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How do social systems make decisions with no single individual in control? We

observe that a variety of natural systems, including colonies of ants and bees

and perhaps even neurons in the human brain, make decentralized decisions

using common processes involving information search with positive feedback

and consensus choice through quorum sensing. We model this process with an

urn scheme that runs until hitting a threshold, and we characterize an inher-

ent tradeoff between the speed and the accuracy of a decision. The proposed

common mechanism provides a robust and effective means by which a decen-

tralized system can navigate the speed-accuracy tradeoff and make reasonably

good, quick decisions in a variety of environments. Additionally, consensus

choice exhibits systemic risk aversion even while individuals are idiosyncrati-

cally risk neutral. This too is adaptive. The model illustrates how natural sys-

tems make decentralized decisions, illuminating a mechanism that engineers

of social and artificial systems could imitate.
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Introduction

Ants and bees appear to rely on decentralized-decision making for critical choices. For exam-

ple, in choosing a new nest site—a decision that has huge implications for the survival of the

group—decisions must be made without central control and with no single individual evaluat-

ing the total available information (1) or any one individual making direct comparisons of the

available options (2–5). Even though individual agents follow simple rules that allow them to

uncover very limited and local information, the colony as a whole must efficiently integrate the

resulting flow of information into a high-quality, final decision (6–10).

Consider how a swarm of honey bees, Apis mellifera, chooses a new hive location (8–14).

When a swarm abandons the old hive, it temporarily gathers at a tenuous location. Approx-

imately 5% of the bees are scouts, and after exploring the surrounding area for possible hive

sites, a scout may perform a waggle dance that indicates the location of the site they discov-

ered (15, 16). The likelihood of performing a waggle dance, and its duration, depends on the

quality of the site that was investigated (9,13,14). The waggle dances serve to recruit additional

scouts to further investigate the “advertised” sites. The longer the dance, the more likely that

new scouts will investigate the site and bring back independent evaluations. Over time, posi-

tive feedback loops are generated (8, 13) and once the number of scout bees at a particular site

reaches a quorum threshold (of around thirty to forty bees), those scouts return to the swarm

and lead it to the new site (12).

Leptothorax (Temnothorax) albipennis ants choosing a new nest site behave similarly (1, 6,

17). When a scout finds a higher quality site, it quickly returns to the old nest site and recruits

a nest-mate by tandem running, a tedious process that entails the scout teaching the recruit the

route to the new site (18–21). The speed of recruitment is tied to the quality of the site (1, 3),

with better sites inducing quicker responses. As before, positive feedback arises when recruits
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become recruiters. Finally, when the number of ants at the new site reaches a quorum threshold,

the recruiting ants switch from tandem running to the much faster process of carrying their

remaining nestmates from the old to the new site (22).

Other social organisms make collective decisions with mechanisms reminiscent of ants and

bees. Social spiders coordinate their emigrations to a new nest (23) with silk draglines allowing

positive reinforcement of existing routes much like pheromone trails of ants (23–25). Cock-

roaches are more likely to remain in shelters when other cockroaches are nearby, leading to a

collective choice of a single home (26,27). Even bacteria share information and detect quorums,

allowing for collective decisions regarding sporulation, virulence, and gene exchange (28).

There is some speculation that primate brains use a similar decentralized-decision mecha-

nism. No single neuron is solely responsible for the brain’s decision. In a visual discrimina-

tion task, for example, a subset of specialized neurons integrates sensory signals from other

neurons and allows the brain to make a decision to trigger other neurons to initiate a motor

response (29). Complex, decentralized information processing can be achieved with a cell-

assembly, a recurrent circuit of neurons that becomes active when stimulation spreads with

positive feedback (30, 31). Neurons are generally understood to accumulate information and

fire when the stimulus hits a threshold in order to implement a decision (32–34). In this regard,

the primate brain may function analogously to a colony of social insects (35–37).

