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1. Motivation  
Mathematical modeling is an excellent tool for 
analyzing passive dynamic walking. There are two 
limitations: (1) impact-based models and simplified 
friction models, which cause the bipedal walking 
model discontinuous, and (2) lack of experimental 
validation. In this work, we develop a continuous 
model of passive dynamic walking, in which the 
Hunt-Crossley contact model and the LuGre friction 
model were used to represent the normal and 
tangential ground reactions continuously. A physical 
passive walker was built to validate the proposed 
mathematical model. A traditional impact-based 
passive walking model was also used as a reference 
to demonstrate the advancement of the proposed 
passive dynamic walking model.     
 
2. A continuous bipedal walking model 
Figure 1 shows a schematic of the passive walking 
model. The Hunt-Crossley contact mode, an 
extension of the Hertz contact model was used to 
include hysteretic damping in the contact forces. The 
friction between the foot and the surface is modeled 
using the LuGre friction model. The final state space 
model has ten states that are described in [1]. 
 

 
Figure 1. Model diagram 

 
3. Results and conclusions 
Figure 2 is the physical walker built with sensors 
attached. Figure 3 compares the proposed and 
impact-based models with the experimental 
measurements. Results show that the proposed 
model can predict both the trends and magnitudes of 
the gait parameters, while the impact-based model 
can only match the trend. More importantly, the 
proposed model avoids the theoretical problems of 
non-smooth systems.  
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Figure 2. Physical bipedal walking robot 

Figure 3 Comparison between experimental walker, 
proposed model, and impact-based model. 
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1. Motivation  
Passive dynamic walking can be stable with the 
proper combination of the parameters and initial 
states. However, the stability region is small and has 
an obscured geometry. The passive walking model, 
discussed in [1], was used to analyze the stability 
with Lyapunov exponents (LEs) and the geometry of 
the basin of attraction was determined. A novel 
method was created to determine the 2D projection 
of the Basin Of Attraction (BOA) of the model. 
 
2. Stability analysis via Lyapunov exponents 
LEs are a valuable tool for analyzing the asymptotic 
behaviour of non-linear systems. They are described 
as the “average exponential rates of divergence or 
convergence of nearby orbits in phase space.”. The 
exponents are invariant to the initial conditions, and 
the signs of LEs indicate the system stability, i.e., 
negative exponents indicates the exponential 
stability of the dynamic systems.  LEs are calculated 
using the model [1] and the detailed procedure is 
discussed in [2]. Due to the obscured geometry of 
the BOA, an algorithm finding the edge of the basin 
of attraction is developed [2] and used here. 
 
3. Results and conclusions 
Figure 1 shows the limit cycle walking projected in 
the phase plane. The LEs calculated for one case is 
shown in Table 1. The negative sign shows that the 
bipedal model is exponentially stable. The geometry 
and the areas of BOA are shown in Figures 2 and 3. 
The geometry of BOA explains the difficulties in 
producing limit cycle walking and the size of BOA 
is sensitive to the location of mass center. Overall 
the proposed LE-based method can provide 
significant insights into bipedal walking stability. 
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Table 1. LYAPUNOV EXPONENTS. 
 LE  STD % STD 

1 0 ± 0 0% 
2 −0.01341 ± 0.00013 0.97% 
3 −2.25988 ± 0.00018 7.97 × 10ିଷ% 
4 −2.25958 ± 0.00013 5.75 × 10ିଷ% 
5 −3.88372 ± 0.00008 2.06 × 10ିଷ% 
6 −69.30363 ± 0.00018 2.60 × 10ିସ% 
7 −80.29741 ± 0.00024 2.99 × 10ିସ% 
8 −236.70207 ± 0.00022 9.29 × 10ିହ% 
9 −29346.903 ± 0.043 1.47 × 10ିସ% 

10 −7413.16 ± 0.20 2.70 × 10ିଷ% 
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Figure 1. Limit cycle walking 

Figure 2. BOA at one of the Poincaré section. 

Figure 3. Areas of BOA with various mass distributions. 


