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Abstract

This paper introduces a model of quantal response equilibrium with heterogeneous

agents and demonstrates the existence of a representative agent for such populations.

Except in rare cases, the representative agent’s noise terms cannot be independently

and identically distributed across the set of actions, even if that is assumed for the

individual agents. This result demonstrates a fundamental difference between a repre-

sentative agent and truly heterogeneous quantal responders and suggests that when

fitting quantal response specifications to aggregate data from a population of sub-

jects, the noise terms should be allowed to be jointly dependent across actions. Even

though this introduces additional degrees of freedom, it makes the model well speci-

fied. The representative agent inherits a regular quantal response function from the

actual agents, so this model does impose falsifiable restrictions.

KEYWORDS: quantal response equilibria, bounded rationality, representative

agent, heterogeneity

JEL classification codes: C72, C50
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1 Introduction

Quantal response equilibrium extends the Nash Equilibrium notion to allow bounded

rationality. Players can be seen as making errors while trying to choose optimal strate-

gies, or equivalently, as observing payoffs disturbed by idiosyncratic noise. Players

may select any action with positive probability, as assigned by their quantal response

functions.

Here we examine the use of a representative agent to describe the aggregate behav-

ior of heterogeneous quantal responders. Different agents may have different distribu-

tions of payoff noise and hence different quantal response functions. A representative

agent would have the average quantal response function. Weakening a standard as-

sumption about the admissible distributions of payoff noise, we show existence of a

representative agent. However, this representative agent does not have a represen-

tative distribution of payoff noise, nor any iid distribution in large enough games.

Nevertheless, important regularity properties are inherited by a representative agent,

and thus quantal response equilibrium models make testable population-wide predic-

tions for heterogeneous populations.

We consider structural quantal response equilibria (QRE) [17, 4] in the context of

a population game. In a large population of agents, we should expect heterogeneity

of behavior [12, 15]. A population of quantal responders should consist of agents

who may have different error rates, or different distributions of payoff noise. In fact,

McKelvey, et. al. [18] find experimental evidence for heterogeneous error distributions
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in trying to fit logit QRE to data on two-by-two asymmetric games. Weizsäcker [23]

also finds evidence for heterogeneous error distributions in a more general context. 1

We allow for arbitrary distributions of payoff noise. Prior research into quantal

response equilibria with heterogeneous agents has considered a distribution of pa-

rameters which parametrize the distributions of payoff noise [21, 23], with particular

interest in distributions of logit responders [20]. Here, we model heterogeneous dis-

tributions of payoff noise with a functional defined over distribution functions. As

we do not assume that distributions of payoff noise take any particular functional

forms, this approach allows for more distribution functions than can be described

with finitely many parameters.

Our interest is in the behavior of an entire population, and we seek a represen-

tative agent whose mixed strategy quantal response always matches the population

aggregate. A representative agent would behave like the population as a whole in any

normal-form game. We need representative-agent models because while we believe

people really are heterogeneous, in practice it would be quite tedious to determine

each person’s quantal response function individually when we fit data. To achieve

statistically significant sample sizes, data is typically pooled across subjects. The rep-

resentative agent is what we can estimate in an experiment. Thus, a representative-

agent model enables us to capture aggregate behavior while recognizing underlying

1Further motivation to consider heterogeneity in a population of quantal responders comes from

recent findings that models of heterogeneous learners often cannot be adequately approximated by

representative-agent models with common parameter values for all [24, 8, 6].
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heterogeneity.

With weak assumptions on the agents’ distributions of payoff noise we prove ex-

istence of a representative agent. However, the distribution of payoff disturbances

necessary to produce representative choices is not representative of the noise the

actual agents observe in their payoffs. We show that in games with enough pure

strategies, a representative agent could not have payoff disturbances independent and

identically distributed across actions even if the actual agents did. Does this mean a

representative-agent QRE model can rationalize any aggregate choice behavior, even

when agents in the population have payoff disturbances i.i.d. across actions [7]? No!

Quantal response equilibrium with representative agents is a concept not void of em-

pirical content. We find that if agents all use regular quantal response functions

(as defined by Goeree, et. al. [4]), then the representative agent’s quantal response

must also be regular. Falsifiable predictions are generated by the regularity of the

representative agent’s quantal response function, not by the specification of its payoff

noise.

The most prominent form of quantal response is the logit specification. Notably,

the representative agent for a population of heterogeneous logit responders is not

another logit responder. A companion paper considers heterogeneous logit responders

and finds that a mis-specified homogeneous logit parameter exhibits a systematic

downward bias [5]. This implies that empirical estimates disregarding heterogeneity

mis-specify agents as less rational than they really are, at least on average. Such

a mis-specified model lacks predictive power across games. A representative-agent
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model, on the other hand, would accurately describe behavior in any game.

Population games capture anonymous interaction with large numbers of partici-

pants for all roles. Suppose players in a game do not know the identity of the other

players, but only have information about the populations of potential players. They

may treat the population-wide distribution of opponents’ choices as arising from a

representative agent playing a mixed strategy. In modeling collective play of the

game, we may do the same.

Nash proposed a population game interpretation of equilibrium in his unpublished

PhD dissertation [22]. Following his lead, we assume that there is a population of

agents for each role in a game. A generic n-player game involves n populations of

agents, but if multiple players have identical roles and we adopt the restriction that

players in identical roles should play identical population mixed strategies, then these

players may be selected from the same population. So, in a totally symmetric game,

we may have only a single population of agents. Similarly, in a discrete choice envi-

ronment, a single player would be a randomly selected member of a single population.

We assume the populations are large, and we are interested in the fraction of a popu-

lation playing a given strategy. An agent’s payoff in a population game is the average

of his payoffs against all other combinations of agents (or equivalently his expected

payoff given random matching).

Population games provide a framework for the use of evolutionary learning dy-

namics. Learning rules that assume that players noisily best respond often converge

to QRE [3, 13, 10, 14, 2, 9, 11]. This paper focuses on the QRE itself and not on
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any particular learning rule that might lead to it. Population games also describe

experimental settings well (at least when anonymity is maintained in the lab), as

data is accumulated through the randomly matched interactions of many subjects.

This paper is organized as follows. Section 2 introduces the notation in the context

of a single population and provides definitions of a QRE and a representative agent.

Section 3 contains our general results describing a representative agent. In Section 4,

we extend our framework and our results to n-player asymmetric games. Section 5

concludes. The Appendix contains two technical lemmas.

2 A Single Population

To simplify the presentation, we begin with a single population of agents. The context

can be thought of as a symmetric game or alternatively a one-player game, i.e., a

discrete choice environment with additive random utility. In Section 4, we see that

our results apply to general n-player asymmetric games as well. For mathematical

generality we allow the population to be uncountable, but we make no assumption it

is so. We require only that the population is sufficiently large so that a single agent

has negligible impact on collective play.

Let S = {s1, . . . , sJ} be the set of pure strategies available to the agents. The

collective play of all the agents defines the population mixed strategy x. Formally,

x ∈ 4J−1, the (J − 1)-dimensional simplex where xj ≥ 0 for all j and
∑

j xj = 1. We

interpret xj as the fraction of the population selecting pure strategy sj.
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2.1 Payoff Noise

A structural QRE arises when agents’ utility functions are modified by noise terms,

privately observed stochastic payoff disturbances. Denote by πj the payoff from taking

pure strategy sj. Of course, payoffs are a function of the strategies used by all

the players, πj = πj(x), but we omit the function’s argument for ease of notation.

Also denote the vector π = π1, . . . , πJ . Formally, π : 4J−1 → <J . For each pure

strategy sj, agent µ observes a payoff disturbance εµj , making agent µ’s disturbed

payoff πµj = πj + εµj . This is the function agents maximize with their choice of

strategy in a QRE.

The distribution of payoff disturbances is assumed to be admissible, meaning that:

(a1) the disturbances are independent across agents;

(a2) each agent has an absolutely continuous joint distribution of (εµ1 , . . . , ε
µ
J) that

is independent of the population mixed strategy x, i.e., all marginal densities

exist;

(a3) disturbances are unbiased in the sense that they all have mean zero.

Allowing only admissible distributions guarantees the existence of a QRE [17]. Here,

we make the additional assumption that for each agent, disturbances are independent

and identically distributed (iid) across the set of actions. This assumption could

be relaxed, but some such restriction is necessary for the QRE notion to produce

falsifiable predictions [7].
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When the setup for QRE does not explicitly involve populations of agents, it is

assumed that each player has a distribution of payoff disturbances. In the context

of a population game, this corresponds to each agent within the population having

an identical distribution of disturbances. That is, the convention is to assume homo-

geneous populations.2 Here, we specifically want to leave open the possibility that

agents in the same population have different distributions of payoff shocks. So, we

do not assume identical distributions of εµj for all µ.

2.2 Heterogeneity

To model heterogeneity in the distributions of payoff disturbances, we will construct

a “probability (mass) density functional” defined over such distributions. Let Pε(·)

be a distribution function for the payoff disturbance to a particular action. Each

agent has a distinct Pε, which is the same for all actions in that agent’s strategy

space. Let P denote the space of all admissible distribution functions for an arbitrary

payoff disturbance, i.e., all unbiased, absolutely continuous distribution functions

on <. Formally, we capture heterogeneity by defining a probability measure Gε on

the space P . To make our presentation more accessible, we will reformulate it with a

functional Fε[Pε] that associates to each distribution function Pε a probability mass or

2In the discrete choice literature, the convention is to assume heterogeneous agents who can

perfectly observe their utilities [16, 1]. The formal representation is the same as for homogeneous

agents who observe disturbed utilities. In this paper we want to consider heterogeneous agents who

observe disturbed utilities.
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density describing the fraction of the population with payoff disturbances distributed

by Pε. Using the Radon-Nikodym theorem, for any arbitrary measure ν on P such

that Gε is absolutely continuous with respect to ν, there exists a functional Fε (called

the Radon-Nikodym derivative of Gε) such that Gε(p) =
∫
Pε∈p

Fε[Pε] ν(dPε) for any

measurable p ⊆ P . In an abuse of notation justified by our desire not to worry

about the particular form of the measure ν, we will use
∫
dPε as a shorthand for the

Lebesgue integral
∫
ν(dPε). This notation will be used even when there are mass

points and is not meant to suggest their exclusion. We also adopt the convention of

integrating over the entire space unless otherwise specified.

In this approach the functional Fε captures a distribution of distributions of payoff

shocks in the population. It thus provides a general way to think about heterogeneity

of quantal responses. The conventional assumption of a homogeneous population can

be recaptured, for example, by taking Fε[Pε] = 1 for a particular Pε and 0 everywhere

else. Alternatively, a heterogeneous logit response model [20, 5] arises by taking the

support of Fε to be (type I) extreme value distributions with a range of parameter

values.

Strategy choices are determined by comparing the disturbed payoffs, so the most

relevant variables are the differences between payoff shocks, δµjj′ = εµj − εµj′ . These

δµjj′ are identically distributed across all j and j′ 6= j because the εµj are iid across

all j. By absolute continuity, the marginal densities exist, and they are even func-

tions because the δµjj′ are antisymmetric in the indices j and j′. There is obviously

dependence among these random variables across j and j′. We will consider the
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(J − 1)-dimensional random vector δµj =
(
δµ1j, . . . , δ̂

µ
jj, . . . , δ

µ
Jj

)
for an arbitrary j,

which then determines the value of all other δµj′ . The hat notation indicates that an

element is removed from the vector – in this case δµjj is removed because by definition

it is always 0. Note that admissibility of the payoff disturbances implies δµj has zero

mean because all the εµj have zero mean.

Heterogeneity in the distributions of payoff shocks leads to heterogeneity in the

distributions of the differences between payoff shocks. That is, the functional over Pε

induces a functional defined on the joint distributions for δµj . Let P : <J−1 → [0, 1]

be a joint distribution function of δµj for some µ and any j ∈ [1, J ]. We construct the

functional F [P ] as follows. Let Pε→δ (P ) be the set of Pε(·), distribution functions

of εµj , which give rise to P (·). Let Pδ be the space of all (J − 1)-dimensional joint

distribution functions. Taking measures νε→δ and νδ on Pε→δ (P ) and Pδ respectively,

such that ν(p) =
∫
P∈Pδ

νε→δ (p ∩ Pε→δ (P )) νδ(dP ), we arrive at

F [P ] =

∫
Pε∈Pε→δ(P )

Fε[Pε] νε→δ(dPε).

Note that there are joint distribution functions that could not apply to any δµj because

they do not describe differences between iid random variables, and our definition

implies F = 0 for these functions.

2.3 Quantal Response

The quantal response function for each agent returns the agent’s likelihood of choosing

each strategy given the agent’s undisturbed payoffs. Let Qµ
j (π) be the probability that
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agent µ selects strategy sj given the payoffs to each strategy. Formally, for any vector

π′ = (π′1, . . . , π
′
J) ∈ <J , define

Rµ
j (π′) = {(εµ1 , . . . , ε

µ
J) ∈ <J : π′j + εµj ≥ π′j′ + εµj′ for all j′ = 1, . . . , J}

to be the set of realizations of agent µ’s joint set of payoff disturbances that would lead

to choosing action sj. Then Qµ
j (π) = Prob

{
(εµ1 , . . . , ε

µ
J) ∈ Rµ

j (π)
}

. Using the joint

distribution function for the (J−1)-dimensional random vector δµj , the jth component

of the quantal response function can be expressed as

Qµ
j (π) = P (πj − π1, πj − π2, . . . , πj − πJ), (1)

naturally omitting πj − πj just as we did δµjj. Thus, an agent’s quantal response

function is determined by the joint distribution of differences between payoff shocks.

The quantal response functions for all the agents can be aggregated across the

population to give the population mixed strategy response to any given population

state. In a finite population of m agents, the population aggregate quantal response

is Qj = 1
m

∑m
µ=1Q

µ
j for all j. More generally, the aggregate quantal response in an

infinite population is

Qj =

∫
Fε[Pε]Q

µ
j dPε (2)

where we abuse notation by letting µ = µ(Pε) be an agent with payoff disturbances

iid from Pε. This is just the expectation of agents’ quantal response functions with

respect to the probability mass / density functional Fε. It can be taken pointwise,

i.e., independently for every value of the payoff vector π.
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We can now define a quantal response equilibrium and then formally describe a

representative agent for this heterogeneous population.

Definition A quantal response equilibrium (QRE) is defined by the fixed point equa-

tion xj = Qj (π(x)) for all j.

Whereas a Nash Equilibrium is a state of play with everybody simultaneously playing

a best response, a QRE is a state with everybody simultaneously playing according

to their quantal response functions.

Definition A representative agent would have a quantal response function Q̂(π)

equal to the population aggregate quantal response function:

Q̂ = (Q1, . . . , QJ). (3)

For all games, the population as a whole behaves exactly as if it were homogeneously

composed of representative agents.

Our definition of a representative agent can now be translated into a statement

about the representative joint distribution of differences between payoff shocks. It

means the representative agent would have δj distributed according to a joint distri-

bution function P̂ (·) such that

P̂ =

∫
F [P ]P dP. (4)

We can think of P̂ as the population’s expected joint distribution function for differ-

ences between payoff shocks, with respect to the induced probability mass / density
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functional F .3 The representative agent’s quantal response function can in turn be

found by using P̂ in Eq. (1). This provides a working definition of a representative

agent that is more useful than Eq. (3).

Example We demonstrate finding the representative agent’s quantal response func-

tion with J = 2 in this simple example. Suppose the population consists of agents

having payoff disturbances iid from an exponential distribution (shifted to have mean

zero) with parameters ranging from λmin to λmax according to a uniform distribution.

This population is described by the functional Fε[Pε] with support on distribution

functions such that Pε(ε) = 1 − e−λ(ε+
1
λ) over ε ∈

[
− 1
λ
,∞
)
, for λmin ≤ λ ≤ λmax;

and with constant value 1
λmax−λmin

on this support. The difference between two iid

Exponential(λ) random variables has a Laplace
(
0, 1

λ

)
distribution. Thus, the induced

functional F [P ] has support on distribution functions such that

P (δ) =


1
2
eλδ if δ ≤ 0

1− 1
2
e−λδ if δ > 0

for λmin ≤ λ ≤ λmax. Integrating over the uniform distribution of types gives us

P̂ (δ) =



1
2δ(λmax−λmin)

(
eλmaxδ − eλminδ

)
if δ < 0

1
2

if δ = 0

1 + 1
2δ(λmax−λmin)

(
e−λmaxδ − e−λminδ

)
if δ > 0.

Using Eq. (1), we then obtain the representative agent’s quantal response function.

If π1 = π2, then Q̂(π) =
(

1
2
, 1

2

)
. Otherwise, assuming without loss of generality that

3We again abuse notation by neglecting to specify the measure νδ.
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π1 < π2, we have

Q̂(π) =

(
eλmax(π1−π2) − eλmin(π1−π2)

2(π1 − π2)(λmax − λmin)
, 1− eλmax(π1−π2) − eλmin(π1−π2)

2(π1 − π2)(λmax − λmin)

)
.

2.4 Characteristic Functions

The property of having the population aggregate quantal response function was our

first and most transparent characterization of a representative agent. We then estab-

lished that this is equivalent to having the representative joint distribution function

for the vector of differences between payoff shocks as described in Eq. (4). We now

develop another equivalent characterization that will soon prove useful.

Given a functional that describes the heterogeneity of the population, we can use

characteristic functions to identify a representative agent. This approach is effective

because there is a bijection between distribution functions and characteristic func-

tions. Let θ : < → C be the characteristic function of a payoff disturbance εj with

distribution function Pε(·),

θ(t) = E(eitεj).

Note that θ is a complex-valued function of a single real variable and has complex

conjugate θ̄(t) = θ(−t). It must be uniformly continuous, satisfy θ(0) = 1 and

|θ(t)| ≤ 1, and the quadratic form in u and v with θ(u− v) as its kernel must be non-

negative definite. (These properties can be used to define an arbitrary characteristic

function.) Take φ : <J−1 → C to be the characteristic function associated with the

joint distribution P (·) of δj. We still write φ(t), now assuming t = (t1, . . . , tJ−1) to
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be a vector in <J−1. We can express φ in terms of θ,

φ(t) = E(eit·δj)

= E(eit1δ1j · · · eitJ−1δJj)

= E(eit1(ε1−εj) · · · eitJ−1(εJ−εj))

= E(eit1ε1) · · ·E(eitJ−1εJ ) · E(e−i(
∑J−1
l=1 tl)εj)

= θ(t1) · · · θ(tJ−1) · θ(−
J−1∑
l=1

tl). (5)

In addition to the properties just mentioned, we also know that if
∑J

l=1 rl = 0, then

φ(r1, . . . , r̂j, . . . , rJ) is independent of j, because by Eq. (5) it has the same expansion

in terms of θ for all j. If there are only two actions, J = 2, then φ is real and positive

because P is symmetric (see Eq. (5), where φ(t) would be the product of θ(t) and

its complex conjugate). The functional Fε induces a distribution over characteristic

functions Ψε[θ] = Fε[Pε]. Similarly, define Ψ[φ] = F [P ].

Let

φ̂(t) =

∫
Ψ[φ]φ(t) dφ (6)

be the expectation of characteristic functions for δµj in the population.4 This repre-

sentative characteristic function can be constructed by taking the integral pointwise,

i.e., independently for every value of t. Fixing the input point t, we know that this

functional integral always converges because |φ(t)| ≤ 1.

