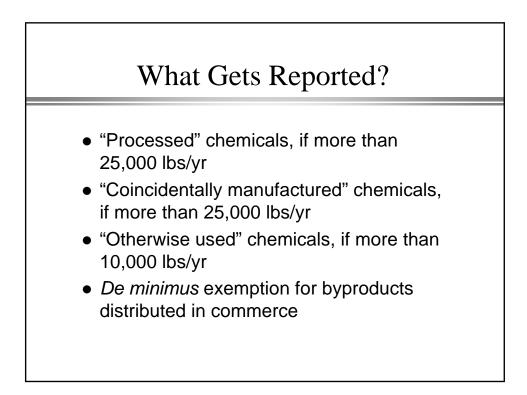
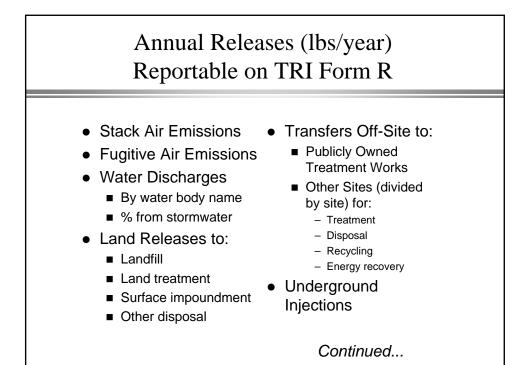
Toxic Releases from Power Plants: The Next Shoe to Drop

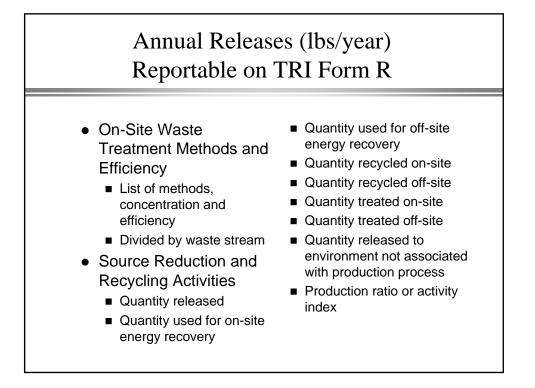
Ed Rubin

April 7, 1999 HDGC Seminar

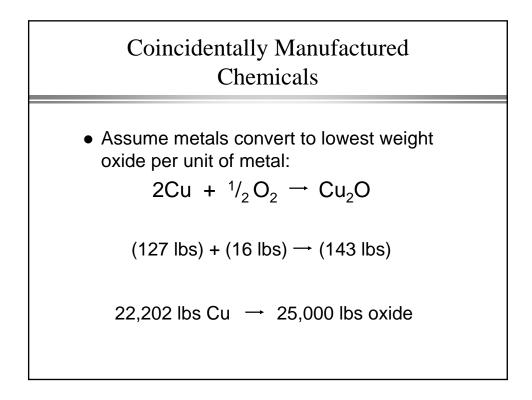
The Toxics Release Inventory

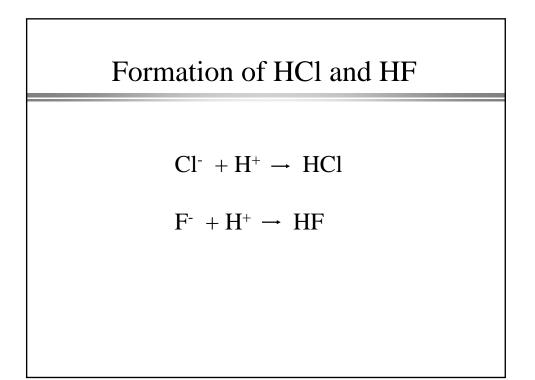

- Established by section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986
- Strengthened by Pollution Prevention Act of 1990
- Lists approximately 600 chemicals and 28 chemical categories
- Public database for community access to toxic release information
- No consideration of risks or effects


Largest Total Releases by Industry in 1995-96 (millions of pounds per year)

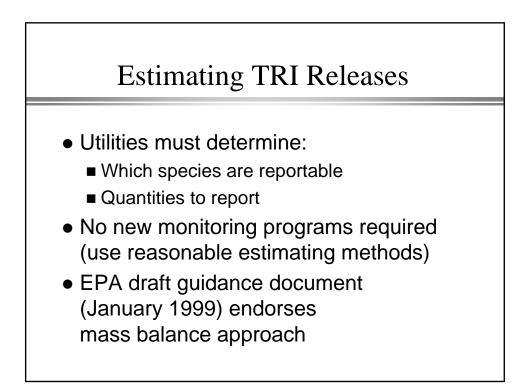

Largest Total Releases by Chemical in 1995-96 (millions of pounds per year)

