A professional master’s degree with a firm foundation in engineering, aligned with new discoveries in energy science and technology, attuned to sustainability and the environment, and informed by economics and policy.
Do you want to be more than a spectator in the energy challenges of today and tomorrow?

Are you interested in questions like:

- What is the underlying science and technology of energy harvesting?
- How can we quantitatively compare energy technologies including efficiency, sustainability, and life cycle cost?
- Which renewable energy technologies are most promising for a secure and environmentally benign post-fossil fuel era?
- What factors to include in a rational energy policy? (regional / national / global)
- How will energy be stored in the future?
- How important is efficient energy generation / distribution vs. reduced energy demand and increased efficiency of use?
- What are the evolving roles for nuclear, natural gas, clean coal and coal-to-liquid fuels in relation to solar, wind, geothermal, hydro, biomass, …?
- Which renewable energy limitations will be solved by new science, by better technology, or by more effective policy?

Energy, Science, Technology and Policy

ESTP is an interdisciplinary professional master’s degree for students who seek a distinctive engineering degree that is aligned with new discoveries in energy science and technology, attuned to sustainability and the environment, and informed by economics and policy.

Full-time students with an undergraduate degree in engineering or the sciences will complete the 96-unit ESTP master’s degree in two semesters of coursework. Graduates will be prepared for positions of responsibility in utility companies and energy suppliers, alternative and renewable energy companies, power generation and distribution equipment companies, energy intensive manufacturing, consulting companies, NGOs, non-profits, government and academia.

Innovative Curriculum

ESTP students take four core courses (figure 1) spanning the topics of energy. Your required and elective energy-related courses are influenced by choice of disciplinary concentration in:

- Chemical Engineering
- Civil & Environmental Engineering
- Electrical & Computer Engineering
- Engineering & Public Policy
- Materials Science & Engineering
- Mechanical Engineering

Selections of graduate-level breadth electives complete the coursework.

Figure 1

Energy Conversion and Supply

Energy Demand and Utilization

Energy Policy and Economics

Energy Transport and Storage

Four Core Courses: