Performance Evaluation Inflation and Compression

Russell Golman and Sudeep Bhatia *

August 29, 2012

*Department of Social and Decision Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA. E-mail: rgolman@andrew.cmu.edu; sudeepb@andrew.cmu.edu
Abstract

We provide a behavioral account of subjective performance evaluation inflation (i.e., leniency bias) and compression (i.e., centrality bias). When a manager observes noisy signals of employee performance and the manager strives to produce accurate ratings but feels worse about unfavorable errors than about favorable errors, the manager’s selfishly optimal ratings will be biased upwards. Both the uncertainty about performance and the asymmetry in the manager’s utility are necessary conditions for performance evaluation inflation. Moreover, the extent of the bias is increasing in the variance of the performance signal and in the asymmetry in aversion to unfair ratings. Uncertainty about performance also leads to compressed ratings. These results suggest that performance appraisals based on well-defined unambiguous criteria will have less bias. Additionally, we demonstrate that employer and employee can account for biased performance evaluations when they agree to a contract, and thus, to the extent leniency bias and centrality bias persist, these biases hurt employee performance and lower firm productivity.

Keywords: centrality bias, leniency bias, noisy signals, performance appraisal, subjective performance evaluation

JEL classification codes: D82, D86, J30, M52
1 Introduction

Subjective performance evaluation is a powerful informational tool for an organization. It allows employers to determine compensation and job assignments, and to provide feedback when objective measures are costly, inaccurate or unavailable (Baker, Gibbons, & Murphy, 1994; Murphy, 1999; Prendergast, 1999). More than 70% of firms utilize a formal employee performance appraisal mechanism (Murphy & Cleveland, 1991). Subjective evaluations also play an important role in worker recruitment, with roughly half of all workers finding jobs through external references (Montgomery, 1991).

Despite its importance for human resource accounting and management, subjective performance evaluation has a number of problems. Researchers in psychology, accounting and organizational behavior have found that subjective evaluations suffer from severe leniency effects. Performance appraisal ratings display an upward bias (Bol, 2011; Saal & Landy, 1977), with 60 to 70% of those being assessed rated in the top two categories of five-point rating scales (Bretz, Milkovich, & Read, 1992). This effect is more pronounced in settings where subjective performance ratings are used to determine worker compensation (Jawahar & Williams, 1997), in settings where information about the employee’s true competence is scarce (Bol, 2011), and in settings where the manager and employee have a particularly strong relationship (Bol, 2011; Lawler, 1990; Murphy & Cleveland 1991). Performance evaluations also are shown to display a centrality bias with supervisors compressing ratings so that they differ
little from the norm (Moers, 2005; Prendergast, 1999).

These biases\(^1\) have been documented through surveys of organizations and practitioners (Murphy & Cleveland, 1995), laboratory studies (Bernardin, Cooke, & Villanova, 2000; Kane, Bernardin, Villanova, & Payrefitte, 1995) and archival data sets of firms (Bol, 2011; Moers, 2005). In general, they can generate a Lake Wobegon Effect with almost everyone rated above average (Moran & Morgan, 2003). Besides reducing the informational value of performance evaluations, such biases also distort wages and can impact worker effort and firm productivity.

Given the prevalence of leniency and centrality biases, it has been suggested that managers willfully alter ratings in order to help workers, improve training or avoid conflict (Levy & Williams, 2004; Longenecker, Sims, & Gioia, 1987; Prendergast & Topel, 1996; Prendergast, 2002). It is not the case, however, that managers necessarily have explicit preferences for inflated evaluations. In this paper, we provide an alternative model of performance evaluation, which assumes that managers prefer to issue accurate ratings, but also have an asymmetry in their aversion to undeservedly high and undeservedly low evaluations. This asymmetry can stem from a number of different causes: the manager may be sympathetic towards the employee, as assumed in recent work (Giebe & Gürtler, 2012; Grund & Przemek, 2012), or the manager may be indifferent towards the employee’s wellbeing, but may not want to discour-

\(^1\)In this paper ‘bias’ refers to the aforementioned leniency and centrality biases rather than to the more pernicious demographic biases that also plague performance evaluation (Castilla & Benard, 2010).
age the employee with unfairly low ratings. In either case, managers prefer accurate ratings, and biases arise only in the face of uncertainty.

Uncertainty about worker evaluation plays a crucial role in our model. Job performance measures suffer from some imprecision or measurement error (Landy & Farr, 1980; Murphy, 2008), and in order to make a subjective evaluation, managers must aggregate noisy signals of job performance with prior information about employee competence (Banker & Datar, 1989). If the manager feels worse about unfavorable errors than about favorable errors, then despite a desire to get it right, the manager’s selfishly optimal evaluation will be higher than the best estimate given the employee’s signal and the manager’s prior beliefs. Consequently, more than half the population will be rated as above the actual average competence. Moreover, leniency bias, measured as the difference between the average rating in the population and the actual average competence, will increase with the noisiness of the performance signal and the asymmetry in the manager’s fairness preferences, as documented in empirical work on subjective performance evaluation (Bol, 2011; Lawler, 1990; Murphy & Cleveland, 1991)\(^2\). In addition to this leniency bias, the manager’s evaluations will also display a centrality bias. The distribution of the assigned ratings will have lower variance than the underlying distribution of actual competence. This compression is also due to the inherent noise in the signal. To make the best estimate of employee competence, the

\(^2\)While our model accounts for the common finding that ratings are biased upwards, a natural generalization could also describe raters who would prefer under-reporting performance to over-reporting performance (Cheatham, Davis, & Cheatham, 1996).
manager discounts the magnitude of the signal to account for this noise. Leniency and centrality biases both arise from the same assumptions in our model, and the combined effect is that the least competent employees get the most inflated ratings.