Newly Listed Industries

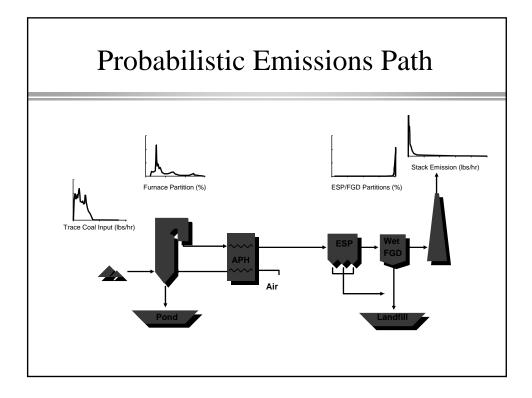

- Seven new industries added in 1998, including electric power plants
- Covers all coal-fired and oil-fired plants with more than ten employees (approximately 1000 facilities)
- First reports due by July 1, 1999 for releases in calendar year 1998
- Results for 1998 expected by mid-2000

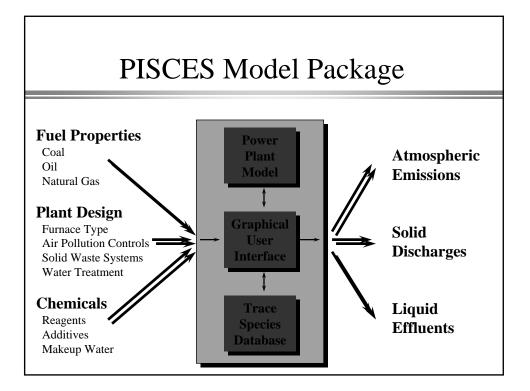


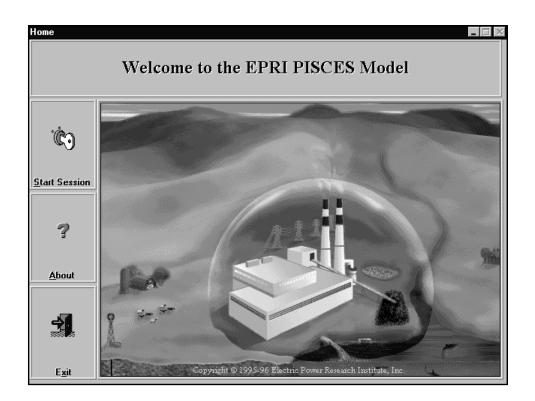
TRI Chemicals the Electr	Potentially l ic Utility Inc	
Compounds of	Organics	Other
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Zinc	Benzene Dichloromethane Ethylbenzene Ethylene Glycol Formaldehyde Formic Acid Methanol Naphthalene PCBs Polycylic aromatics Propylene Toluene Xylene	Ammonia Asbestos (friable) Bromine Chlorine Dioxide Hydrazine Hydrogen Fluoride Hydrochloric Acid Nitric Acid Ozone Sulfuric Acid Thiourea