Similar mechanisms may even be at work in large-scale social processes (38). For example,

consider the choice of a personal MP3 player. Consumers who purchase such players “adver-

tise” them when they use them (particularly if the players have some distinctive feature, for

example, white ear buds). Moreover, consumers who enjoy their players are more likely to use

them. Someone new to the MP3 market may observe the players that others use, and purchase

based on these observations. This kind of direct marketing is often a major driver of consumer

demand for new products, especially when competing brands have not yet established distinct
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reputations (39). At some point in the evolution of the market, however, a critical mass of

consumers may choose the same product and fundamentally change the market dynamics (say,

by adopting a particular technological innovation, by fueling economies of scale in the pro-

duction process, or by enticing suppliers or producers of complements to enter into exclusive

agreements) so that only the leading product can survive in the market (40, 41).1

Any decision mechanism must trade off exploring new options versus exploiting the best

option known to date. While further exploration helps identify superior options, it comes at the

cost of not acting on a known option. Thus, too much exploration may lead to indecisiveness and

thus harm fitness, while too little may imply the acceptance of sub-optimal choices. Given the

inherent tradeoff between speed and accuracy, the diffusion model of decision making (34)—

which does not incorporate positive feedback in the accumulation of evidence—is efficient for

binary choice, but it requires agents to compare the options, or at least to inhibit activity for

competing options (35, 44). When this is not possible, positive feedback in the process of

exploration may prove useful for making reasonably good, quick decentralized decisions.

The Model

We now present a model of a two-part process for decentralized-decision making, involving

search and recruitment with positive feedback in the first phase and quorum detection to trigger

a consensus choice2 (without centralized processing) in the second. First, individual agents

randomly search over the set of feasible options, biased by the quality of the options revealed

during previous searches. Then, a final consensus choice is triggered when a quorum of agents

investigating any one particular option forms. We capture this process with an urn scheme that

1Similarly, people collaborating to make a group decision also tend to share information that favors options
that already have popular support while hesitating to share information that favors unpopular options (42), and
they commonly reach a consensus choice through plurality voting (43).

2A consensus choice is a choice that the entire system must abide (45), but of course it is not necessarily a
unanimous choice via “consensus sensing” (10).
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runs until hitting a threshold.

Search and Recruitment

Agents (scouts) explore one of many possible options and then return home to recruit additional

agents to further explore that option. A Poisson process for each agent governs its trips home,

and the recruitment of additional scouts on each trip depends on the quality of the explored

option.

We assume that there are C possible options, and that some number of agents wtc investigate

each c ∈ C at any time t. We refer to wtc as the weight on c at time t. All weights are initially

set to the same, positive value w0. Each agent is equally likely to return home at any time, and

when it does, it recruits additional agents to join it and further explore the same option. The

chance of an agent recruiting for option c at time t is simply proportional to the weight wtc. Each

option has a set of immutable attributes that defines its quality, and the extent of recruitment for

c depends on its quality, vc. Agents investigating c will recruit vc additional agents to continue

exploring it when they return. We think of the number of recruits per return trip home as an

ordinal measure of the quality of c.

Quorum Detection

The search process above generates a distribution of agents investigating each possible option

at any given time. Given the decentralized nature of these systems, there must be some feasible

trigger that ends the search process and finalizes the consensus choice. One possible solution

to this problem would be to have the search probabilities converge to zero or one—that is, have

all of the probability concentrated on a single option. Forcing such a unanimous decision on

the system is problematic, as it may form extremely slowly, perhaps leading to a serious loss

of fitness. Moreover, we have empirical evidence, at least in the case of honey bees (46, 47),

5



ants (6), and stickleback fish (48, 49), that unanimity is not what triggers a consensus choice.

Instead, a final choice is made once the number of agents in favor of a particular option reaches

a quorum (45, 50).

Based on the above arguments, we incorporate into our model a quorum threshold, τ , that

triggers—as the final decision—any option that is being investigated by at least that number of

agents. The level of the quorum threshold has important implications for the decisions that arise

in the system. If the threshold is set too high, then a quorum may not be reached for a long time,

resulting in prolonged inaction. If the threshold is set too low, then a quorum might be achieved

for a relatively low-quality option. Thus, the optimal quorum threshold depends on a tradeoff

between speed and accuracy in the decision-making process. From a normative standpoint, a

good threshold allows the system to withstand various transients in the probability distribution

while still remaining responsive to the acquired information in a timely manner.

The Urn Scheme

We use a simple (Polya) urn process to model this decision mechanism. This process is easy to

visualize. Assign to each of the C options a unique color, and place w0 balls of each color into

an urn. The number of balls of a particular color in the urn corresponds to the number of agents

investigating the associated option. Each ball has the same rate at which it may be randomly

drawn from the urn. When a ball with color c is drawn, it is immediately placed back into the

urn along with vc identically-colored balls. This process continues until a threshold number of

balls τ is reached. The evolution of the mix of balls over time will determine the behavior of

this decision process.
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Analytical Results

We can precisely characterize how the composition of balls in the urn evolves over time. Lemma

3.1 of (51) gives us the distribution of balls of each color at any time t (in the absence of a

threshold for stopping the process).