After proposing our account for the leniency and centrality effects in subjective performance evaluations, we consider incentive contracts involving sophisticated principals and agents. We assume that the firm derives organizational capital from more accurate (more informative) subjective evaluations, as well as, of course, profits from the employee’s effort. We consider managers with intrinsic motivation to provide an accurate evaluation, but also some degree of altruism towards the employee. In equilibrium the manager thus exhibits the aforementioned asymmetric aversion to undeservedly high and undeservedly low ratings.

In anticipation of performance evaluation bias, employers adjust the compensation package they offer their employees. We show that the leniency and centrality biases are detrimental to employee performance and thus costly to the firm in equilibrium. Additionally, employees’ total wages decrease due to the manager’s leniency as well as to the manager’s rating compression. Moreover, consistent with empirical research (Jawahar & Williams, 1997), we show that leniency bias exists when the manager’s evaluation is used to determine the employee’s pay and is increasing with the manager’s altruism towards the employee.

The rest of the paper is organized as follows. Section 2 discusses subjective performance evaluation and its associated biases in more detail. It also outlines recent research on these biases, and highlights the ways that this paper expands on and
complements previous work. Section 3 provides a general mathematical model of performance evaluation. Section 4 identifies leniency and centrality biases in the manager’s ratings. Section 5 embeds this model within an incentive contract framework and derives implications for employee performance and compensation. Section 6 concludes.

2 Subjective Performance Evaluation

Management researchers and economists have long been concerned with the role of performance evaluation in incentive design and optimal contracting (Dutta, 2008; Gibbons, 2005; Giebe & Gürtler, 2012; Holmstrom, 1979). Traditionally it was assumed that contracts specify compensation as a function of a single, verifiable (possibly noisy) performance measure. This performance measures is generally required to be objective, as auditors consider objective measures to be reliable and verifiable. Objective performance measures alone may distort incentives, however, leading agents to choose selfishly optimal behavior that is harmful to the employer (Baker, 1992; Holmstrom, 1979; Holmstrom & Milgrom, 1991). Firms should use performance measures that capture the full value of the employee’s actions, including measures that are based on opinions and other subjective judgments. For this reason, subjective evaluation is often incorporated as part of an optimal contract (Baiman & Rajan, 1995; Baker et al., 1994). Indeed, a firm’s future performance can be predicted by previous discretionary compensation, suggesting that agents are rewarded for good work even
in settings where the objective returns are delayed into the future (Hayes & Shaefer, 2000).

Subjective performance evaluation, however, suffers from two important limitations. In the absence of well-defined, objective criteria, raters are vulnerable to behavioral biases. Their evaluations are liable to both inflation and compression. The former generates a leniency bias, according to which too many employees are rated above average, whereas the latter generates a centrality bias, i.e., there is too little variation in employee ratings. A stark example of these biases can be seen in Merck & Co, Inc’s performance rating system during the 1980s. Murphy (1992) finds that the vast majority of subjects at Merck received a rating in the top five categories of a thirteen category rating scale. Furthermore, over 70% of these employees occupied just three of the thirteen performance categories (see also Prendergast, 1999).

There have been two recent attempts to explain these performance evaluation biases in the economics literature. Grund and Przemeck (2012) capture the leniency and centrality effects by assuming that managers are altruistic, that workers are inequality averse, and that managers trade off the benefits of helping their workers against the costs of distorting their evaluations. Giebe and Gürtler (2012) similarly assume that managers are altruistic towards the employees, and explore settings in which optimal contracts can generate the leniency bias. More broadly, models of social preference, such as inequality aversion (Fehr & Schmidt, 1999; Bolton & Ockenfels, 2000) have also been shown to account for a range of other anomalies in worker and employer behavior, including increased worker effort in trust and gift-exchange
settings (Fehr, Kirchler, Weichbold, & Gachter, 1998), the use of unenforceable bonus or trust contracts, or incomplete contracts, instead of standard incentive contracts (Fehr & Schmidt, 2007), and the popularity of team-based incentives (Bartling, 2011; Englmaier & Wambach, 2010).

In line with these models, as well as with empirical work demonstrating that social factors influence a manager’s perceptions of employee performance (Johnson, Erez, Kiker, & Motowidlo, 2002; Judge & Ferris, 1993; Levy & Williams, 2004), we too assume an altruistic manager, but (unlike earlier theory papers) we still consider the manager to be intrinsically motivated to produce accurate (fair) evaluations. Moreover, while we focus in Section 5 on altruism as the source of an asymmetry in the manager’s aversion to unfair evaluations, we acknowledge that other motives, such as a desire not to discourage the employee or a desire to avoid conflict, could play a similar role and thus could also be responsible for leniency bias. In Sections 3 and 4 we analyze leniency and centrality bias due to noise in the performance signal, taking the asymmetry in the manager’s utility as a primitive rather than assuming a particular source for it. Our premise is that managers may want to be fair (Maas, van Rinsum, & Towry, 2009), but are still affected by considerations of workplace harmony or employee sympathy (Harris, 1994; Murphy, Cleveland, Skattebo, & Kinney, 2004). Recognizing that uncertainty about employee performance might be necessary for both leniency and centrality bias helps us understand why these biases are often observed together. Additionally, by analyzing leniency and centrality bias within an incentive contract framework, our model makes predictions about the impact of
these biases on compensation contracts, as well as on worker effort and firm productivity. We derive comparative statics describing how the extent of these biases and their adverse effects on employee effort, performance, and compensation depend on contextual factors such as the strength of manager-employee relationships or the amount of uncertainty in the performance measure. Our primary contribution in this light is bringing together a behavioral economic theory of prosocial preferences with a standard bayesian learning model and standard contract theory to explain robust empirical findings on subjective evaluations.