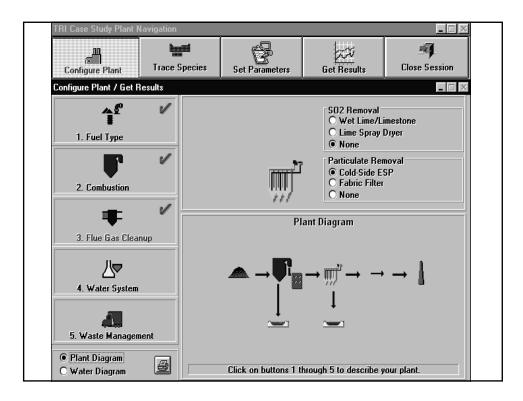


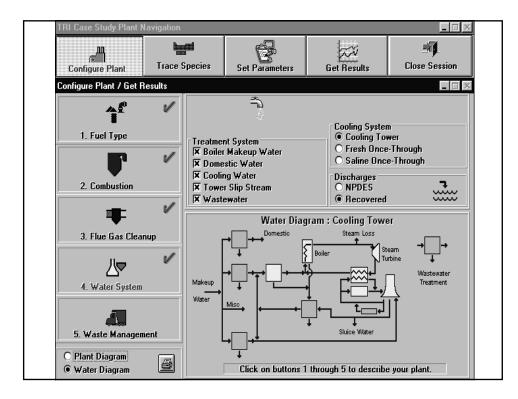
Elemental Th	reshold	Release	s for (Combustion-
Generate	d Manu	factured	d Com	pounds
Substance	Lowest Wgt Oxide	Molecular Weight	Ratio	Threshold (lbs/yr)
Antimony	Sb ₂ O ₃	291.50	0.833	20,833
Arsenic	As_2O_3	197.84	0.758	18,939
Barium	BaO	153.33	0.895	22,391
Beryllium	BeO	25.01	0.360	9,009
Cadmium	CdO	128.41	0.876	21,891
Chromium	CrO	68.00	0.765	19,113
Cobalt	CoO	74.93	0.787	19,670
Copper	Cu₂O	143.09	0.888	22,202
Lead	PbO	223.20	0.929	23,213
Manganese	MnO	70.94	0.775	19,365
Mercury	Hg₂O	417.18	0.962	25,000
Molybdenum		143.94	0.667	16,663
Nickel	NiO	74.70	0.786	19,645
Selenium	SeO ₂	110.96	0.712	17,790
Silver	Ag₂O	231.74	0.931	23,273
Thallium	TI₂O	424.74	0.962	24.058
Zinc	ZnO	81.38	0.803	20,080

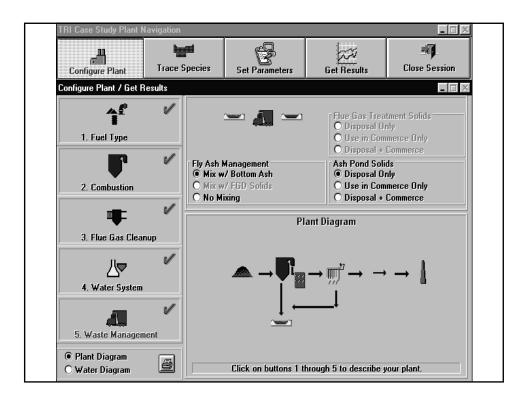


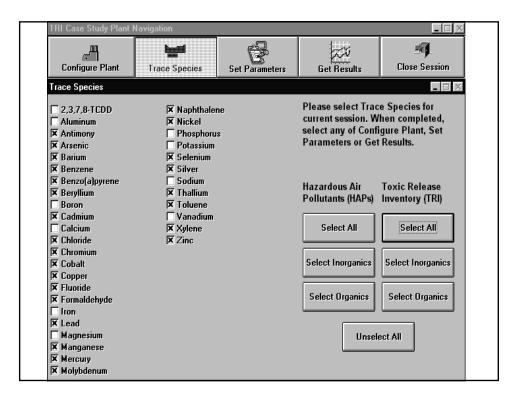

 $S + O_2 \rightarrow SO_2$ $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ $SO_3 + H_2O \rightarrow H_2SO_4$