Lemma 1. The moment-generating function φc(t, s) = E
[
esw

t
c
]

is given by φc(t, s) =
(

evc(s−t)

evc(s−t)−evcs+1

)w0

vc

(where s is the argument of the moment generating function).

Proof. We can describe this Polya process with a diagonal C × C matrix with the vc values

along the diagonal and 0’s elsewhere. The evolution of the number of balls of a given color

is independent of the evolution of other colors (until the threshold is hit). Thus, Lemma 3.1

of (51) directly applies.

In principle, this moment generating function fully characterizes the distribution of weights, wtc,

where s is the argument of the moment-generating function. In practice, however, calculating

the likelihood of hitting a threshold τ at a given time t is complicated.

An asymptotic result is simple to obtain. Suppose the threshold τ is infinite so that the Polya

process can run forever. Eventually, almost all of the weight converges on the choice with the

highest quality.

Theorem 1. If there is a unique optimal choice c∗ = argmaxc vc, then

lim
t→∞

wtc∑
j w

t
j

=

{
1 if c = c∗

0 otherwise.

Proof. As t→∞, wtc
evct

D−→ Gamma
(
w0

vc
, vc

)
(see Theorem 3.1 of (51)).

In the infinite time limit, we recover the unanimity decision rule, and the probability of a mistake

(i.e., selecting an option other than c∗) vanishes.
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While the asymptotic properties of the urn process are informative, feasible decentralized

systems must make decisions in finite time and require a finite threshold. For any given thresh-

old τ , we would like to describe the probability pc(τ) of selecting each possible choice c as well

as the waiting time T (τ) until the decision is made.

We can characterize the waiting time Tc(τ) until the number of agents exploring option

c would hit the threshold τ (independent of recruitment for other options). Let λ denote the

intensity of the Poisson process for each agent’s return home.

Lemma 2. The waiting time Tc(τ) has the

Hypoexponential(λ0, λ1, . . . , λn) distribution with

λi =
(
w0 + ivc

)
λ for all i (1)

and

w0 + nvc < τ ≤ w0 + (n+ 1)vc, (2)

which implies

n = ceiling

(
τ − w0

vc

)
− 1. (3)

Proof. We have an Exponential(λ) distribution for the time until a given agent returns home,

and thus at any time t we have an Exponential(wtcλ) distribution for the time until additional

agents are recruited to explore option c. Thus, the waiting time Tc(τ) until the number of agents

exploring option c hits the threshold τ is the sum of independent, exponentially-distributed

variables with arithmetically increasing parameters.

The hypoexponential density function is f(t) =
∑n

i=0Ci,nλie
−λit with Ci,n =

∏
j 6=i

λj
λj−λi .

Taking n and λ1, . . . , λn to be functions of c and τ (given by Equation 1 and Equation 3), this

gives us the probability density function fc,τ (t) for each Tc(τ).

We can use the density functions for the Tc(τ) variables to get at the quantities of interest in

the system.
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Theorem 2. The waiting time T (τ) distribution and the choice probabilities pc(τ) are deter-

mined by the Tc(τ) distributions given by Lemma 2. The time until a decision is made by the

decentralized system is T (τ) = minc Tc(τ). The probability that the eventual decision is for

choice c is pc(τ) = Pr [Tc(τ) < minc′ 6=c Tc′(τ)].

Proof. The urn process runs until the first time that balls of any one color accumulate to the

threshold, and the probability of selecting any given choice is simply the probability that balls

of the corresponding color reach that threshold first.

Theorem 2 characterizes the (distribution of) time(s) it takes to make a decision and the

choice probabilities as functions of the quorum threshold, given any menu of possible choices.

We can, of course, calculate the minimum of a set of random variables, as the theorem requires

us to do, but alas there is no simple, closed-form expression for this. Given the lack of a closed-

form solution, we use computation to gain additional insight about this process.

Computational Results

To explore the effects of parameter variation and the introduction of noise into the process, we

run computational experiments of the proposed mechanism.While the process described above

runs in continuous time, we identify discrete time steps every time an agent returns home to

recruit (i.e., every time a ball is drawn from the urn). Let the index µ count the number of

agents that have returned home for a visit, and denote the time when the µth agent returns home

as tµ. When there are w =
∑

cw
tµ
c agents exploring the set of possible options, the expected

time until the next agent returns home is 1
wλ

. Setting λ = 1, which normalizes the units of time,

we have

E[tµ+1 − tµ |w] =
1

w
.
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We generally set w0 = 1 for simplicity. Each computation reports the average time until deci-

sion T (τ) and the probability of a mistake p∼c∗(τ) = 1 − pc∗(τ) as a function of the quorum

threshold τ .3

We see the tradeoff between speed and accuracy across varying quorum thresholds by view-

ing the expected time until decision and the mistake probability as parametric functions of the

threshold. Allowing the threshold to vary, we have a Pareto-efficient frontier along which the

speed of the decision mechanism cannot be improved without sacrificing accuracy (and vice

versa).