3 A Mathematical Model of Performance Evaluation

A manager is tasked with evaluating a heterogeneous distribution of employees who vary in their levels of competence. For simplicity, assume an employee (arbitrarily, employee \(i \)) has true competence \(x_i \in \mathbb{R} \) (expressible as a real number). Obviously, \(x_i \) is unknown to the manager, but the manager does know that \(x_i \sim N(\bar{x}, \theta^2) \), i.e., that competence is normally distributed in the population with mean \(\bar{x} \) and variance \(\theta^2 \). This knowledge serves as the manager’s prior. The manager then observes a signal of the employee’s performance \(y_i \sim N(x_i, \sigma^2) \). The signal depends of course on the employee’s true competence, but has unbiased noise with variance \(\sigma^2 \). Thus, \(\sigma \) captures the uncertainty in the performance measure.

After observing the signal of employee performance, the manager issues a rating
$z_i \in \mathbb{R}$ to employee i. We assume the utility of the manager takes the form

$$U_M(z_i) = \begin{cases}
-\lambda(x_i - z_i) & \text{if } z_i < x_i \\
-(z_i - x_i) & \text{otherwise},
\end{cases} \quad (1)$$

with $\lambda > 1$. This reflects a scenario in which the manager would like to issue a rating equal to the employee’s true competence, but the manager feels worse about issuing a rating that is undeservedly low than about issuing a rating undeservedly high.\(^3\) Presumably, the manager’s primary goal is to assign ratings fairly, but the manager may also sympathize somewhat with the employee or may not want to discourage the employee, or may wish to ingratiate him or herself with the employee. These secondary goals produce an asymmetry in the manager’s utility function that is captured by the factor λ. If the performance evaluation is used to determine employee compensation in a tournament or in some other incentive contract, then Equation 1 with $\lambda > 1$ is appropriate when the manager is not the residual claimant of the employee’s value added. Usually this is the case (Prendergast & Topel, 1993). In section 5 we derive equation (1) in the context of incentive contracting by assuming the manager’s secondary preference is due to altruism for the employee, but by assuming equation (1) for now we are not yet committing to any one particular source for the asymmetry in the manager’s utility.

Finally, note that if there was no uncertainty in the performance measure, i.e., if

\(^3\)In cases where the manager feels worse about undeserved high ratings than undue low ones, we would have $\lambda < 1$, and we would predict rating deflation. This might occur if, for example, the manager is personally responsible for the compensation package determined by the evaluation.
σ = 0, the manager would know the employee’s true competence \(x_i \) and would issue a perfectly accurate and unbiased rating \(z_i = y_i = x_i \).

4 Leniency Bias and Centrality Bias

A manager’s rating strategy is a function \(\zeta : \mathbb{R} \to \mathbb{R} \) where \(z_i = \zeta(y_i) \). The manager updates her belief about the employee’s true competence using Bayesian inference. She then chooses a rating contingent on this inference. Her selfishly optimal rating maximizes her utility function.

Theorem 1 The rule for determining the rating \(z_i \) is

\[
\zeta(y_i) = \bar{x} + (y_i - \bar{x}) \frac{\theta^2}{\sigma^2 + \theta^2} + \sqrt{2} \frac{\sigma^2 \theta^2}{\sigma^2 + \theta^2} \text{erf}^{-1} \left(\frac{\lambda - 1}{\lambda + 1} \right).
\]

A straightforward proof is in the appendix. Note that \(\text{erf}(t) = \frac{2}{\sqrt{\pi}} \int_0^t e^{-s^2} ds \) is the error function, which is necessary to express the cumulative distribution function of a normal distribution.

The second term in equation (2) depends on the performance signal that the manager observes. The normalization factor of \(\frac{\theta^2}{\sigma^2 + \theta^2} \) appears because the performance signal is inherently noisy and the manager should discount the magnitude of the signal to account for this noise. The manager knows that the variance of performance signals in the population is \(\text{var}(y_i) = \sigma^2 + \theta^2 \) whereas the variance of competence is only \(\text{var}(x_i) = \theta^2 \). Thus, to balance dispersion caused by the noisy signal, an employee’s
expected rating conditional on his true competence is compressed towards the mean. While this compression is in accordance with Bayes rule, it nevertheless generates centrality bias. The manager’s ratings, as we will see, end up with less variance than the actual employee competence.

The last term in equation (2) is the source of the leniency bias. The manager’s best estimate of the employee’s true competence after seeing the performance signal is \(\bar{x} + (y_i - \bar{x}) \frac{\theta^2}{\sigma^2 + \theta^2} \), but the manager adds into the rating this additional term that is positive for \(\lambda > 1 \). The amount of inflation is increasing in \(\sigma \), in \(\theta \), and in \(\lambda \). Intuitively, the greater the aversion to underrating the employee (relative to overrating him), the more the manager will inflate the rating. Similarly, the more uncertain the manager is about employee competence, the more she will inflate the rating to reduce the chance of an underrating.

We thus obtain the following predictions (for \(\lambda > 1 \)):

Corollary 1 An employee’s expected rating, conditional on his true competence \(x_i \), is increasing linearly in his competence, with compression towards the mean \(\bar{x} \) and inflation (addition of a positive constant).

Corollary 2 Leniency Bias: The average rating in the population exceeds average competence and is increasing in signal noisiness \(\sigma \), in employee heterogeneity \(\theta \), and in preference asymmetry \(\lambda \).

Corollary 3 The Lake Wobegon Effect: The fraction of the population rated above average competence is greater than one half and is increasing in signal noisiness \(\sigma \).
and in preference asymmetry \(\lambda \), but decreasing\(^4\) in employee heterogeneity \(\theta \).

Corollary 4 Centrality Bias: The distribution of assigned ratings has lower variance than the underlying distribution of competence. The variance in ratings is actually decreasing with the signal noisiness \(\sigma \).