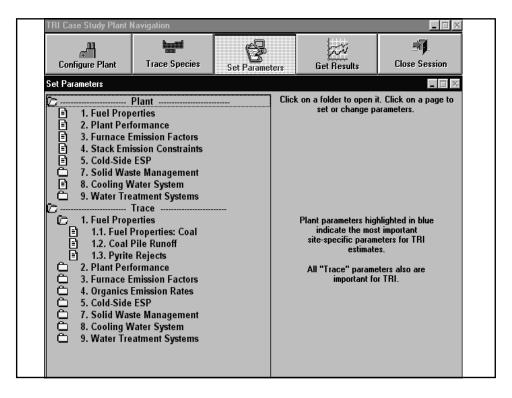


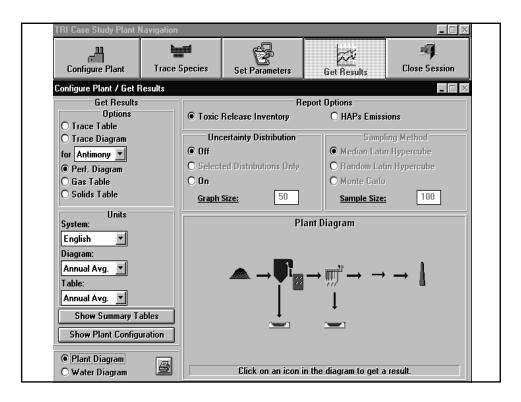

The EPRI PISCES Model

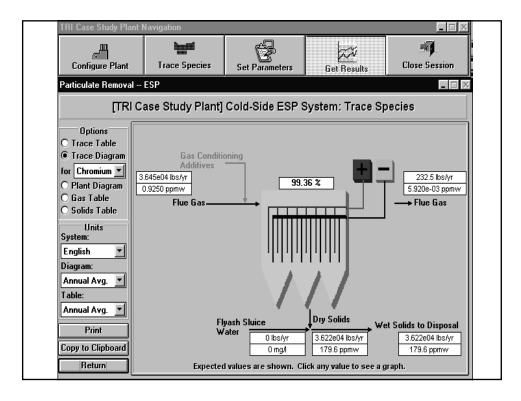

- A mass and energy balance model for tracking all flows to and from fossil fuel power plants
- Linked to EPRI PISCES database
- Includes trace species and criteria pollutants
- Multi-media coverage (air, water, land)
- Probabilistic capability





