochastic Optimization

Process Synthesis

Some Questions Addressed by Optimization Capabilities

- Is there a better choice of parameter values for this process to improve its performance? To lower its cost?
- What levels of performance, emissions and cost can we expect from an optimized design?
- How do uncertainties in process performance and cost parameters affect the optimal design?
- What design choices will minimize the risk of a performance shortfall? Or the risk of a cost overrun?

Some Questions Addressed by Process Synthesis Capabilities

- How should the flowsheet be configured to achieve performance goals at lowest cost?
- What are the feasible flowsheet options to meet specified goals and constraints? Which options are not feasible?
- What are the cost savings (or performance and environmental gains) from moving to a more optimal design?

New Work in Progress

• Expansion of IECM modules

 Vision 21 systems analysis framework (The Vision 21 Planner)

The Vision 21 Planner Would . . .

- Bring together a spectrum of performance and cost models for plant components and integrated systems, suitable for preliminary design and analysis
- Run quickly and easily on a desktop or laptop computer
- Use publically available software
- Allow new process concepts to be easily modeled
- Allow uncertainties to be characterized explicitly
- Facilitate selection of optimal (most promising) designs

A Hierarchy of Process Models

Attributes of Process Models

Integrated Environmental Control Model (IECM)

IECM Interface 3.1 ©1999, Carnegie Mellon University

(live demo of the IECM)

Schematic of the Proposed Vision 21 Planner

Vision 21 Planner: Operation Overview

Welcome to the Vision 21 Planner

THE PROPERTY OF A SAME THE SAME THE

and the second s

Opening Screen: A Menu of Technology Options

Select Gasification Combined Cycle (IGCC) Options

Choose Powe	er System 🔀	
Please Cho	oose a Power System:	
	Conventional Combustion	
	Gasification Comb. Cycle	
	Advanced Combustion	
	Fuel Cells	
	Vision 21 Plant	

Select KRW Gasifier

🖉 IEI	CM Interface				
<u>F</u> ile	<u>E</u> dit ⊻iew <u>W</u> indow <u>H</u> e	elp			
Ы	📻 Untitled				
	<u>C</u> onfigure Pl	lant	Set <u>O</u> bjectives	Set <u>P</u> arameters	<u>G</u> et Results
	Configure Pl	ant Optimization tions KRW Lurgi Texaco on Controls None Ment Landfill		Plant Diagram	
Ready					

Select Oxygen Plant

🖉 IE	CM Interface			
File	<u>E</u> dit ⊻iew <u>W</u> indow <u>H</u> elp			
Ы	🚰 Untitled			
	<u>C</u> onfigure Plant	Set <u>O</u> bjectives	Set <u>P</u> arameters	<u>G</u> et Results
	Goal: Optimization Goal: Optimization Gasification Options Gasifier: Gasifier: KRW Oxidant: Oxygen Gas Cleanup: Air Oxygen Oxygen Post-Combustion Controls NOx Control: NOx Control: None Solids Management Slag: Landfill Sulfur:		Plant Diagram	
Ready	y			

Select Cold Gas Cleanup

🐨 IE	CM Interface				
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>W</u> indow j	<u>H</u> elp			
D	🙀 Untitled				
6	<u>C</u> onfigure I	Plant	Set Objectives	Set <u>P</u> arameters	<u>G</u> et Results
£					
	Goal:	Optimizatio	on 🔻		
6		1 ·		- Plant Diagram	
¥	Gasification O	<u>ptions</u>			
6	Gasifier:	KRW	-		
E.	Oxidant:	Oxygen			
P	Gas Cleanum:				
?	ow on any.	None	<u> </u>		2.4
▶?	Post-Combust	i Cold			
	NOx Control:	Hot			
	NOX COMPON	INONE			
				I I I	
				i i 🍈	
	G P.1.34				
	Solids Manag	ement			
	Slag:	Landfill	•		
	Sulfur:	Landfill	~		
Ready	y				NUM ///

Select NO_x Control

😻 IEI	CM Interface				_ _ _ _ _ _
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>W</u> indow ∣	<u>H</u> elp			
Ы	🚰 Untitled				
Ø	<u>C</u> onfigure I	Plant 👔	Set <u>O</u> bjectives	Set <u>P</u> arameters	<u>G</u> et Results
	Goal: <u>Gasification O</u> Gasifier: Oxidant:	Optimization ptions KRW Oxygen	n 💌	- Plant Diagram	
<u>@</u>	Gas Cleanup:	Cold	•		
N ?	Post-Combust	<u>ii</u>			
	NOx Control:	SCR None SCR			
	<u>Solids Manag</u>	ement			
	Slag:	Landfill	•		
	Sulfur:	Landfill	-		
				L	
Ready					NUM //