4We repeat our earlier abuse of notation, again neglecting to specify the integration measure.
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3 A Representative Agent

3.1 Existence of a Representative Agent

The first issue to address is whether a representative agent always exists. Theorem 1

tells us that there is only one pathological type of heterogeneity for which the popu-

lation does not have a representative agent, and Corollaries 1 and 2 tell us not to get

hung up on the technicality that causes this problem in an infinite population, as it

is of no practical importance. The representative joint distribution function P̂ (·) can

always be constructed given the functional F [P ] describing the heterogeneity in the

population, but there is a danger that it is not an admissible distribution function.

Specifically, it may fail to have finite mean. This may occur only when infinitely

many different distribution functions are in use in the population. As a corollary to

the theorem, a representative agent is sure to exist in all finite-type models. Addition-

ally, relaxing the requirement that distributions of disturbances must have zero mean

with a more expansive definition of admissible unbiased payoff noise also ensures the

existence of a representative agent.

Theorem 1 Define P̂ (·) as in Eq. (4).5 If P̂ (·) has finite mean, then a representative

agent exists with δj distributed by P̂ (·) and having characteristic function φ̂(t).

5Recall that the integral in Eq. (4) is a functional integral over possible distribution functions for

payoff noise, not an integral with respect to the probability measure of a particular noise distribution.

This integral is used point-by-point to define P̂ (·), the representative agent’s joint distribution

function for differences between payoff shocks. Existence of the mean of P̂ (·) then depends on an

integral with respect to this particular distribution, and is not the same as existence of the functional
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Proof It is well known that the maps between distribution functions and characteris-

tic functions are linear. Apply the Levy continuity theorem to Eq. (6). This requires

φ̂(t) to be continuous at t = 0, which we establish with Lemma 1 in the Appendix.

Lemma 2 in the Appendix establishes that the mean of P̂ (·) is 0 if it exists, and thus

P̂ (·) is admissible when this is the case.

Corollary 1 If F [P ] > 0 for only finitely many joint distribution functions P (·),

then a representative agent exists.

Proof The only source for divergence of the mean of P̂ (·) is the limit that results

from F [P ] > 0 for infinitely many P . All the joint distribution functions in the

support of F have zero mean, so a finite linear combination of them also describes a

random vector with zero mean. Then Theorem 1 applies.

Taking a closer look at an example P̂ (·) that has divergent mean and thus fails to

be an admissible joint distribution function offers insight into how such cases arise.

Example For simplicity, assume J = 2. The example works just as well with more

pure strategies, but the notation becomes cluttered. Partition the set of joint distri-

bution functions P (·) into Py such that P (·) ∈ Py implies P (ey) ≤ 1 − α for some

fixed positive α < 1
2
. This partition is not uniquely determined, but as long as the

integral that defines P̂ (·). The admissibility condition requiring existence of this mean is simply a

convention.
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Py are non-empty, it will do. Consider the functional F [P ] where

∫
Py
F [P ] dP =


e−y for y ≥ 0

0 for y < 0.

Then the mean of P̂ (·) is divergent because

∫ ∞
0

δ dP̂ (δ) =

∫ ∞
0

δ

∫ ∞
0

∫
Py
F [P ]P ′(δ) dP dy dδ

≥
∫ ∞

0

∫
Py
F [P ]

∫ ∞
ey

δ P ′(δ) dδ dP dy

≥
∫ ∞

0

∫
Py
F [P ]αey dP dy

=

∫ ∞
0

α dy.

Admissibility requires P̂ (·) to have zero mean, but when this fails, we shouldn’t

conclude that a representative quantal response function does not exist. Instead, we

can relax the requirements of admissibility to guarantee that a representative agent

always exists. The restriction to zero mean payoff disturbances is not necessary for

the existence of a QRE, as fixed point theorems can be applied without it. The desire

for unbiased disturbances appears to be aesthetic, and the possible inadmissibility of

representative agents is an artifact of the way it is implemented. Consider replacing

the zero mean assumption (a3) with the following alternative:

(a3’) the Cauchy principal value of the mean of each payoff disturbance is zero6, and

lim
γ→∞

γ Prob
{
|εµj | ≥ γ

}
= 0 for each εµj .

6The Cauchy principal value of an improper integral
∫∞
−∞ f(t) dt is defined as limT→∞

∫ T
−T f(t) dt.
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Assumption (a3’) holds whenever assumption (a3) is satisfied, so this is a weaker

condition to impose on the payoff disturbances. Even though the mean of εµj may blow

up under assumption (a3’), these disturbances are still unbiased, and their likelihood

still decays sufficiently quickly as they get large.

Definition We say payoff disturbances are weakly admissible if assumptions (a1),

(a2) and (a3’) hold.

With just this slight relaxation of admissibility, we always get a representative agent.

Corollary 2 Allow weakly admissible payoff disturbances. A representative agent

exists with δj distributed by P̂ (·) and having characteristic function φ̂(t).

Proof Lemma 2 shows that P̂ (·) always satisfies the weak admissibility assumption

(a3’). In turn, there exists a joint distribution of (ε1, . . . , εJ) that satisfies (a3’) and

is consistent with δj being distributed by P̂ (·).