Parameter Variation

Increasing the number of possible options C makes for a less accurate decision, but a slightly

quicker one as well.4 More options provide more opportunities for suboptimal options to accu-

mulate a quorum, leading to more mistakes and less decision time. But then, in order to reach

the same level of accuracy, the system needs a higher threshold, and this increases the time

required to make the decision (as shown in Figure 1). Intuitively, more possible options make

for a more difficult decision.

Increasing the quality of the optimal choice, vc∗ , makes the decision easier (as shown in

the left plot in Figure 2).5 As the quality of the optimal choice increases, the decision can be

made faster and with less chance of error. Recruitment becomes more effective, so the agents

accumulate at this option more quickly and the system achieves the quorum sooner.

Increasing the quality of a suboptimal choice, however, does not have such straightforward

consequences. It has three effects: 1) it makes the decision process quicker, 2) it increases the

3We use a Monte Carlo method based on 100,000 trials. These results are confirmed with numeric calculations
of the exact distributions in those cases where such computations are possible (typically, thresholds up to about
twenty).

4This is shown in the appendix in Figure S1.
5These Pareto frontiers are derived from simulations shown in Figure S2 and Figure S3.
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probability of selecting the suboptimal choice, and 3) it lowers the cost of making a suboptimal

decision. Thus, the net impact on the ultimate quality of the decision could go in either direction.

The right graph in Figure 2 shows that increasing the quality of a suboptimal option hurts the

accuracy of the decision that can be made within a given time.6

Noise and Risk Aversion

Assuming that each option has some absolute quality helped keep our model analytically tractable,

but we can extend the model by allowing the quality, vc, to be a random variable. At a concep-

tual level, we might think of the process of search as inherently noisy, as there could be natural

variation in agents’ perceptions of quality. Alternatively, we might think of the process of re-

cruitment as inherently noisy, with variation in the ability of agents to recruit other agents. In

either case, the formal treatment is the same. We can think of an option with noisier quality as

riskier.7

We compare the attractiveness of risky and safe options (i.e., options with the same expected

quality but more or less noise, respectively) in Figure 3, which shows that (for a fixed quorum

threshold of 100) the safe option is more likely to be selected than a risky option and it is

increasingly preferred to even riskier options. There is nothing special about the threshold of

100, and the result holds for almost all thresholds (possible exceptions being low thresholds

that can be reached by a single draw of the risky option, due to recruitment having discrete

increments), as shown in Figure S5.8 Thus, the decision mechanism exhibits a systematic degree

6We have assumed only an ordinal scale for choice quality (stronger recruitment indicates higher quality), so
we cannot judge whether the lower cost of selecting the suboptimal choice compensates for this loss in accuracy.

7One potential source of noise is in the perception of the quality of options when sampled across multiple
attributes. If the individual agents cannot investigate all attributes, they may produce a noisy estimate of overall
quality by sampling a single (or a few) attribute(s). We can associate random sampling of attributes with noise
in the overall quality of the option. If agents were to specialize in sampling particular attributes and were also
more likely to recruit their own type of specialist, then the dynamics of the decision mechanism would be more
complicated. Natural systems (e.g. a swarm of bees or a colony of ants) do not (to our knowledge) exhibit such
behavior, but it could perhaps arise in human-engineered systems.

8We prove in the appendix (Proposition 1) that the probability of selecting a safe option with quality vSafe = 1
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of risk aversion. The intuition behind this result is that the positive feedback in the search and

recruitment process allows small advantages to be self-reinforcing, so an option that consistently

appears relatively good fares better than one that occasionally appears either great or lackluster.

In a world with natural selection, where an entire population can be decimated if a risky choice

turns out badly, it may well be adaptive to use a decision mechanism that inherently favors

safer choices (52). Moreover, our mechanism permits the system’s consensus choice to be risk

averse even when individual agents are risk neutral. Thus, the system could simultaneously be

risk averse for systemic risk and risk neutral for idiosyncratic risk (when consensus choice is

not required), which would be evolutionarily adaptive (53).

