Toxic Releases from Power Plants: The Next Shoe to Drop

Ed Rubin

April 7, 1999 HDGC Seminar

The Toxics Release Inventory

- Established by section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986
- Strengthened by Pollution Prevention Act of 1990
- Lists approximately 600 chemicals and 28 chemical categories
- Public database for community access to toxic release information
- No consideration of risks or effects

Largest Total Releases by Industry in 1995-96 (millions of pounds per year)

		1995 Releases		1996 Releases	
SIC	Industry	Air	Total	Air	Total
28	Chemicals	407	844	392	785
33	Primary Metals	138	524	145	565
26	Paper	213	238	204	228
30	Plastics	112	127	105	116
37	Transportation Equipment	109	121	103	111
	All Industries	1,562	2,531	1,452	2,434

Largest Total Releases by Chemical in 1995-96 (millions of pounds per year)

	1995 H	1995 Releases		Releases
Chemical	Air	Total	Air	Total
Methanol	210	255	206	241
Ammonia	157	195	155	193
Zinc compounds	5	189	6	207
Toluene	145	147	125	127
Nitrate compounds	<1	145	<1	164
All Chemicals	1,562	2,531	1,452	2,434

Newly Listed Industries

- Seven new industries added in 1998, including electric power plants
- Covers all coal-fired and oil-fired plants with more than ten employees (approximately 1000 facilities)
- First reports due by July 1, 1999 for releases in calendar year 1998
- Results for 1998 expected by mid-2000

What Gets Reported?

- "Processed" chemicals, if more than 25,000 lbs/yr
- "Coincidentally manufactured" chemicals, if more than 25,000 lbs/yr
- "Otherwise used" chemicals, if more than 10,000 lbs/yr
- De minimus exemption for byproducts distributed in commerce

Annual Releases (lbs/year) Reportable on TRI Form R

- Stack Air Emissions
- Fugitive Air Emissions
- Water Discharges
 - By water body name
 - % from stormwater
- Land Releases to:
 - Landfill
 - Land treatment
 - Surface impoundment
 - Other disposal

- Transfers Off-Site to:
 - Publicly Owned Treatment Works
 - Other Sites (divided by site) for:
 - Treatment
 - Disposal
 - Recycling
 - Energy recovery
- Underground Injections

Continued...

Annual Releases (lbs/year) Reportable on TRI Form R

- On-Site Waste Treatment Methods and Efficiency
 - List of methods, concentration and efficiency
 - Divided by waste stream
- Source Reduction and Recycling Activities
 - Quantity released
 - Quantity used for on-site energy recovery

- Quantity used for off-site energy recovery
- Quantity recycled on-site
- Quantity recycled off-site
- Quantity treated on-site
- Quantity treated off-site
- Quantity released to environment not associated with production process
- Production ratio or activity index

TRI Chemicals Potentially Relevant to the Electric Utility Industry

Compounds of	Organics	Other
Compounds of Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Mercury	Organics Benzene Dichloromethane Ethylbenzene Ethylene Glycol Formaldehyde Formic Acid Methanol Naphthalene PCBs Polycylic aromatics Propylene	Other Ammonia Asbestos (friable) Bromine Chlorine Chlorine Dioxide Hydrogen Fluoride Hydrogen Fluoride Hydrochloric Acid Nitric Acid Ozone Sulfuric Acid
Molybdenum Nickel Selenium Silver	Toluene Xylene	Thiourea

Silver Thallium

Zinc

Coincidentally Manufactured Chemicals

Assume metals convert to lowest weight oxide per unit of metal:
 2Cu + 1/2O2 → Cu2O

 $(127 \text{ lbs}) + (16 \text{ lbs}) \rightarrow (143 \text{ lbs})$

22,202 lbs Cu \rightarrow 25,000 lbs oxide

Elemental Threshold Releases for Combustion-Generated Manufactured Compounds

Substance	Lowest Wgt Oxide	Molecular Weight	Ratio	Threshold (lbs/yr)
Antimony	Sb ₂ O ₃	291.50	0.833	20,833
Arsenic	As_2O_3	197.84	0.758	18,939
Barium	BaŌ	153.33	0.895	22,391
Beryllium	BeO	25.01	0.360	9.009
Cadmium	CdO	128.41	0.876	21.891
Chromium	CrO	68.00	0.765	19,113
Cobalt	CoO	74.93	0.787	19.670
Copper	Cu ₂ O	143.09	0.888	22.202
Lead	PbÔ	223.20	0.929	23.213
Manganese	MnO	70.94	0.775	19.365
Mercury	Hg ₂ O	417.18	0.962	25.000
Molybdenum	MoO ₃	143.94	0.667	16.663
Nickel	NiO	74.70	0.786	19.645
Selenium	SeO ₂	110.96	0.712	17.790
Silver	Ag₂Ó	231.74	0.931	23.273
Thallium	TIĴÔ	424.74	0.962	24.058
Zinc	ZnÔ	81.38	0.803	20,080

