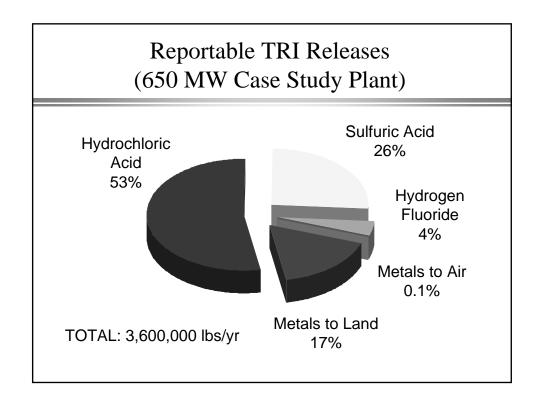
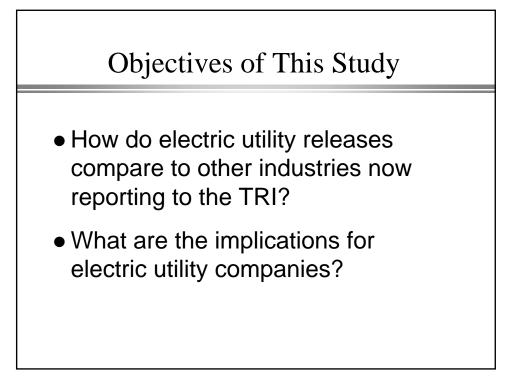
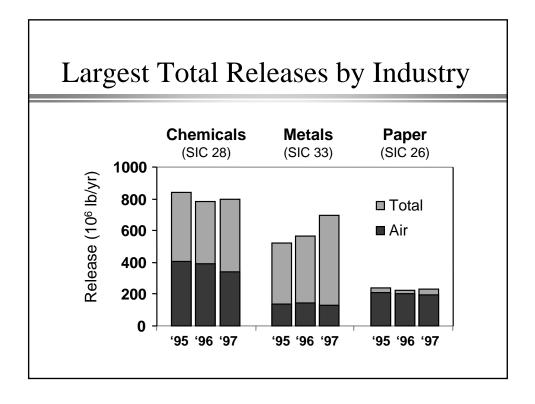
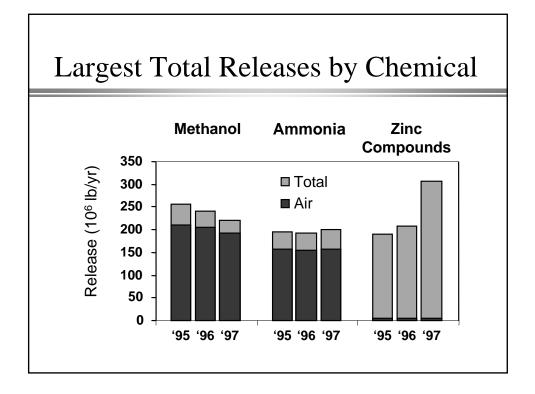

A National Analysis of Toxic Releases from Electric Power Plants

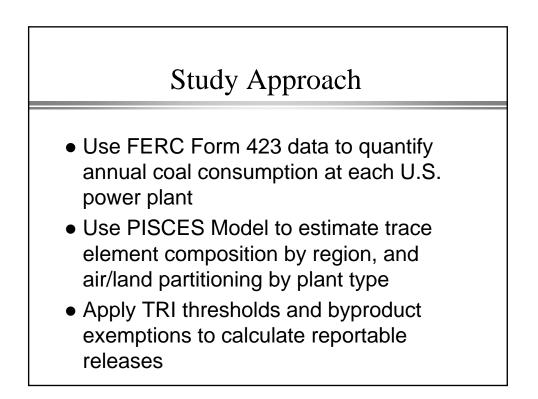
Edward S. Rubin Michael B. Berkenpas Carnegie Mellon University Pittsburgh, PA 15213