3.2 Payoff Disturbances for the Representative Agent

We have defined a representative agent with the property that the agent’s choice of

strategy is representative of the population as a whole. We now show that this is

not equivalent to having representative noise in the underlying payoffs. The mapping

from payoff disturbances to choices is nonlinear, and we should not expect averaging

over all agents to preserve this map. We say P̂ε(·) is a representative distribution of

payoff shocks if it is a (weakly) admissible distribution function such that

P̂ε =

∫
Fε[Pε]Pε dPε. (7)
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By applying the Levy continuity theorem here too, we find that a representative

distribution of payoff shocks has characteristic function θ̂(t) =
∫

Ψε[θ] θ(t) dθ. With

this groundwork in place, we are ready for Theorem 2, which says that a representative

quantal response function does not arise from a representative distribution of payoff

shocks.

Theorem 2 A representative agent has a representative distribution of payoff shocks

if and only if the population is homogeneous.

Proof Let Θ be the set of characteristic functions of εj that give rise to a given φ(·).

Using Eq. (5), Θ = {θ : φ(t) =
(∏J−1

l=1 θ(tl)
)
· θ(−

∑J−1
l=1 tl)}. From the relation-

ships between the functionals, we have Ψ[φ] =
∫

Θ
Ψε[θ] dθ. We can then express a

representative agent’s characteristic function for δj as

φ̂(t) =

∫
Ψε[θ]

(
J−1∏
l=1

θ(tl)

)
θ(−

J−1∑
l=1

tl) dθ.

But

∫
Ψε[θ]

(
J−1∏
l=1

θ(tl)

)
θ(−

J−1∑
l=1

tl) dθ 6=

(
J−1∏
l=1

∫
Ψε[θ] θ(tl) dθ

)
·
∫

Ψε[θ] θ(−
J−1∑
l=1

tl) dθ

(8)

unless for each tl, θ(tl) is the same for all θ in the support of Ψε. Since tl is an

arbitrary variable, this would mean there could only be one function in the support

of Ψε, i.e., no heterogeneity of distributions of payoff shocks in the population.

In light of the fact that a representative agent for a heterogeneous population does

not have a representative distribution of payoff shocks, the question arises as to what
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distribution of payoff shocks could actually produce a representative agent. According

to the next result, if there are enough actions and there is heterogeneity of the δjj′ ,

then the representative agent cannot arise from any distribution of payoff shocks that

is iid across the set of actions. Theorem 3 says that if there are just two actions,

there is an iid distribution of payoff shocks (possibly many such distributions) that

generates the representative agent. But, if there are at least four actions, assuming

heterogeneity of the δjj′ , it is impossible for an iid distribution of payoff shocks to

generate the representative agent.7

Theorem 3 Given a representative agent, if J = 2, there exists a distribution of

payoff shocks iid across all actions and each with characteristic function ϑ̂(·) such

that

φ̂(t) =

(
J−1∏
l=1

ϑ̂(tl)

)
· ϑ̂(−

J−1∑
l=1

tl). (9)

But, when J ≥ 4, there is no ϑ̂(·) that satisfies Eq. (9) unless every Pε(·) in the

support of Fε gives the same distribution of the δjj′.

Proof When J = 2, we must find a ϑ̂(·) such that φ̂(t1) = ϑ̂(t1) · ϑ̂(−t1). Recall

J = 2 implies that all φ(·) are real and positive, and hence so is φ̂. It suffices to take

ϑ̂(t1) = ϑ̂(−t1) =

√
φ̂(t1).

7Examples indicate that when there are three actions, the representative agent usually cannot

arise from iid shocks, but we cannot rule out special cases of heterogeneity for which the representa-

tive agent is compatible with iid disturbances. When jointly dependent disturbances are necessary,

the correlation structure (implied by Eq. (6)) depends on the makeup of the population.
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Now consider J ≥ 4. Given that individual agents do have payoff shocks that are

iid across all actions, any φ(·) in the population can be expressed in terms of θ(·) with

Eq. (5). Specifically, φ(a,−a, a, 0, · · · , 0) = (θ(a)θ(−a))2. Similarly, φ(a, 0, · · · , 0) =

θ(a)θ(−a). Thus,

φ(a,−a, a, 0, · · · , 0) = (φ(a, 0, · · · , 0))2 .

But ∫
Ψ[φ]φ(a,−a, a, 0, · · · , 0) dφ 6=

(∫
Ψ[φ]φ(a, 0, · · · , 0) dφ

)2

unless there is no variance of θ(a)θ(−a) in the population. Note that δjj′ has charac-

teristic function θ(t)θ(−t). Thus, if there are two distribution functions in the support

of Fε[Pε] that give different distributions of δjj′ , then for some a,

φ̂(a,−a, a, 0, · · · , 0) 6=
(
φ̂(a, 0, · · · , 0)

)2

.

This would mean φ̂(·) could not be expressed as
(∏J−1

l=1 ϑ̂(tl)
)
· ϑ̂(−

∑J−1
l=1 tl) for any

ϑ̂(·).