Theorem 1 and Corollaries 1-4 capture the leniency and centrality biases, as documented by Bretz et al. (1992), Bol (2011), Jawahar and Williams (1997), Moers (2005) and Prendergast (1999). These results also accord with additional empirical findings characterizing these effects. For example, Corollary 2 indicates that leniency biases depends on the noise in the performance signal provided by the employee, as documented by Bol (2011). Likewise, the dependence of leniency bias on \(\lambda \) matches the empirical finding that leniency bias increases with the strength of the manager-employee relationship (Bol, 2011; Jawahar & Williams, 1997; Lawler, 1990; Murphy & Cleveland, 1991).

Note that leniency bias is not simply a trivial implication of this preference asymmetry. We could construct a bimodal distribution of competence, with low-competence types more common than high-competence types, such that for a sufficiently noisy signal the average rating would be below average competence, despite the aversion to unfairly low ratings. Of course, such a peculiar distribution of competence would have no empirical basis.

\(^4\)While leniency bias is increasing in employee heterogeneity, so is the distance of a below-average employee from average competence ratings. Intuitively, with greater variance in competence, less of the population should be able to make the jump to above average.
Example To illustrate how ratings become compressed and inflated despite the manager’s preference for an accurate evaluation, we provide a numerical example with convenient parameter values. We take the average competence in the population to be $\bar{x} = 50$ and the distribution to have standard deviation $\theta = 8$. We consider the manager, Alice, to be using a noisy performance measure with standard deviation $\sigma = 6$ and to have an aversion to undeservedly low ratings (relative to undeservedly high ones) captured by $\lambda = 6$. Alice would prefer her ratings of her employees to match their competence levels, but she does not know their actual competences, and she considers it six times worse to underrate than to overrate. Suppose she observes one employee, Barry, and his performance appears to reflect a competence of $y_{Barry} = 60$. Barry appears to be a good worker – Alice finds his performance signal to be one standard deviation above the average. Suppose another employee, Bob, appears to be a poor worker, with $y_{Bob} = 40$. Clearly, Alice judges Barry to be better than Bob. But how much of Barry’s strong performance (and Bob’s weak one) can she attribute to his competence as opposed to good (or, in Bob’s case, bad) luck? And, moreover, what if she is wrong?

As a Bayesian, Alice knows the best estimate (given the standard deviations above) is to attribute 36% of the variation in signals to noise, leaving 64% to be explained by differences in competence. Maybe she caught Barry on a good day and Bob on a bad day. Her best estimate of Barry’s competence would be 56.4 and Bob’s would be 43.6. Both of these estimates are compressed towards the mean, 50. But Alice does not use only her best estimate in order to determine a rating. It is possible
her best estimate is too high or too low. If it is too high, that is bad, but if it is too low, that is much worse. She would like to decrease the chance that she underrates her employees even though that means increasing the chance that she overrates them. To maximize her expected utility, she inflates each estimate by 5.1, rating Barry at $z_{Barry} \approx 61.5$ and Bob at $z_{Bob} \approx 48.7$. That is, even though it’s more likely that noise helped Barry rather than hurt him, Alice considers both scenarios possible and is concerned enough about the latter scenario that she issues a rating even better than the signal that she observed. But Bob’s rating is boosted even higher, relative to his performance signal, because it is probable that his signal did not do him justice.

For symmetry, we chose Barry to generate a performance signal one standard deviation above the average and Bob one standard deviation below. We can now observe leniency bias in their ratings. While their (expected) average competence is 50, the average of their ratings is 55.1. We can also observe centrality bias in their ratings. Their ratings differ from the average rating by 6.4 in each direction. This is less than one standard deviation in the distribution of competence, which we took to be 8. If Alice could somehow introduce a better accounting system and reduce the noise in her performance measure, she would be able to reduce the leniency bias and the centrality bias distorting her evaluations. As we will see in the subsequent section, this would improve employee performance and firm productivity.
5 Incentive Contracts

When offering an incentive contract with compensation based on a manager’s subjective evaluation, a sophisticated employer accounts for the manager’s biased ratings. The employer (the principal) utilizes an incentive contract to align the incentives of an employee (the agent) facing moral hazard in deciding how much effort to exert on the job. When effort is not observable objectively, it is not directly contractible, and an additional agent (the manager) may be tasked with evaluating the employee’s performance. The employment contract may specify that pay depends on this subjective evaluation, and this evaluation may also inform the employer about ongoing training and development and hiring needs, thereby directly contributing to organizational capital. Employees may vary in their ability, and it may be impossible to distinguish ability from effort generally.

Now, suppose employee (i’s) competence $x_i \in \mathbb{R}$ is the (weighted) sum of ability and effort, $x_i = a_i + \rho e_i$. Ability is normally distributed in the population with mean \bar{a} and variance θ^2, i.e., $a_i \sim N(\bar{a}, \theta^2)$. Effort $e_i \in \mathbb{R}$ is a choice variable for the employee. As in Section 3, the manager observes a noisy signal of the employee’s performance $y_i \sim N(x_i, \sigma^2)$ and issues a rating $z_i \in \mathbb{R}$ to maximize her own utility.

The rating z_i is contractible performance measure, whereas neither competence

\[\text{Details about the implementation of an optimal contract, i.e., whether it may be incomplete or implicit, are beyond our scope.} \]

\[\text{See Prescott & Visscher (1980) and Jovanovic (1979), seminal works modeling organizational capital derived from employee job fit.} \]
nor effort is contractible, and their effect on total firm value is too diffuse to be a useful measure. A contract between the employer and the employee will specify the wage as a function of the manager’s rating, \(w_i = f(z_i) \). For illustration, we suppose the value to the firm of the employee’s contributions is \(V(x_i) = e^{kx_i} \). We adopt this exponential functional form because it seems reasonable that value created is convex in competence, as the marginal productivity of effort should be increasing in ability, and because it guarantees that the employee’s value is positive. We also suppose there is loss in organizational capital from an inaccurate performance evaluation. This loss is increasing in the magnitude of the error, captured as \(L(|z_i - x_i|) \) for some “well-behaved” increasing function \(L \). The employer’s profit is then \(\Pi = V(x_i) - L(|z_i - x_i|) - w_i \).