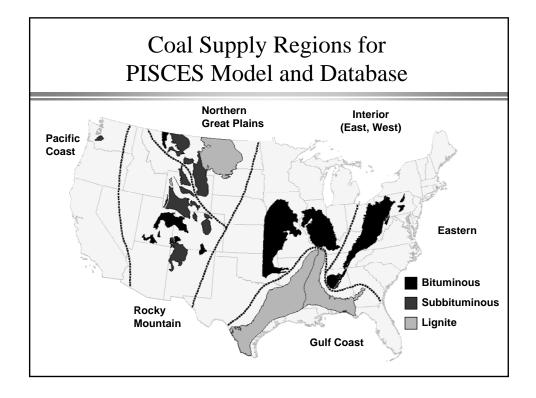


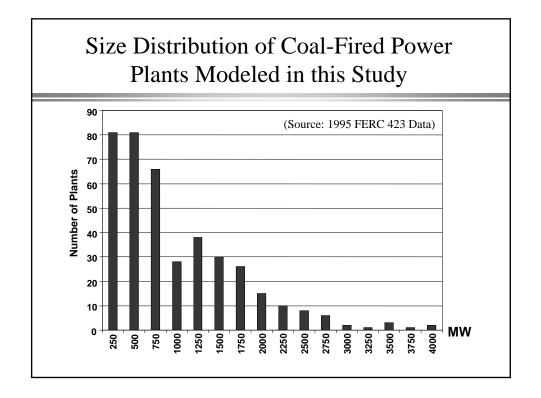

Application to Power Plants


- Covers all coal-fired and oil-fired plants with more than ten employees (approximately 1000 facilities)
- First reports due by July 1, 1999 for releases in calendar year 1998
- Information reported to EPA on Form R (one form per reportable substance)

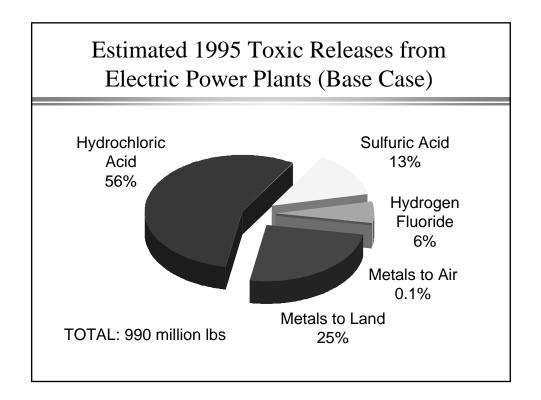



TRI Chemicals Potentially Relevant to the Electric Utility Industry			
Metals	Organics	Other	
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Zinc	Benzene Dichloromethane Ethylbenzene Ethylene Glycol Formaldehyde Formic Acid Methanol Naphthalene PCBs Polycylic aromatics Propylene Toluene Xylene	Ammonia Asbestos (friable) Bromine Chlorine Chlorine Dioxide Hydrazine Hydrogen Fluoride Hydrochloric Acid Nitric Acid Ozone Sulfuric Acid Thiourea	

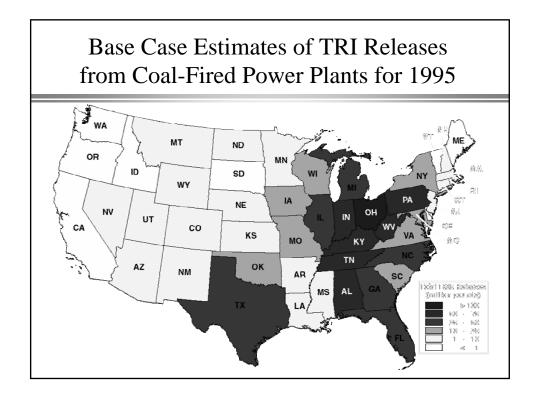




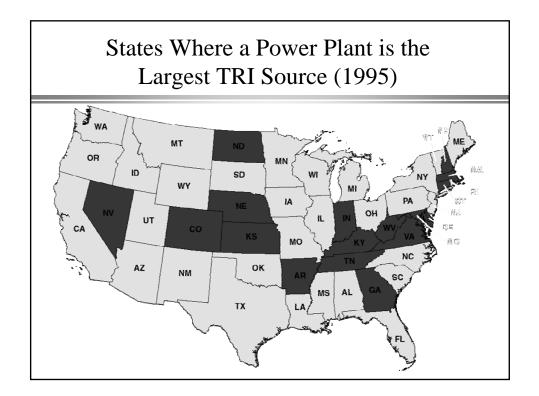
Summary of Power Plant Coal Consumption (million tons/yr)