Formation of HCl and HF

$Cl^- + H^+ \rightarrow HCl$

$F^- + H^+ \rightarrow HF$

Formation of Sulfuric Acid

 $S + O_2 \rightarrow SO_2$ $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ $SO_3 + H_2O \rightarrow H_2SO_4$

Estimating TRI Releases

• Utilities must determine: Which species are reportable Quantities to report No new monitoring programs required (use reasonable estimating methods) EPA draft guidance document (January 1999) endorses mass balance approach

The EPRI PISCES Model

- A mass and energy balance model for tracking all flows to and from fossil fuel power plants
- Linked to EPRI PISCES database
- Includes trace species and criteria pollutants
- Multi-media coverage (air, water, land)
- Probabilistic capability

Probabilistic Emissions Path

PISCES Model Package

TRI Case Study Plant Navigation								
Configure Plant	Trace Species	Set Parameters	Get Results	Close Session				
Trace Species								
 2,3,7,8-TCDD Aluminum Antimony Arsenic Barium Benzene 	IX Naphthaler IX Nickel III Phosphoru IIII Potassium IX Selenium IX Silver	ne s	Please select Trac current session. W select any of Confi Parameters or Get	e Species for hen completed, igure Plant, Set Results.				
 Benzo(a)pyrene Beryllium Boron Cadmium Calcium Chloride Chromium Cobalt Copper Fluoride Formaldehyde Iron Lead Magnesium Manganese Mercury Malub docum 	☐ Sodium		Hazardous Air Pollutants (HAPs) Select All Select Inorganics Select Organics	Toxic Release Inventory (TRI) Select All Select Inorganics Select Organics ect All				

TRI Case Study Plant Navigation						
Configure Plant	Trace Species	Set Parameters	Get Results	Close Session		
Set Parameters						

Set Parameters

[TRI Case Study Plant] Plant Performance

To edit the Value, click on the red check mark (if any) to remove it, then double-click on Value.

	Parameter Description	Units	Unc	Value	Calc	Minimum	Maximum	Default
1	Gross Electrical Output	(MW)		692.2		1	3000	540
2	Gross Cycle Heat Rate	(Btu/kWh)		8833		7000	12000	8924
3	Net Electrical Output	(MW)		650.0		1	3000	492
4	Capacity Factor	(%)		65.00		0	100	75
5	Excess Air for Furnace	(% stoich.)		20.00	V	0	40	Calc
6	Leakage Air at Preheater	(% stoich.)		19.00	Ľ	0	60	Calc
7	Ambient Air Temperature	(*F)		80.00		77	110	80
8	Unaccounted Boiler Losses	(%)		0.5000		0	4	0.5
9	Boiler Efficiency	(%)		89.03	Ľ	50	95	Calc
10	Gas Temp. Exiting Economizer	(*F)		700.0		250	1200	700
11	Gas Temp. Exiting Preheater	(*F)		300.0		150	400	300

?

TRI Case Study Plant Navigation							
Configure Plant	Trace Species	Set Parameters	Get Results	Close Session			
Plant Summary							
[TRI Case Study Plant] Threshold Test for Coincidental Manufacture (lbs/yr)							

Ontions	(
Flows:	Substance (Median Values)	Quantity	Threshold
C Flant Summary	Antimony	2519	2.083e04
C Entering Plant	Arsenic	2.430e04	1.894e04
Trace Species:	Barium	2.278e05	2.239e04
O Entering Plant	Benzene	0	2.500e04
O Exiting Plant	Benzo(a)pyrene	0	2.500e04
TRI Threshold	Beryllium	3026	9009
O TRI Releases	Cadmium	1276	2.189e04
Units	Hydrochloric Acid	2.050e06	2.500e04
System:	Chromium	4.458e04	1.912e04
English 🗾	Cobalt	1.532e04	1.966e04
Table:	Copper	4.983e04	2.221e04
Annual Avg. 💌	Hydrogen Fluoride	1.819e05	2.500e04
	Formaldehyde	0	2.500e04
Print	Lead	1.940e04	2.321e04
Copy to Clipboard	Manganese	5.376e04	1.937e04
Return	Mercury	312.8	2.500e04
ineram	Molu Triouido	7647	2 500e0 <i>4</i>

TRI Case Study Plant Navigation						
Configure Plant	Trace Species	Set Parameters		Cet Result	Clos	e Session
Plant Summary						
[TRI Case Stu	idy Plant] Summa	ary of TRH Species	Releases: (Ibs/vr)	Coinciden	tally Manu	factured
Uptions <u>Flows:</u> O Plant Summary	Substance (Median Values)	Total Release	Air Release	Land Release	Water Release	Transfe <u>▲</u> Offsite
C Franc Summary	Antimony	0	0	0	0	0
O Exiting Plant	Arsenic	2.433e04	1111	2.052e04	2701	0
Trace Species:	Barium	2.279e05	883.2	2.103e05	1.673e04	0
O Entering Plant	Benzene	0	0	0	0	0
C Exiting Plant	Benzo(a)pyrene	0	0	0	0	0
○ TRI Threshold	Beryllium	0	0	0	0	0
TRI Releases	Cadmium	0	0	0	0	0
Units	Hydrochloric Acid	1.996e06	1.996e06	0	0	0
System:	Chromium	4.470e04	238.7	4.354e04	928.8	0
English 🗾	Cobalt	0	0	0	0	0
Table:	Copper	4.994e04	222.8	4.917e04	549.3	0
Annual Avg. 🔻	Hydrogen Fluoride	1.645e05	1.645e05	0	0	0
	Formaldehyde	0	0	0	0	0
Print	Lead	0	0	0	0	0
Copy to Clipboard	Manganese	5.435e04	192.6	5.250e04	1658	0
Behavio	Mercuru	0	0	Π	Π	<u> </u>
Heturn	•					•