Employee utility is assumed to be an additively separable function of wealth and effort exertion. We consider risk averse employees with Bernoulli utility for wealth \(\ln(w_i) \) satisfying constant relative risk aversion. The cost of effort \(c(e) \) is increasing and convex, with \(\lim_{e \to e_{\min}} c'(e) = 0 \), \(\lim_{e \to e_{\max}} c'(e) = \infty \), and \(c''(e) > 0 \) for all \(e \).

7See Section 2 for a discussion of the limitations of objective measures of performance in employee appraisal. Additionally, for analysis demonstrating the inefficiency of constructing incentives based on total firm value, see Feltham and Xie (1994).

8For tractability we impose the technical condition that \(L \) increases without bound, but the convolution of \(L(| \cdot |) \) with a normal distribution always exists. We could allow \(L \) to asymptote, but then we would need to restrict some other parameters (e.g., taking \(\eta \) (introduced later) to be small enough or the cost function \(c \) to be growing quickly enough) in order to guarantee that employer’s profit has a well-defined maximum.

9We can think of the cost of effort as net of intrinsic motivation, but by assuming utility is
Thus, $U_E = \ln(w_i) - c(e_i)$.

We suppose the manager is intrinsically motivated to do a good job (Likert, 1961), i.e., to report an accurate evaluation, but is also altruistic towards the employee. (As discussed earlier, there could be many reasons for the asymmetry in aversion to unfair ratings, from the desire to boost employee morale to the desire to avoid conflict, but for the sake of parsimony we focus on the manager’s sympathy for the employee.) We have $U_M = -|z_i - x_i| + \eta U_E$, where $\eta > 0$ indicates the degree of altruism (relative to the degree of intrinsic motivation).

We assume the employee (and obviously the employer as well) does not know his own ability when agreeing to a contract (as in Tsoulouhas & Marinakis, 2007). The employee then discovers his type after agreeing to a contract, but before deciding how much effort to exert on the job. If agents knew their type before agreeing to a contract, there would be adverse selection in choosing from a menu of contracts, with low-ability types trying to imitate high-ability types and high-ability types trying to distinguish themselves (Bhattacharaya & Guasch, 1988; Levy & Vukina, 2002; O’Keeffe, Viscusi, & Zeckhauser, 1984; Riis, 2010). It would be efficient for employees to sort themselves and avoid exposure to the uncertainty surrounding their true ability, and we expect employees would obtain credentials to signal their ability (Lazear & Rosen, 1981).

As we are interested in retaining heterogeneity in employee performance, we consider additively separable in wealth and effort, we would then be disregarding the possibility that monetary incentives might crowd out intrinsic motivation, as suggested by Deci (1972), Benabou & Tirole (2006), Gneezy, Meier, & Rey-Biel. (2011), Heyman & Ariely (2004), to name a few.
the case in which sorting contracts by ability is impossible. While we would generally assume that agents know their own type when one’s type determines one’s preferences, in models in which one’s type refers to one’s quality, it is quite reasonable to assume a lack of self-knowledge (Kruger & Dunning 1999).

We consider contracts of the form \(w_i = \alpha e^{\beta z_i} \) with \(\alpha \geq 0 \) and \(\beta \geq 0 \). An exponential contract of this form would be optimal if the manager was observing perfect noiseless signals of employee performance (Edmans & Gabaix, 2011). When employees cannot predict their eventual compensation precisely due to noisy performance signals, some such functional form assumption is necessary for tractability. The common linear contract is only appropriate given rigid assumptions about the employee’s utility from money (Holmstrom & Milgrom, 1987), which we find less reasonable for many reasons. Structuring compensation through a promotion tournament or with stock options leads to convex, not linear, incentives. Murphy (1999) argues that a log-linear relationship between compensation and performance (i.e., an exponential contract) is empirically more relevant (Edmans & Gabaix, 2011), as it is a percentage change in pay, not an absolute change, that is best correlated with a percentage change in firm value. Also, in our setting a linear contract would allow for unbounded negative wages.\(^{10}\)

Given this exponential contract form, the manager’s utility \(U_M \) can, after a positive linear transformation, be expressed as in Equation (1) with \(\lambda = \frac{1+\eta \beta}{1-\eta \beta} \). Of course, it remains for us to show that in equilibrium \(\eta \beta < 1 \).

\(^{10}\)Additionally, an exponential contract generates a lognormal distribution of wages in our model. This too has empirical support (Lydall, 1968).
We suppose that the labor market is competitive and there is just a single employer. In equilibrium employees are indifferent between accepting the contract or taking an outside option with utility normalized to 0. The employer offers the contract that maximizes its profit subject to this constraint.