Discovery and Disruption

We can enrich our model by allowing agents to discover the possible options on their own and to

be disrupted from search and recruitment by outside forces. We assume that a Poisson process,

with intensity βc, governs the discovery of each possible option c and that each agent has an

exponentially distributed lifetime for search and recruitment with hazard rate δ of disruption.

With discovery, a natural initial condition is w0 = 0, i.e., the urn is initially empty and agents

need to discover an option for recruitment to begin. The index µ for discrete time steps now

must count all events, i.e., every time an agent discovers a possible choice or falls prey to

disruption, as well as when an agent returns home to recruit. The expected time step becomes

E[tµ+1 − tµ |w] =
1

w(λ+ δ) +
∑

c βc
.

Figure 4 shows that decision speed and accuracy is fairly robust to the introduction of op-

tion discovery and disruption of search and recruitment. Increasing the rate of discovery (for

all options) speeds up the decision and reduces mistakes by limiting the sensitivity to initial

over a risky option with quality vRisky =
{
0, R−1

R ;R, 1
R

}
, for a quorum threshold of τ = R+1, is RB(R, 1+ 1

R )
(where B is the Euler beta function), which is an increasing function graphed in Figure S6.
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advantage, making it easier for the optimal choice to catch up when it gets discovered later on.

Increasing the rate of recruitment also speeds up the decision, but can lead to more mistakes by

reinforcing initial advantages (i.e., when a suboptimal option is discovered first). Increasing the

rate of disruption slows down the decision, yet it counteracts initial advantages, allowing the

optimal option more time to get ahead through stronger recruitment.9 In all cases, the quorum

threshold could be adjusted to efficiently navigate the new speed versus accuracy tradeoff. The

net effects, visible in Figure 4, are that increasing the rate of disruption harms the decision,

whereas increasing the rate of discovery or the rate of recruitment improves the decision. Thus,

even though recruitment introduces positive feedback that can reinforce suboptimal options, it

speeds up the decision process enough that at higher thresholds the system can make better,

quicker decisions.

Discussion

From ants (54) to bees (46) to neurons in the brain (55), a variety of systems productively

employ decentralized-decision mechanisms. Our model of decentralized decision making ab-

stracts beyond any one of these systems and aims to provide a deeper understanding of how

such mechanisms behave.

A Polya urn scheme running until it hits a finite threshold parsimoniously captures a decentralized-

decision mechanism in which agents gather local information about possible options through

search and recruitment with positive feedback, and the system then makes a consensus choice

when it detects a quorum in support of a particular option. Analytically, we characterized the

waiting time to make a decision and the choice probabilities for any quorum threshold, and we

identified an inevitable tradeoff between the speed and the accuracy of the decision. Numerical

experiments showed that the system’s ability to make reasonably good, quick decisions is ro-

9Figure S7 shows the distinct effects on mistake probability and expected time until decision.
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bust to parameter variation, noise, and disruption. Moreover, the computation reveals that the

decision mechanism naturally exhibits systemic risk aversion.

Additional assumptions about the cost of waiting and the relative values of possible options

would be necessary to evaluate the exact tradeoff between a decision’s speed and accuracy.

At the extremes, an infinite quorum threshold requires infinite waiting time, and a minimal

quorum threshold corresponds to uniformly random choice, so the optimal threshold lies in

between. The optimal threshold depends on the particular decision context, and there is some

evidence that natural systems tune their thresholds in response to the decision context to make

better tradeoffs between speed and accuracy (17, 56).

The fact that many natural systems independently evolved similar decentralized-decision

mechanisms suggests that such mechanisms may represent a robust solution to the general

problem of making good, group-level decisions in the absence of centralized control. The

decentralized-decision mechanism we described here may also prove useful in the design of

new social and artificial systems. Novel applications range from improving human organiza-

tions to applying such techniques to artificial systems like algorithmic search and the control of

swarms of robots or networked computers.

Materials and Methods

The source code for the simulation will be made available online.
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Figure 1: Pareto frontiers of mistake probability and expected waiting time with 2 and 4 options.
The optimal choice has quality vc∗ = 2, whereas the suboptimal choices have quality vc = 1 for
all c 6= c∗. As an artifact of specifying recruitment (i.e., choice quality) so precisely, there are
thresholds for which the decision is both slower and less accurate than for a threshold one unit
smaller. The corresponding points on the graph are clearly not on the Pareto frontier, but they
are shown for completeness.
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Figure 2: Pareto frontiers of mistake probability and expected waiting time with varying choice
quality. Left: Varying optimal choice quality. There are C = 2 possible choices, and the quality
of the suboptimal choice is v∼c∗ = 1. Right: Varying suboptimal choice quality. There are
C = 2 possible choices, and the quality of the optimal choice is vc∗ = 4.