TRI Case Study

• 650 MW (net) facility

- Tangentially fired boiler
- Bituminous coal, 2.5 lb SO₂/MBtu
- Cold-side electrostatic precipitator
- Dry flyash disposal on-site
- Zero wastewater discharge
- 65% capacity factor

Summary of Reportable TRI Releases for Case Study (650 MW, 65% CF, Zero Wastewater Discharge)

	Air	Land	Total
Chemical	Releases	Releases	Releases
Hydrochloric Acid	2,000,000	0	2,000,000
Sulfuric Acid	890,000	0	890,000
Barium	910	250,000	250,000
Hydrogen Fluoride	160,000	0	160,000
Manganese	190	60,000	60,000
Zinc	470	58,000	59,000
Copper	220	55,000	55,000
Chromium	250	49,000	49,000
Nickel	200	43,000	43,000
Arsenic	1,100	25,000	27,000
Total	3,100,000	540,000	3,600,000

Reportable TRI Releases (650 MW Case Study Plant)

Factors Affecting TRI Releases

Plant Size and Operation

- Fuel Properties
- Plant Configuration
- Plant Operating Practices

Size of Coal-Fired Power Plants

Variability of Trace Species in Coal

Conc into Coal Pile (ppmw) for Chromium

×

Effect of Plant Size and Fuel Composition on Number of Reportable TRI Chemicals Manufactured During Combustion

Reportable TRI Releases for Case Study Plant with FGD

TOTAL: 830,000 lbs/yr

Summary of Reportable TRI Releases for Case Study (650 MW, 65% CF, NPDES Discharge)

	Air	Land	Water	Total
Chemical	Releases	Releases	Releases	Releases
Hydrochloric Acid	2,000,000	0	0	2,000,000
Sulfuric Acid	890,000	0	0	890,000
Barium	910	230,000	17,000	250,000
Hydrogen Fluoride	160,000	0	0	160,000
Manganese	190	58,000	1,700	60,000
Zinc	470	57,000	1,300	59,000
Copper	220	55,000	1,400	56,000
Chromium	250	48,000	930	49,000
Nickel	200	41,000	1,900	43,000
Arsenic	1,100	23,000	2,700	27,000
Total	3,100,000	510,000	27,000	3,600,000

Size Distribution of Coal-Fired Power Plants Modeled in this Study

Schematic of Study Methodology

Base Case Estimates of Total Power Plant Releases for 1995 (millions of pounds)

TRI Chemical	Air	Total	
Hydrochloric acid	553.5	553.5	
Barium compounds	< 0.4	142.3	
Sulfuric acid	129.6	129.6	
Hydrogen fluoride	55.4	55.4	
Manganese compounds	0.2	29.3	
Zinc compounds	0.2	19.2	Figures for metal
Copper compounds	0.1	12.2	compounds refer to weight of elemental
Nickel compounds	0.1	11.7	metal.
Chromium compounds	< 0.1	9.9	
Lead compounds	< 0.1	6.8	Totals Include on-
Arsenic compounds	< 0.2	6.0	site and off-site
Molybdenum trioxide	< 0.1	4.7	releases.
Cobalt compounds	< 0.1	3.6	
Antimony compounds	< 0.1	1.5	
Selenium compounds	0.3	0.7	
Thallium compounds	< 0.1	0.4	
Beryllium compounds	< 0.1	0.3	
Total	740.	987.	

Uncertainty Estimates for Total 1995 Releases from Coal-Fired Power Plants (millions of pounds)

Substance	<u>Air Releases</u>		Total Releases	
	Base	Bound	Base	Bound
HCl aerosol	553	1147	553	1147
H ₂ SO ₄ aerosol	130	287	130	287
Hydrogen fluoride	55	135	55	135
Metal compounds	< 2	2	249	311
Total	740	1541	987	1880

Base Case Estimates of TRI Releases from Coal-Fired Power Plants for 1995

States Where Power Plant Releases Dominate Other Industries (1995)

Policy Implications

- Electric utility industry likely to head the 1998 TRI
- Coal-fired plants = "most toxic"
- HCI replaces methanol as largest toxic release
- Need for risk communication activities (utilities + EPA)
- Efforts to reduce TRI emissions likely
- International impact on Pollutant Release Transfer Registers (PRTR)