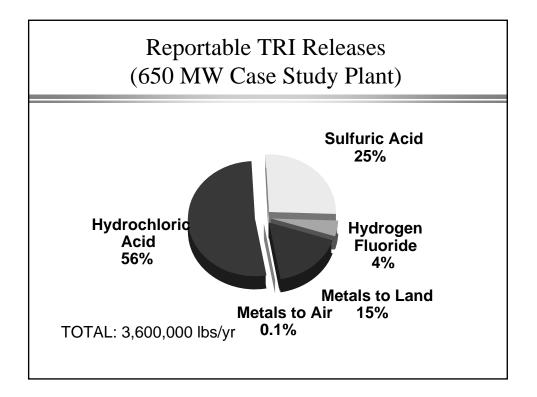


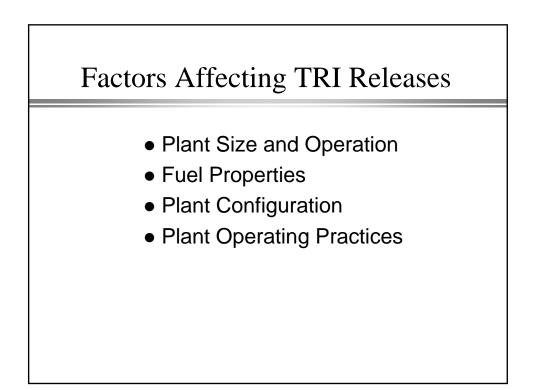


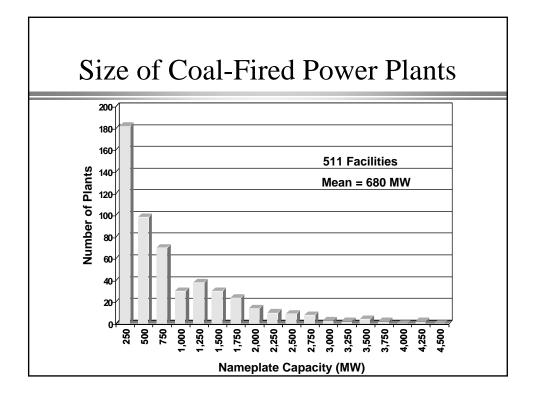


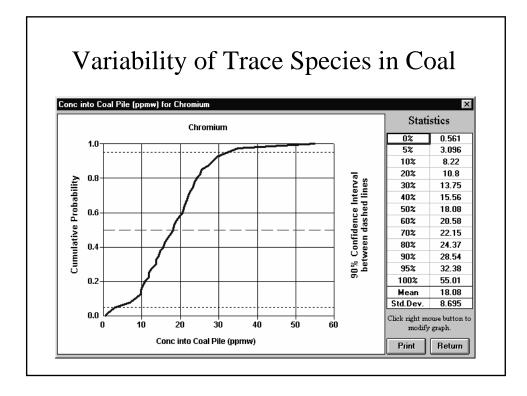
(Configure Plant	Trace Species	Set Par	ameters.	Ge	t Resu	ılts	اللہ Close Se	L ession
iet	Parameters			1110,2210					- [])
		ITRI Ca	se Study Plan	tl Plant	Performa	nce			
		•	/alue, click on the	•			nove it, the	n double-clic	k on Valu
	Parameter	Description	Units	Unc	Value			Maximum	Defaul
1	Gross Electrical O	utput	(MW)		692.2		1	3000	540
2	Gross Cycle Heat	Rate	(Btu/kWh)		8833	1	7000	12000	8924
3	Net Electrical Out	put	(MW)		650.0		1	3000	492
4	Capacity Factor		(%)		65.00		0	100	75
5	Excess Air for Fur	nace	(% stoich.)		20.00	<u>v</u>	0	40	Calc
6	Leakage Air at Pre	eheater	(% stoich.)		19.00	V	0	60	Calc
7	Ambient Air Tempe	erature	(°F)		80.00		77	110	80
8	Unaccounted Boil	er Losses	(%)		0.5000		0	4	0.5
9	Boiler Efficiency		(%)		89.03	V	50	95	Calc
10	Gas Temp. Exiting	Economizer	(°F)		700.0		250	1200	700
11	Gas Temp. Exiting	Preheater	(*F)		300.0		150	400	300

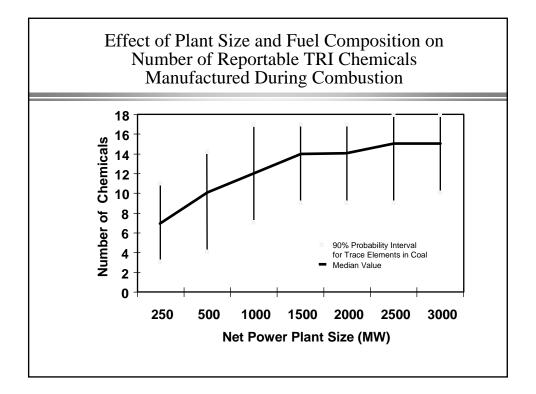
TRI Case Study Pla	TRI Case Study Plant Navigation							
Configure Plant	Trace Species	Set Par	ameters	Get Results	Liose Session			
Plant Summary								
[TRI Case S	Study Plant] Thre	shold Test	for Coinc	cidental Manufa	cture (lbs/yr)			
Options								
Flows:	Substance (Median Values)	Quantity	Threshold		4			
O Plant Summary O Entering Plant	Antimony	2519	2.083e04	7				
O Exiting Plant	Arsenic	2.430e04	1.894e04					
Trace Species:	Barium	2.278e05	2.239e04					
O Entering Plant	Benzene	0	2.500e04					
C Exiting Plant	Benzo(a)pyrene	0	2.500e04					
TRI Threshold	Beryllium	3026	9009					
○ TRI Releases	Cadmium	1276	2.189e04					
Units	Hydrochloric Acid	2.050e06	2.500e04					
System:	Chromium	4.458e04	1.912e04					
English 🗾	Cobalt	1.532e04	1.966e04					
Table:	Copper	4.983e04	2.221e04					
Annual Avg. 💌	Hydrogen Fluoride	1.819e05	2.500e04					
	Formaldehyde	0	2.500e04					
Print	Lead	1.940e04	2.321e04					
Copy to Clipboard	Manganese	5.376e04	1.937e04					
Return	Mercury	312.8	2.500e04					