Theorem 3 sounds a cautionary note that even if we believe all agents have noise

in their payoffs that is iid across their actions, heterogeneity of the agents leads the

population as a whole to behave as if payoff disturbances were not iid across actions.

We desired agents with payoff noise iid across actions because this assumption im-

poses restrictions on behavior that can be tested empirically. Although it turns out the

representative agent may not have payoff noise iid across actions, the representative-

agent notion still has empirical content because some properties are inherited from

the underlying agents.
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3.3 Regularity of a Representative Agent

Goeree, et. al. [4] introduce four axioms which define a regular quantal response

function Qµ : <J →4J−1 without reference to payoff noise:

(A1) Interiority: Qµ
j (π) > 0 for all j = 1, . . . , J and for all π ∈ <J .

(A2) Continuity: Qµ
j (π) is a continuous and differentiable function for all π ∈ <J .

(A3) Responsiveness:
∂Qµj (π)

∂πj
> 0 for all j = 1, . . . , J and for all π ∈ <J .

(A4) Monotonicity: πj > πj′ implies Qµ
j (π) > Qµ

j′(π), for all j, j′ = 1, . . . , J .

They argue that all quantal response functions obey Continuity and weakly obey

Responsiveness. If the density of payoff disturbances has full support, then Interiority

and Responsiveness are strictly satisfied. When payoff disturbances are iid across

actions, then the quantal response function obeys Monotonicity as well. The condition

of having payoff disturbances iid across actions is stronger than that of having a

monotonic quantal response function in that the former is sufficient, but not necessary,

for Monotonicity.

We now show that any regularity property that holds for the underlying agents in

the population also holds for the representative agent.

Theorem 4 If a regularity axiom {(A1), (A2), (A3), or (A4)} applies to Qµ for all

µ (i.e., for µ = µ(P ) whenever P (·) is in the support of F ), then that axiom applies

to the representative agent’s quantal response function Q̂.
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Proof Continuity holds for all quantal response functions as a result of the admissi-

bility assumption (a2) that distributions of payoff noise must be absolutely continuous

[4]. Interiority, Responsiveness, and Monotonicity each follow from Eq. (2) and (3),

which define a representative agent. Essentially, we just use the fact that an integral

must be positive if the integrand is always positive. For Responsiveness, we pass

the partial derivative inside the integral in Eq. (2). For Monotonicity, we express

Q̂j(π)− Q̂j′(π) using Eq. (2) and then pair up terms to form a single integral.

Theorem 4 tells us that in our framework, the representative agent’s quantal re-

sponse function always satisfies Monotonicity. While the stronger condition of iid

payoff disturbances is not inherited by the representative agent, the weaker condition

of Monotonicity is. It is this Monotonicity property that carries empirical content.

In principle, subjects in an experiment could violate Monotonicity and choose ac-

tions with lower payoffs more often than actions with higher payoffs. This would be

inconsistent with the predicted behavior of the representative agent.

Given our results that a representative agent’s specification of payoff noise may

differ from the noise distributions in the underlying population, but that the represen-

tative quantal response function inherits regularity properties from the population,

we would second Goeree, et. al.’s suggestion [4] of dealing only with regular QRE

and not necessarily requiring them to be derived from a model of noisy utility max-

imization. Taking the regularity axioms as primitives of a stochastic choice model

provides a simple and intuitive foundation, carrying empirical content and consistent
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with heterogeneity.

4 Asymmetric Games

All of these results, initially presented in the context of a single population, apply to

general asymmetric games. In a normal-form game with n populations of agents, we

would introduce an index i ∈ [1, n] distinguishing each population as corresponding to

a particular role in the game. The strategy sets, population mixed strategy vectors,

payoff functions, distributions of payoff disturbances, and aggregate quantal response

functions would be distinguished for each population / role in the game by this index

i. Theorem 1 would describe the existence of a distinct representative agent for each

population i. Eq. (4) and (6), also indexed by i, would characterize each representative

agent’s distribution of payoff disturbances. And Theorems 2, 3, and 4 would apply

to the representative agent from any given population.

While we obtain representative agents for each role in an asymmetric game, we

caution that there is no reason to assume the existence of a single representative agent

the same for all players in the game. Such an assumption would deny heterogeneity

across the different roles of the game. In the special case that all players of an

asymmetric game have the same number of actions, a single representative agent

for all players would generate identical aggregate quantal response functions in each

population.8 There are plenty of QRE which are incompatible with all players having

8In the general case of asymmetric games in which different players may have different dimensional
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the same quantal response function, as the following game illustrates.