0.500
0.525
0.550
0.575
0.600

2 4 6 8 10
Potential reward for risky option

P
ro

b 
sa

fe

Figure 3: Probability of selecting the safe option over a risky option with the same expected
quality, for a fixed quorum threshold of 100. There are C = 2 options. The safe option has
quality vSafe = 2. The riskiness of the risky option is indexed by the potential reward R such
that the quality of the risky option is vRisky =

{
1, R−2

R−1 ;R,
1

R−1

}
, i.e., it has expected quality 2

and variance R− 2.
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Figure 4: Pareto frontiers of mistake probability and expected waiting time with varying rates
of discovery, recruitment, and disruption. There are C = 2 options. The optimal choice has
quality vc∗ = 2, and the suboptimal choice has quality v∼c∗ = 1. The rate of discovery βc is the
same for both options, and it varies across the columns. The agents’ hazard rate of disruption δ
varies across the rows. The agents’ rate of recruitment λ varies within each panel.

23



Supplementary Materials

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Threshold

P
ro

b 
no

t c
*

Options

2
4

0

1

2

0 25 50 75 100
Threshold

E
[T

im
e]

Figure S1: Mistake probability and expected waiting time, as a function of the quorum threshold
with 2 and 4 possible options. The optimal option has quality vc∗ = 2, whereas suboptimal
options have quality v∼c∗ = 1.

24



0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100
Threshold

P
ro

b 
no

t c
*

Quality

vc* = 2

vc* = 3

vc* = 4

0

1

2

0 25 50 75 100
Threshold

E
[T

im
e]

Figure S2: Mistake probability and expected waiting time as a function of the quorum threshold,
varying the quality of the optimal choice. There are C = 3 options, and the quality of the
suboptimal choices are vc = 1 for c 6= c∗.
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Figure S3: Mistake probability and expected waiting time as a function of the quorum threshold,
varying the quality of the suboptimal choice. There are C = 2 options and the quality of the
optimal choice is vc∗ = 4.
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Figure S4: Mistake probability and expected waiting time as a function of the quorum thresh-
old in noisy and noiseless environments. There are C = 2 options. In the noisy condition,
vc∗ = {1, 25%; 2, 50%; 3, 25%} and v∼c∗ = {0, 25%; 1, 50%; 2, 25%}. In the noiseless condi-
tion, vc∗ = 2 and v∼c∗ = 1. The decision mechanism is robust to noise.
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Figure S5: Probability of selecting a safe option with quality vSafe = 2 over a risky one with
quality vRisky = {1, 50%; 3, 50%}, as a function of the quorum threshold.
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Figure S6: Probability of selecting a safe option with quality vSafe = 1 over a risky one with
quality vRisky =

{
0, R−1

R
;R, 1

R

}
, for a quorum threshold of τ = R + 1. The exact expression is

RB(R, 1 + 1
R
), where B is the Euler beta function.
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Figure S7: Mistake probability and expected waiting time as a function of the quorum threshold,
with varying rates of discovery, recruitment, and disruption. There are C = 2 options. The
optimal choice has quality vc∗ = 2, and the suboptimal choice has quality v∼c∗ = 1. The rate of
discovery βc is the same for both options, and it varies across the columns. The agents’ hazard
rate of disruption δ varies across the rows. The agents’ rate of recruitment λ varies within each
panel.
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An Ancillary Result

Proposition 1. Let there be C = 2 possible choices: a safe choice with quality vSafe = 1 and

a risky choice with quality vRisky =
{
0, R−1

R
;R, 1

R

}
. For a quorum threshold of τ = R + 1, the

probability of selecting the safe choice is pSafe(R + 1) = RB(R, 1 + 1
R
), where B is the Euler

beta function.

Proof. When there are ω agents investigating the safe choice (and just 1 agent investigating

the risky choice), the probability that the next recruit is for the safe choice is ωR
ωR+1

. Thus, the

probability of achieving a quorum for the safe choice is

pSafe(R + 1) =
R∏
ω=1

ωR

ωR + 1

=
R!∏R

ω=1 ω + 1
R

= RB(R, 1 +
1

R
).

(We can use an identity expressing the beta function in terms of gamma functions.)
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