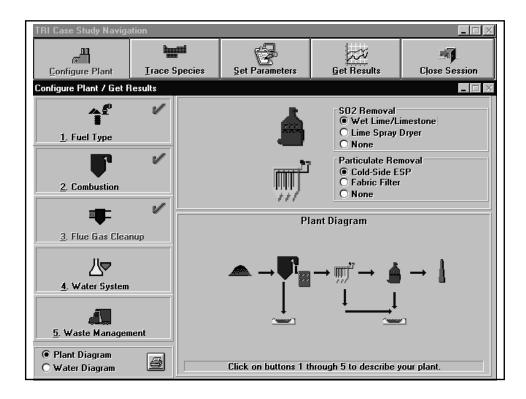

Configure Plant	Trace Species	Set Parameters		Get Results	Clos	Liose Session	
Plant Summary	ıdy Plant] Summa			Coinciden	tally Manuf	actured	
		Snecies	(lhsi\/r)				
Options Flows:	Substance (Median Values)	Total Release	Air Release	Land Release	₩ater Release	Transfe_≜ Offsite	
O Plant Summary O Entering Plant	Antimony	0	0	0	0	0	
O Exiting Plant	Arsenic	2.433e04	1111	2.052e04	2701	0	
Trace Species:	Barium	2.279e05	883.2	2.103e05	1.673e04	0	
C Entering Plant	Benzene	0	0	0	0	0	
C Exiting Plant	Benzo(a)pyrene	0	0	0	0	0	
O TRI Threshold	Beryllium	0	0	0	0	0	
TRI Releases	Cadmium	0	0	0	0	0	
Units	Hydrochloric Acid	1.996e06	1.996e06	0	0	0	
System:	Chromium	4.470e04	238.7	4.354e04	928.8	0	
English 🗾	Cobalt	0	0	0	0	0	
Table:	Copper	4.994e04	222.8	4.917e04	549.3	0	
Annual Avg. 💌	Hydrogen Fluoride	1.645e05	1.645e05	0	0	0	
	Formaldehyde	0	0	0	0	0	
Print	Lead	0	0	0	0	0	
Copy to Clipboard	Manganese	5.435e04	192.6	5.250e04	1658	0	
Return	Mercuru	n	n	n	Π	<u> </u>	

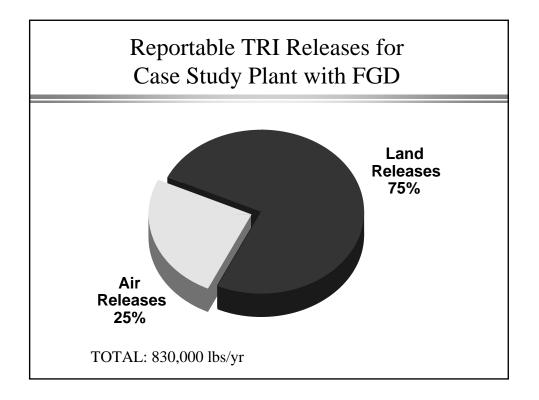

TRI Case Study

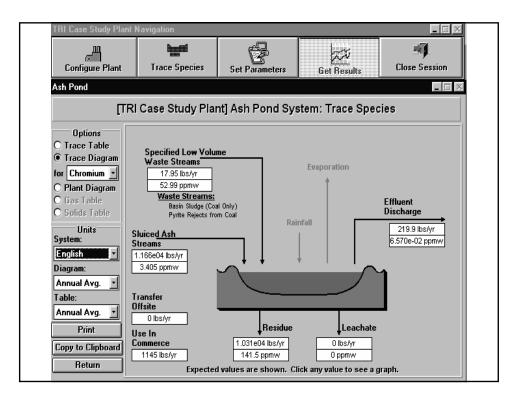

- 650 MW (net) facility
- Tangentially fired boiler
- Bituminous coal, 2.5 lb SO₂/MBtu
- Cold-side electrostatic precipitator
- Dry flyash disposal on-site
- Zero wastewater discharge
- 65% capacity factor

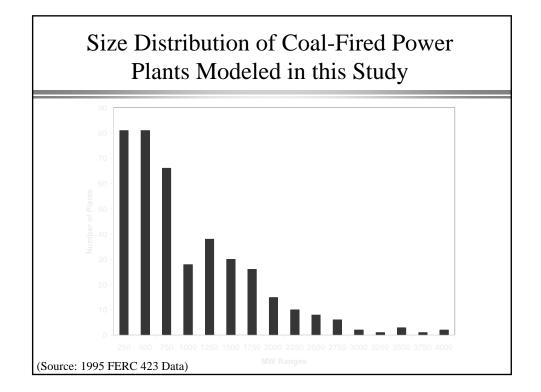

Summary of Reportable TRI Releases for Case Study
(650 MW, 65% CF, Zero Wastewater Discharge)

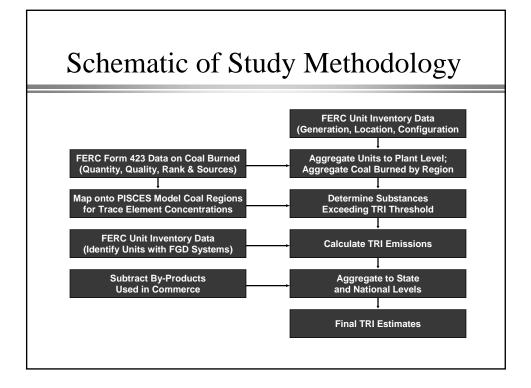

Chemical	Air Releases	Land Releases	Total Releases
Hydrochloric Acid	2,000,000	0	2,000,000
Sulfuric Acid	890,000	0	890,000
Barium	910	250,000	250,000
Hydrogen Fluoride	160,000	0	160,000
Manganese	190	60,000	60,000
Zinc	470	58,000	59,000
Copper	220	55,000	55,000
Chromium	250	49,000	49,000
Nickel	200	43,000	43,000
Arsenic	1,100	25,000	27,000
Total	3,100,000	540,000	3,600,000