FERC 423	Database	DC	DE/EIA U	U tility D a	ata
Coal Rank	1995 Totals	1995	1996	1997	1998
Bituminous	419				
Subbituminous	330				
Lignite	75				
Total Coal	823	829	875	899	911
Power Gen (Bk)	Wh)	1653	1738	1789	1807

	ass Concentration of Trace Chemicals in Coal (ppmw, dry basis)			
Chemical	Bit	Sub	Lig	
Antimony	1.0	0.57	0.74	
Arsenic	10.0	5.9	8.5	
Barium	94.5	196.	220.	
Beryllium	1.3	0.5	1.9	
Cadmium	0.53	0.83	0.1	
Chloride	750.	195.	140.	
Chromium	18.6	5.0	9.3	
Cobalt	6.4	2.0	3.7	
Copper	21.	9.3	10.5	
Fluoride	69.	44.	79.	
Lead	8.1	7.8	6.2	
Manganese	22.4	35.5	74.	
Mercury	0.12	0.10	0.22	
Molybdenum	2.1	1.7	3.0	
Nickel	16.1	9.5	5.9	
Selenium	3.2	0.9	1.3	
Silver	0.2	0.16	0.1	
Thallium	1.6	2.0	0.5	
Zinc	22.0	8.7	7.8	

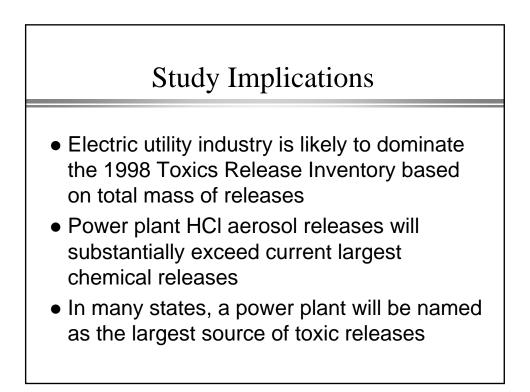


Base Case Estimates Releases for 1995		
TRI Chemical	Air	Total
Hydrochloric acid aerosol	553.5	553.5
Barium compounds	< 0.4	142.3
Sulfuric acid aerosol	129.6	129.6
Hydrogen fluoride	55.4	55.4
Manganese compounds	0.2	29.3
Zinc compounds	0.2	19.2
Copper compounds	0.1	12.2
Nickel compounds	0.1	11.7
Chromium compounds	< 0.1	9.9
Lead compounds	< 0.1	6.8
Arsenic compounds	< 0.2	6.0
Molybdenum trioxide	< 0.1	4.7
Cobalt compounds	< 0.1	3.6
Antimony compounds	< 0.1	1.5
Selenium compounds	0.3	0.7
Thallium compounds	< 0.1	0.4
Beryllium compounds	< 0.1	0.3
Total	740.	987.

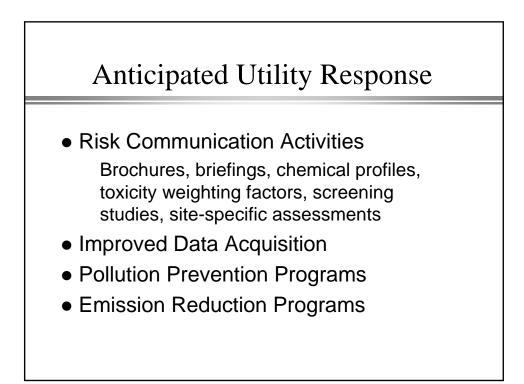


Substance	Air F	Releases	Total I	Releases
Substance	Base	Bound	Base	Bound
HCl aerosol	553	1,147	553	1,147
H ₂ SO ₄ aerosol	130	287	130	287
Hydrogen fluoride	55	135	55	135
Metal compounds	< 2	2	249	311
Total	740	1,541	987	1,880

Uncertainty Estimates for 1995 Releases from Coal-Fired Power Plants (millions of pounds)



D I	11005	
Rank	Actual 1995	Actual 1995 + Utilities
1	Texas	Texas
2	Louisiana	Ohio
3	Ohio	Pennsylvania
4	Pennsylvania	Louisiana
5	Illinois	Indiana


Projections for 1998 Electric Utility Releases

Source	Million lbs		
Source	Coal	Oil	
Carnegie Mellon (This study + 10% above 1995)	> 1100	Negl.	
Edison Electric Institute	1100	0.3	
(Actual utility data, extrapolated from 65% of coal-fired capacity and 40% of oil-fired capacity)			

Limitation of the TRI

- Total mass emissions do not reflect toxicity or risks from different:
 - Chemicals
 - Sources
 - Environmental media
- Communities must individually assess the significance of reported releases
- Labels and findings are often confusing, conflicting or misleading