Theorem 2 In equilibrium, restricting to contracts of the form \(w_i = \alpha e^{\beta z_i} \), the employer offers (and the employee accepts) a contract with

\[
\beta = \arg \max_{\beta \geq 0} \left\{ e^{\frac{1}{2}k^2\theta^2 + k(\bar{a} + \rho e^*)} - e^{\frac{1}{2}k^2\frac{\theta^2}{\sigma^2 + \theta^2} + c\left((e^*)^{-1}\left(\beta \rho \frac{\theta^2}{\sigma^2 + \theta^2}\right)\right)} - E[L(\Delta)] \right\}
\]

(introducing the random variable \(\Delta \sim N\left(\sqrt{2\frac{\sigma^2\rho^2}{\sigma^2 + \theta^2}}\right) \) in Equation (3) above) and

\[
\alpha = \exp \left(c(e^*) - \beta \left[\bar{a} + \rho e^* + \sqrt{2\frac{\sigma^2\theta^2}{\sigma^2 + \theta^2}} \text{erf}^{-1}\left(\eta \beta\right) \right] \right).
\]

All employees exert effort \(e^* = (e^*)^{-1}\left(\beta \rho \frac{\theta^2}{\sigma^2 + \theta^2}\right) \). The optimal effort level is independent of ability. Employee competence is normally distributed, \(x_i \sim N(\bar{x}, \theta^2) \), with mean \(\bar{x} = \bar{a} + \rho e^* \). The manager’s rating function for determining \(z_i \) is given by

\[
\zeta(y_i) = \bar{x} + (y_i - \bar{x}) \frac{\theta^2}{\sigma^2 + \theta^2} + \sqrt{2\frac{\sigma^2\theta^2}{\sigma^2 + \theta^2}} \text{erf}^{-1}\left(\eta \beta\right),
\]

in accordance with Equation (2) from Theorem 1.

The proof, which relies on backward induction, is in the appendix. The fact that optimal effort is independent of ability may be surprising, considering that ability and effort interact here. However, it turns out that the employee’s marginal utility
of increased wages from increased effort is constant, so the optimal effort level is the same for all employees, depending only on the marginal disutility of effort.

Theorem 2 has many implications that accord with substantial empirical evidence. For example, it is well known that managers are more likely to distort their evaluations when money is on the line (Jawahar & Williams, 1997; Landy & Farr, 1980; Murphy & Cleveland, 1991). Indeed, the assumptions of Theorem 2 do not pin down whether in fact pay will depend on performance ($\beta > 0$) or not ($\beta = 0$) – it depends on parameter values – but the theorem does imply that subjective evaluations will be inflated when they affect wages whereas leniency bias will vanish when pay is independent of performance.

The leniency bias and centrality bias in the manager’s performance rating affect the contract that the employer and employee agree upon. Centrality bias has a straightforward consequence. Knowing that the eventual evaluation will be compressed toward mean competence, the employee has less incentive to put in effort. The employer may mitigate this problem by offering a contract with stronger or weaker performance incentives (a new value of β), but the net result is lower effort, lower performance, and a lower expected wage. In addition to the decline in wage from poorer job performance, there is also a decline because compression of ratings decreases the variance in the wage, and the employee then requires less compensation for exposure to risk.

Leniency bias has a somewhat more complicated effect. The direct impact is to increase the expected wage, but recognizing that there will be leniency bias, the em-
ployer and employee agree to a contract that pays the employee proportionately less, i.e., \(\alpha \) decreases with leniency bias. These two effects precisely balance out. Additionally, though, leniency bias makes performance evaluation less useful for research and employee development purposes, causing a decline in organizational capital. The employer, to the extent it cares about the employee development objective, mitigates the loss in organizational capital by decreasing the performance incentives in the employee’s contract (lower \(\beta \)), thereby reducing the altruistic manager’s desire to be lenient. The weaker performance incentives naturally lead to lower effort, worse employee performance, and a lower expected wage.

We thus obtain the following comparative statics.

Corollary 5 While \(\beta > 0 \):

1. **The greater the manager’s altruism, the more leniency bias we should observe, and in turn, weaker performance incentives, poorer employee performance, and lower overall wages.** (As \(\eta \) increases, \(E[z_i - x_i] \) increases, but \(\beta, x_i, \) and \(w_i \) decrease.\(^{11}\))

2. **The more the employer cares about the organizational capital accruing from performance evaluation, the weaker the employee performance incentives, and in turn there is less leniency bias, poorer employee performance, and lower**

\(^{11}\)When we say that \(x_i \) or \(w_i \) increases (decreases), we mean that the distribution (of \(x_i \) or \(w_i \) respectively) shifts so that the new distribution first-order stochastically dominates (is dominated by) the old one.
overall wages. (As we magnify the function L (i.e., $L \rightarrow \gamma L$ for $\gamma > 1$), we find that β, $E[z_i - x_i]$, x_i, and w_i all decrease.)

3. The more valuable the employee’s work, the stronger the performance incentives, and in turn there is more leniency bias, better employee performance, and higher overall wages. (As k increases, β, $E[z_i - x_i]$, x_i, and w_i all increase.)

4. Uncertainty in the performance measure exacerbates both centrality bias and leniency bias. (As σ increases, $E[z_i - x_i]$ increases and $\text{var}(z_i)$ decreases.) Depending on parameter values, the employer may respond to a noisier performance signal by specifying stronger or weaker performance incentives in the contract. In either case, the actual incentive to exert effort is weaker (because even if the contract ramps up incentives, it does not completely counterbalance the manager’s compression of ratings), so employee performance becomes worse with noisier performance measures. (As σ increases, x_i decreases.) In the case that performance incentives become weaker in more uncertain environments, then of course the expected wage decreases as well. (If σ increases and β decreases, then $E[w_i]$ decreases.)

We should emphasize that we find an ambiguous relationship between uncertainty about performance and the degree of pay-for-performance in employee compensation. Whereas the traditional model identifies a negative relationship due to the trade-off between incentivizing the employee and exposing him to risk, we might obtain such a negative relationship for the same reason or because of the tradeoff between
incentivizing the employee and distorting performance evaluation (by exacerbating leniency bias), but we might also obtain a positive relationship due to centrality bias— in more uncertain environments it takes stronger incentives to get the employee to put in even close to the same level of effort. Indeed, various empirical studies have found a positive relationship, a negative relationship, or the absence of any clear relationship between uncertainty and incentives, depending on the domain (see Prendergast, 2002).