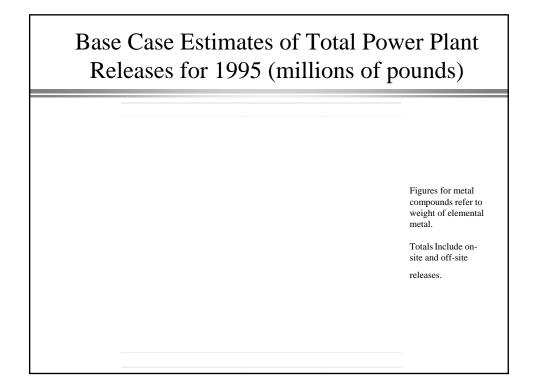


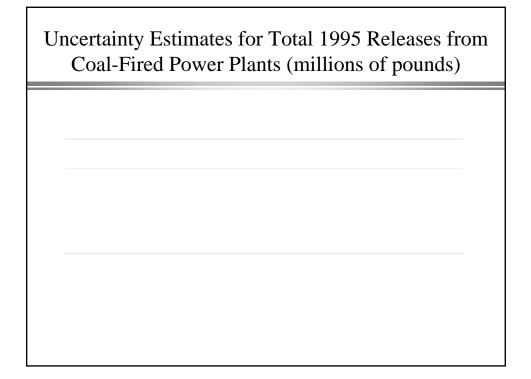




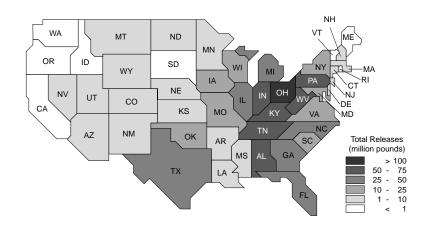


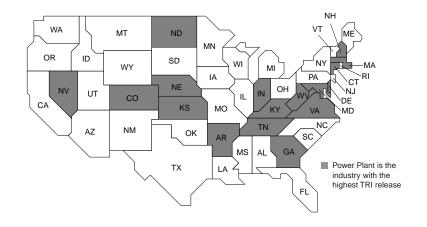


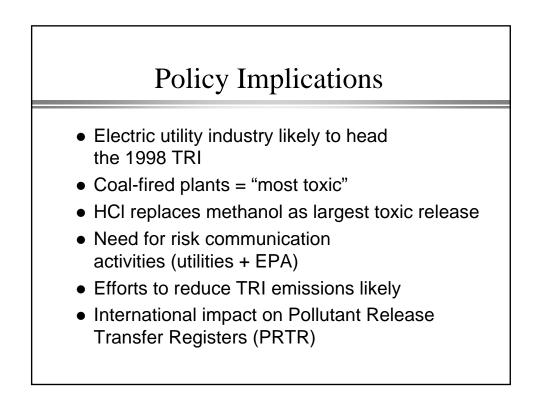



Summary of Reportable TRI Releases for Case
Study (650 MW, 65% CF, NPDES Discharge)

Chemical	Air Releases	Land Releases	Water Releases	Total Releases
Hydrochloric Acid		0	0	2,000,000
Sulfuric Acid	890,000	0	0	890,000
Barium	910	230,000	17,000	250,000
Hydrogen Fluoride	160,000	0	0	160,000
Manganese	190	58,000	1,700	60,000
Zinc	470	57,000	1,300	59,000
Copper	220	55,000	1,400	56,000
Chromium	250	48,000	930	49,000
Nickel	200	41,000	1,900	43,000
Arsenic	1,100	23,000	2,700	27,000
Total	3,100,000	510,000	27,000	3,600,000







Base Case Estimates of TRI Releases from Coal-Fired Power Plants for 1995

States Where Power Plant Releases Dominate Other Industries (1995)

