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1 Motivation

Humans and animals show a remarkable level of proficiency
in their ways of locomotion. They exploit the dynamics of
the whole body to perform a variety of motions such as jump-
ing and running. Hereby, the elasticity in the muscles and
tendons carries a key role in enabling robust, dynamic and en-
ergy efficient locomotion [1]. At the Autonomous Systems
Lab, we have developed the robotic leg ScarlETH [2] as a test
bed to study the mechanism that can be observed in nature.
The bio-inspired articulated leg is electrically driven by highly
compliant Series Elastic Actuators (SEA) [3] in the hip and
knee joints. The properties of the springs in the joints can be
compared to the elasticity of the tissue in nature. Our goal is
to maximize ScarlETH’s maneuver performance and locomo-
tion efficiency by developing controllers that excite the robot
in step with the dynamics of the system.

2 State of the Art

Optimal control of legged robots is challenging due to the high
degrees of freedom and highly nonlinear non-smooth dynam-
ics of the systems. We have seen many different approaches,
e.g. neural networks [4], however, most of which are restricted
to simulations. In a closely related work [5], a genetic al-
gorithm is used to evolve a guided vertical jump for a simu-
lated leg with a compliant knee joint. Directly applying the
simulation-based trajectories to the physical system is usually
unsuitable as modeling errors can typically not be prevented.
As a result, a feedback controller is necessary which leads to
suboptimal performance as an artificial pattern is forced on
the system. As an alternative, reinforcement learning can be
applied online on a real robot and promising results have been
presented, e.g. in [6]. While classic reinforcement learning
algorithms do not scale suitably to high dimensions, recent
developments have overcome this limitation with direct learn-
ing of a control policy from trajectory rollouts [7].

3 Own Approach

We generate the control policies with reinforcement learning
based on the direct policy learning method Policy Improve-
ment with Path Integrals (PI2) [8]. This algorithm has shown
to perform well in high-dimensional continuous state spaces
and does not rely on the computation of gradients which are
sensitive to noise. The control policy is parameterized with
gaussian basis functions which are updated in the learning
procedure using random exploration rollouts.
We extend the application of PI2 to highly dynamic maneu-
vers and find actuator trajectories that exploit the inherent me-
chanical properties of the system. For periodic hopping, we
introduce a time-independent policy with which the algorithm
can find an optimal execution frequency. In order to overcome
the model discrepancies, we deploy a combination of simu-
lation and hardware based learning. The simulation allows
to quickly converge to a trajectory suitable for the dominat-
ing dynamics of the system while the optimization on the real
robot compensates for the model inaccuracies.
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Figure 1: Learning progress of the vertical jump

4 Current Results

We have implemented our approach for different learning
tasks. In a first task, the goal is to learn single jumps from a
resting posture with maximal height while keeping the touch-
down offset (jump distance) to a minimum. The control pol-
icy consists of the parameterized desired motor velocity tra-
jectories for hip and knee motor with a total of open 10 pa-
rameters. Figure 1 shows the progress of the two step learn-
ing framework starting from a manually tuned initial policy
(black). While the simulation based policy determined the
main form of the trajectory (blue), the optimization on the
hardware shows a further significant improvement (red). The
algorithm has converged to a characteristic countermovement
jump in which the actuators are pre-activated and the body is
first lowered to temporarily store energy in the joint springs.
This energy is then released during an explosive upwards mo-
tion before lift-off. In exercise physiology, this process has
been shown the be the underlying mechanisms for maximal
jump performance [9].
We have extended the purely vertical jump to learn jumps with
a defined height and different distances. By punishing slip of
the foot during the thrust phase in the cost function, ScarlETH
learns to increase the vertical force on the foot in order to
achieve a higher horizontal forces that propel the system to
maximal jump lengths. We have created a motion library with
different jump lengths and interpolation allows us to reach in-
termediate lengths with high precision. We observe a different
jump capability in forward and backward direction which can
be attributed to the segmented leg design.
In another task, the control parameters of a robust periodic
hopping controller are learned to maximize energy efficiency.
Based on a time-independent control policy, the algorithm is
shaping a non-linear virtual spring characteristic while main-
taining the robustness of the controller.
We have summarized the experiments and the learning
progress in a video: http://youtu.be/xw6pSal-OgI

5 Best Possible Outcome

In the future, we will use the presented framework to learn
jumping, hopping and running maneuvers on our quadruped
robot StarlETH [10].



References

[1] R. M. Alexander, “Three Uses for Springs in Legged
Locomotion,” The International Journal of Robotics Research,
vol. 9, no. 2, pp. 53–61, 1990.

[2] M. Hutter, C. D. Remy, M. A. Hoepflinger, and R. Siegwart,
“ScarlETH: Design and control of a planar running robot,” in
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sep. 2011, pp. 562–567.

[3] G. A. Pratt and M. M. Williamson, “Series elastic actuators,”
in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 1995, pp. 3137–3181.

[4] J. Helferty and M. Kam, “Adaptive control of a legged robot
using an artificial neural network,” in IEEE International
Conference on Systems Engineering. IEEE, 1989, pp.
165–168.

[5] S. Curran and D. E. Orin, “Evolution of a jump in an articulated
leg with series-elastic actuation,” 2008 IEEE International
Conference on Robotics and Automation, pp. 352–358, May
2008.

[6] R. Niiyama, K. Kakitani, and Y. Kuniyoshi, “Learning to
jump with a musculoskeletal robot using a sparse coding of
activation,” ICRA, vol. 0, no. 1, pp. 30–31, 2009.

[7] S. Schaal and C. G. Atkeson, “Learning control in robotics,”
IEEE Robotics & Automation Magazine, no. June, 2010.

[8] E. A. Theodorou, J. Buchli, and S. Schaal, “A generalized
path integral control approach to reinforcement learning,”
The Journal of Machine Learning Research, vol. 11, pp.
3137–3181, 2010.

[9] D. A. Chu, Jumping Into Plyometrics. Human Kinetics, 1998.

[10] M. Hutter, C. Gehring, M. Bloesch, M. A. Hoepflinger,
C. D. Remy, and R. Siegwart, “StarlETH: A compliant
quadrupedal robot for fast, efficient, and versatile locomotion,”
in Proceedings of the International Conference on Climbing
and Walking Robots (CLAWAR), 2012.