Select Byproduct Recovery

😻 IEC	CM Interface				
<u>F</u> ile <u>E</u>	<u>E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u>	lelp			
	🖶 Untitled				
Ø	<u>C</u> onfigure P	lant	Set <u>O</u> bjectives	Set <u>P</u> arameters	<u>G</u> et Results
	Goal:	Optimization	▼		
	Gasification Op	otions		Plant Diagram	
	Gasifier:	KRW	•		
ß	Oxidant:	Oxygen	•		
đ	Gas Cleanup:	Hot	•		
? ∖?	<u>Post-Combust</u>	ion Control	<u>s</u>		ך≻י
	NOx Control:	SCR	•	\rightarrow	→ _ _→∞
	Solids Manag	ement			Ŝ.
	Slag:	Landfill	-		
	Sulfur:	Sulfur			
		Landfill			
		Sulfur			
Ready					

Set Process Parameters

😻 IE	СМ	Interfa	ce									_ 🗆	×
<u>File Edit View Window H</u> elp													
Ы		Untitle	d									_ 🗆	×
			<u>C</u> onfigure Plant	<u>S</u> e	t Pa	rame	ters	Ì		<u>G</u> et R	esults		
		Overa P <u>l</u> ant	11 Coal Properties IGCC	F <u>u</u> rnace Factors	Em Con	ission str <u>a</u> int	s <u>N</u> Ox Contr	o1	Par <u>t</u> iculate Control	S <u>O</u> 2 Co	ntrol Soli	d Waste <u>vI</u> gmt	3
9			Title	Units		Unc	Value	Calc	Min	Max	Default	DV	
*	Ш	1	<u>Gasifier Design</u>										ш
	Ш	2	Gasifier Carbon Conversion	%			95.0		90.0	98.0	95.0		ш
	Ш	3	Gasifier Oxygen to Carbon Ratio	mo1O2/m	olC		0.46		0.45	0.47	0.46		ш
	Ш	4	Gasifier Steam to Carbon Ratio	mol H2O / n	io1 C		0.46		0.445	0.455	0.46		ш
	Ш	5	Coal-bound N Converted to NH3	%			10.0		5.0	15.0	10.0		ш
8	Ш	6	Sulfur Retained in Gasifier Bot Ash	%			90.0		80.0	95.0	90.0		ш
▶?	Ш	7											ш
<u>~</u>	Ш	8	Emissions Control										ш
	Ш	9	Calcium to Sulfur Ratio	molCa/m	o1C		2.60		2.10	3.00	2.60		ш
	Ш	10	Sulfation Unit Conversion	%			95.0		90.0	98.0	95.0		ш
	Ш	11	NH3 Converted to NOx in Turbine	%			90.0		50.0	90.0	90.0		ш
	Ш	12	SCR NOx Removal Efficiency	%			80.0		50.0	90.0	80.0		ш
	Ш	13	SCR NH3 Slip	ppmw			10.0		5.0	20.0	10.0		ш
	Ш	14											ш
	Ш	15											ш
	Ш	16											ш
	Ш	17				_							ш
		18											
		1 P.	formance 2 Financing	3 Retrofft (lost	1	Capital Cos	t /	5 O&M (Cost /6	O&M Fee	alation	1
		V 1.1 0		2. rectorite	031		. Oapital OOs	· /	2.0001010		. Octor Est		

Open Vision 21 Plant Options

Vision 21 Workbench

🐨 IE	CM Interface			
<u>F</u> ile	<u>E</u> dit ⊻iew <u>W</u> indow <u>H</u> elp			
Ы	🛁 Untitled			
D	<u>C</u> onfigure Plant	Set <u>O</u> bjectives	Set <u>P</u> arameters	<u>G</u> et Results
	Vision 21 Plant:	Plant Diagram		
쏄	User Specified	•		
		-		
格	🖌 🖊 👘			
₽ <u>₽</u>		·		
đ				
8		=		
N?)		
	😑 📕 🗰			
	Air Water Chem	ical		
		_		
	Gas Liquid Soli	d		

Select Existing Flowsheet - 1

Select Existing Flowsheet - 2

Configure a New System

Linkage to More Detailed Process Models

- Where appropriate, use a Response Surface Model (RSM) to faithfully reproduce the results of a more detailed process model
- Captures effect of key process design variables
- Serves as a validation tool for desktop models
- Substantially reduces computational requirements and turnaround time

Response Surface Model Development

Desktop Model of a Process

Evaluation Of Desktop Model: IGCC Plant Efficiency

Benefits of Desktop Models

- Precise and accurate representation of detailed models
- Execution takes seconds, not hours
- Can run on any desktop PC
- Amenable to "what if" analyses
- Incorporates process performance, emissions, and cost models in one package
- Useful by analysts and decision makers who have no time, ability or resources (staff, software, hardware, funds) to run complex models

Model Applications

- Process design
- Technology evaluation
- Cost estimation
- R&D management

- Risk analysis
- Environmental compliance
- Marketing studies
- Strategic planning

Where Do We Go from Here?

• Current project will implement and demonstrate:

- Response surface models of several IGCC system configurations
- Process optimization capability
- Further development would:
 - Use the Vision 21 Planner as a testbed for systems integration development
 - Add preliminary versions of enabling technology models
 - Add process synthesis capability
 - Explore system dynamics modeling

So, What Do You Think?