Example

Asymmetric Matching Pennies

Left Right

Up 9, -1 -1, 1

Down -1, 1 1, -1

Goeree, et. al. [4] analyze the asymmetric matching pennies game shown above

and find the set of possible regular QRE is the rectangle 1
6
< p < 1

2
, 1

2
< q < 1, where

p is the probability the column player chooses left and q is the probability the row

player chooses up. However, given the restriction that representative row and column

players have the same quantal response function, a QRE must satisfy the additional

constraint q < 3p if and only if q > 1 − p. (See Figure 1.) This is because q < 3p

means that π2R−π2L < π1U−π1D, i.e., the cost of an error is higher for the row player,

and must lead to relatively fewer errors by the row player, q > 1 − p. The converse

holds equivalently. (Note also that if both row and column players use identical logit

strategy spaces, it’s not obvious exactly what is meant by a single representative agent for all players,

given the fact that a representative agent does not have a representative distribution of payoff shocks.

We want to have representative behavior, which requires payoff disturbances jointly dependent across

actions. The problem is how to define a population average quantal response function when the

individual quantal response functions have varying dimensionality. A solution is to embed lower

dimensional strategy spaces in higher dimensional spaces in a natural way, by assuming there are

additional strategies with infinitely negative payoffs that are never chosen.
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Figure 1: On the horizontal axis is the probability the column player chooses left and

on the vertical axis is the probability the row player chooses up. The entire shaded

area represents the set of possible regular QRE in the given asymmetric matching

pennies game when row and column players may differ. The darkened area represents

the subset of these QRE consistent with the assumption that representative row and

column players have the same quantal response function.

responses, the set of possible QRE is reduced to a curve extending from the center of

the strategy space to the Nash Equilibrium (p = 1
6
, q = 1

2
) [17].) In summary, unlike

the existence of a representative agent for each population, we do not necessarily have

a single representative agent for all players.
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5 Discussion

We have proposed a model of heterogeneous populations playing quantal response

equilibria, placing no restrictions on the particular functional forms the quantal re-

sponses may take. We have found that representative agents exist for heterogeneous

populations if we allow weakly admissible payoff disturbances. A representative agent

chooses strategies in the same proportions as the entire population, but does not have

payoff disturbances distributed in the same proportions as the population. In games

with many pure strategies, representative behavior cannot arise from any iid distri-

bution of disturbances.

This impossibility of having a representative agent with disturbances iid across

actions stems from the fact that averaging probability distributions almost never

preserves independence. Thus, if we believe populations of agents are heterogeneous,

but desire representative-agent models, we must be willing to consider noise terms that

are jointly dependent across actions. Our findings support the use of regular quantal

response functions. Regular quantal response equilibrium does generate falsifiable

predictions and is consistent with the representative-agent framework.

Appendix

Lemma 1 φ̂(t) is continuous at t = 0.

Proof Recall that |φ(t)| ≤ 1 and φ(0) = 1 for all φ and thus for φ̂ as well. We will
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show for all h > 0, there exists k > 0 such that ‖t‖ < k implies Re
{
φ̂(t)

}
> 1 − h.

Let K be a compact subset of characteristic functions φ such that
∫
KΨ[φ] dφ >

1 − h
4
. Because all the φ are continuous at t = 0, we can choose k[φ] > 0 such

that Re {φ(t)} > 1 − h
2

for all ‖t‖ < k[φ] and φ 7→ k[φ] is continuous. Then take

k = minφ∈K k[φ], and k > 0 because the minimum is taken over a compact space and

the extreme value theorem applies. We then obtain for all ‖t‖ < k,

Re
{
φ̂(t)

}
=

∫
φ∈K

Re {φ(t)}Ψ[φ] dφ+

∫
φ 6∈K

Re {φ(t)}Ψ[φ] dφ

>

(
1− h

2

)(
1− h

4

)
+ (−1)

(
h

4

)
= 1− h+

h2

8
> 1− h.

Lemma 2 The Cauchy principal value of the mean of P̂ (·) is 0. Additionally, if the

random vector (δ̄1j, . . . ,
̂̄δjj, . . . , δ̄Jj) is distributed according to P̂ (·), then

lim
γ→∞

γ Prob
{
|δ̄j′j| ≥ γ

}
= 0 for all j′.

Proof A property of characteristic functions is that
[

∂
∂tj′

φ(t)
]
t=0

exists if and only

if:

(i) PV 〈δj′j〉 exists and

(ii) limγ→∞ γ Prob {|δj′j| ≥ γ} = 0,

and when these conditions are satisfied,
[

∂
∂tj′

φ(t)
]
t=0

= iPV 〈δj′j〉 [25, 19]. So, it

suffices to show
[

∂
∂tj′

φ̂(t)
]
t=0

= 0 for all j′. Differentiability of φ̂(t) follows from the
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differentiability of all φ in the support of Ψ, using an argument completely analogous

to the proof of continuity of φ̂(t), Lemma 1. Thus,
[

∂
∂tj′

φ̂(t)
]
t=0

=
∫

Ψ[φ]
[
∂φ
∂tj′

]
t=0

dφ.

For all φ in the support of Ψ, all j′,
[
∂φ
∂tj′

]
t=0

= 0 because PV 〈δj′j〉 = 0 and

limγ→∞ γ Prob {|δj′j| ≥ γ} = 0. Each δj′j must satisfy these two conditions because

the underlying εj and εj′ are required to obey them by assumption (a3) or (a3’).
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