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1 Motivation

It has been shown that most legged animals have a normal-
ized “relative leg stiffness” in the vicinity of 10, regardless
of size or morphology [1, 2]. The existence of this approxi-
mately universal constant of animal and human locomotion
remains a mystery and any partial or complete explanation
for it would likely provide basic knowledge useful for the
field of legged locomotion.

2 State of the Art

One approach in the field of legged locomotion is to use the-
oretical models and analysis to provide basic knowledge [1].
One particular group of these models with rotary hip torque
and radial leg damping has demonstrated a greater degree
of robust stability and biological relevance. The previously
developed Clock Torqued Spring-Loaded Inverted Pendu-
lum [3] and Torque-Actuated Dissipative Spring Loaded In-
verted Pendulum [4] both have a controlled hip torque as
well as leg damping and are fully asymptotically stable. Re-
cently, a simplified model of locomotion with hip forcing
and leg damping called the Hip-actuated SLIP [5] has been
developed and analyzed to study the effects of forcing and
damping on the stability of locomotion. An important next
step would be to use these hip actuated models to explain the
near universality of relative stiffness in animal locomotion.

3 Approach

We analyze the simple Hip-actuated SLIP [5] model to de-
termine how the stability of locomotion and the energetic
cost of locomotion relates to the relative stiffness. Here, as
in [1], we define the relative stiffness to be krel =

kl0
mg , where

k is the stiffness of the leg, l0 is the resting leg length, m
the mass, and g is the constant acceleration due to gravity.
By understanding how locomotion stability and energetics
might change with respect to relative stiffness, we might
better understand why a nearly universal range of relative
stiffness values are selected for animal locomotion, despite
a very large diversity of animal size and morphology.

4 Current Results

We have found that there exists an upper limit of acceptable
values of relative stiffness for which fully stable locomotion
solutions exist. As shown in Fig. 1, we find no stable loco-
motion when the relative stiffness is greater than 30. Further,
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Figure 1: (a), The stable parameter region (shaded area) of
Hip-actuated SLIP. (b), The average power of the fixed
points within the stable parameter region. Here the av-
erage forward speed is maintained at

√
gl0. The hip

torque is scaled by a factor of mgl0 and average power
by mg

√
gl0.

there exists an optimal value of relative stiffness between 10
and 15, as shown in Fig. 1. When the relative stiffness devi-
ates from the optimal point in either direction, the range of
hip torque values that yield stable locomotion shrinks. Fur-
ther, the energetic cost of locomotion increases when rela-
tive stiffness deviates from the optimal value.

5 Best Possible Outcome

Overall, we hypothesize that a relative stiffness close to 10
may be optimal for both the energetic cost of locomotion and
the underlying open-loop stability of locomotion. In previ-
ous work analyzing the Hip-SLIP model of locomotion [5],
we discovered that the rotary-based hip-torque mechanism
may be one explanation for a basis of robust stability of
locomotion exhibited by animals and rotary-based robots.
We hypothesize that this basic mechanism persists in more
complex locomotion systems containing multiple forcing el-
ements and feedback control, and so we predict that prefer-
ences for relative stiffness in animals would be similar to
those discovered for the Hip-SLIP model.
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