Some of the comparative statics that we obtain are straightforward. It is not surprising that more valuable employees would be offered stronger incentives and that these incentives would improve performance. We also identify a tradeoff for the employer between using the evaluation to incentivize the employee to perform or getting more accurate evaluations to inform human resources management. This tradeoff has natural consequences, although we suspect that if we made explicit how this organizational capital contributed to firm value (instead of treating the mechanism as a black box), we might well have found that employee performance actually improves the more the employer values organizational capital.

Our finding that altruism on the manager’s part has the perverse effects of hurting employee performance and decreasing wages is counterintuitive. It should be acknowledged that the manager’s altruism does not make the employee worse off in utility terms. Market forces drive employees’ expected utility to that of their outside options, regardless of altruism. We would chalk up to the law of unintended consequences that the manager’s desire to help the employee turns out, in equilibrium, to
make the employee no better off and to actually harm the employer.

Of all the comparative statics described in Corollary 5, the pernicious effects of performance measure uncertainty are especially worth recognizing. By exacerbating the biases that plague subjective performance evaluation, noise in the performance signal not only costs the employer a direct loss in organizational capital from lost information, but also demotivates employees leading to poorer performance and a loss in productivity. Coming up with better subjective performance measures would thus directly, and indirectly, benefit the firm.

6 Conclusion

Noise in the performance signal and a stronger aversion to unfairly low ratings than to overly high ones together bring a manager to inflate performance evaluation ratings. We need not assume the manager desires an inflated profile of ratings. The manager may well wish to have accurate, unbiased ratings, but if noisy signals are inevitable, the manager may still introduce an upward bias to counteract the inherent imprecision of the performance signal. Experimental evidence that asymmetric fairness considerations boost performance evaluations provides some degree of corroboration for our proposed model (Bol & Smith, 2011). Further support comes from a field study finding that higher information gathering costs in conjunction with strong employee-manager relationships increase performance evaluation bias (Bol, 2011). In our model both the amount of noise in measuring performance and the degree of asymmetry in
preferences over ratings error contribute to the size of the bias in the manager’s selfishly optimal rating. This suggests that extreme leniency in performance evaluation can be mitigated by defining more concrete, unambiguous evaluation criteria.12

While an objectively measurable performance signal may occasionally determine compensation directly, often a subjective judgment of employee performance must be made (Baker et al., 1994). In such cases, a manager’s incentives will influence the rating given to the employee (Prendergast & Topel, 1993). An incentive compatible mechanism for the manager to report unbiased performance signals must go beyond simply creating a preference for accurate ratings. A manager with other-regarding preferences will still introduce bias into the performance evaluation to the extent that the performance signal is imprecise and noisy and the extent that the evaluation will affect compensation. The biases introduced into a subjective performance evaluation can be accounted for by a sophisticated employer and employee and thus affect the contract determining compensation. In turn, leniency bias and centrality bias end up demotivating the employee, leading to poorer performance and lower profit.

The framework we present highlights the relevance of two non-standard variables in subjective performance evaluation. Ratings are sensitive to both the relationship between rater and the employee, and purpose of the evaluation itself. Higher altruism for the employee generates increased inflation. Likewise, ratings that affect the employee’s welfare (such as those that determine wages) will be more inflated than

12Indeed, a due-process performance appraisal system can reduce the ambiguity in performance measures and thereby decrease leniency bias (Taylor, Tracy, Renard, Harrison, & Carroll, 1995).
ratings that serve some other informational purpose for the firm (such as those for research or employee development). While these variables are largely ignored in most theoretical work on performance evaluation and contracting, they do impact actual evaluations.

Our framework also emphasizes the role of noise in the performance signal, as a determinant of performance evaluation distortion. Instead of merely adding variance to the manager’s estimates of the employee’s competence, dispersion in the signal generates both systematic inflation and compression. One effective way to combat these distortions is thus simply to reduce the noise in the performance signals. Raters who are certain of the true value of the employee’s competence will not inflate or compress their ratings and will provide the firm with accurate performance evaluations.

Our first comparative static in Corollary 5 raises the possibility that firms might try to hire managers who specifically are less altruistic in order to reduce leniency bias. We caution that this comparative static relies on managers having a fixed intrinsic motivation to do a good job, but we have no reason to believe that altruism and workplace conscientiousness are uncorrelated traits. We might perhaps recommend firms look for conscientious managers, but we expect they already do so. In the other direction, of course, malicious managers with utility decreasing in employee compensation would also produce biased evaluations (deflation of ratings rather than inflation), so these types should indeed be avoided. We are most comfortable in recommending the development of more precise subjective performance evaluation systems, acknowledging altruism as inevitable. Setting clear guidelines for managers
and carefully specified criteria for employees could reduce noise in evaluations and thus mitigate performance evaluation biases.

Although we have focused on the simple case where managers provide a single subjective rating of the employee’s competence, the evaluation biases we study apply to more complex domains as well. For example, settings in which managers are able to specify the performance measures that will objectively determine employee evaluation and compensation are also susceptible to leniency and centrality biases. Managers would systematically bias not the rating itself, but the weights placed on the measures that determine the rating. Indeed, Ittner, Larcker, & Meyer (2003) document leniency bias for subjectively weighted balanced scorecard measures.

The formal model we develop could also be applied outside the context of employee performance evaluations. In a laboratory study of motivated communication, there is more inflation of reported evaluations when there is greater uncertainty about the true value of a noisy variable (Schweitzer & Hsee, 2002). Moving outside of the lab, financial analysts exhibit leniency bias when rating securities (Michaely & Womack, 1999), and this bias is known to be increasing in the uncertainty of earnings forecasts (Ackert & Athanassakos, 1997; Das, Levine, & Sivaramakrishnan, 1998). Our model is consistent with these findings, though certainly not conclusive as we have less intuition supporting fairness as the primary motive of financial analysts (Fischer & Verrecchia, 2000). Jurors also exhibit a leniency bias when reaching unanimous verdicts, as compared with solitary decisions, with a reasonable-doubt standard of proof, but not with a preponderance-of-evidence standard (MacCoun & Kerr, 1988). Ex-
posure to contrasting opinions during group deliberation might increase uncertainty about the correct verdict, and if we associate a reasonable-doubt standard with a stronger aversion to convicting an innocent person than to acquiting a guilty one and a preponderance-of-evidence standard to symmetric fairness preferences, then our model predicts leniency bias here as well.

Appendix

Proof of Theorem 1

Straightforward application of Bayes’ Law yields the posterior density \(p(x_i|y_i) \sim N(\bar{x} + (y_i - \bar{x}) \frac{\theta^2}{\sigma^2 + \theta^2}, \frac{\sigma^2 \theta^2}{\sigma^2 + \theta^2}) \) (see Gelman, Carlin, Stern, & Rubim, 2004, pg. 46). For a given \(y_i \), the expected utility from rating \(z_i \) is

\[
E[U(z_i)] = \int_{-\infty}^{z_i} -(z_i - x_i) p(x_i|y_i) dx_i + \int_{z_i}^{\infty} -\lambda(x_i - z_i) p(x_i|y_i) dx_i.
\]

The first order condition for a selfishly optimal rating is then

\[
\frac{d}{dz_i} E[U(z_i)] = -\int_{-\infty}^{z_i} p(x_i|y_i) dx_i + \lambda \int_{z_i}^{\infty} p(x_i|y_i) dx_i = \lambda - (\lambda + 1) \frac{1}{2} \left[1 + \text{erf} \left(\frac{z_i - \bar{x} - (y_i - \bar{x}) \frac{\theta^2}{\sigma^2 + \theta^2}}{\sqrt{2 \frac{\sigma^2 \theta^2}{\sigma^2 + \theta^2}}} \right) \right] = 0.
\]

Equation (2) is found by inverting to solve for \(z_i \).
Proof of Corollaries 1-4

1. Integrate over the performance signal to find that an employee’s expected rating conditional on his true competence x_i is

$$E[\zeta(y_i \mid x_i)] = \bar{x} + (x_i - \bar{x}) \frac{\theta^2}{\sigma^2 + \theta^2} + \sqrt{\frac{2\sigma^2\theta^2}{\sigma^2 + \theta^2}} \text{erf}^{-1} \left(\frac{\lambda - 1}{\lambda + 1} \right).$$

2. Integrating over the performance signal and the competence level reveals that the average rating in the population is $\bar{x} + \sqrt{\frac{2\sigma^2\theta^2}{\sigma^2 + \theta^2}} \text{erf}^{-1} \left(\frac{\lambda - 1}{\lambda + 1} \right)$.

3. As there is a normal distribution of performance signals across the population, the fraction of employees rated above average competence is

$$\Pr(z_i > \bar{x}) = \Phi \left(\sqrt{2} \frac{\sigma}{\theta} \text{erf}^{-1} \left(\frac{\lambda - 1}{\lambda + 1} \right) \right) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\sigma}{\theta} \text{erf}^{-1} \left(\frac{\lambda - 1}{\lambda + 1} \right) \right) \right].$$

4. The variance in ratings is $\text{var}(z_i) = \frac{\theta^4}{\sigma^2 + \theta^2} < \theta^2$.

Proof of Theorem 2

Given that $x_i \sim N(\bar{x}, \theta^2)$ and $\beta < \frac{1}{\eta}$, we obtain the manager’s rating function in Theorem 1 with $\lambda = \frac{1+\eta^3}{1-\eta^3}$, which is explicitly given by Equation (5). (If $\beta \geq \frac{1}{\eta}$, then the manager would give every employee the maximal (infinite) rating. This obviously does not take place.)

Given the contract parameters and the manager’s rating function, an employee with ability a_i chooses effort e_i (and thus competence $x_i = a_i + \rho e_i$) to maximize $E[\ln(\alpha e^{\beta \zeta(y_i)})] - c(e_i)$ where y_i is of course a stochastic function with mean x_i.
The first order condition is then \(\beta \rho \frac{\theta^2}{\sigma^2 + \theta^2} = c'(e_i) \). The convexity of \(c(\cdot) \) implies this is indeed a maximum of expected utility, and the range of \(c'(\cdot) \) from 0 to \(\infty \) guarantees that there is a solution: \(e_i = (c')^{-1}\left(\beta \rho \frac{\theta^2}{\sigma^2 + \theta^2}\right) \) for all \(i \). We denote this equilibrium effort level \(e^* \). Because ability is normally distributed across employees and all employees choose the same effort level regardless of ability, competence is then also normally distributed.

An employee’s expected utility if he agrees to the contract (not knowing his own ability) is

\[
U_E = \ln \left(\alpha e^{\beta \left(\bar{x} + \sqrt{\frac{2 \theta^2}{\sigma^2 + \theta^2} \operatorname{erf}^{-1}(\eta \beta)}\right)} \right) - c(e^*),
\]

after averaging over his ability and the signal the manager receives. In a competitive labor market with an outside option yielding 0 utility, \(U_E = 0 \). Thus,

\[
\ln(\alpha) + \beta \left(\bar{x} + \sqrt{\frac{2 \theta^2}{\sigma^2 + \theta^2} \operatorname{erf}^{-1}(\eta \beta)}\right) - c(e^*) = 0.
\]

Solving for \(\alpha \) yields Equation (4).

The employer determines \(\beta \) (and implicitly \(\alpha \)) to maximize expected profit. We integrate with respect to the cumulative distribution functions \(P_{y|x}(y_i|x_i) \) and \(P_a(a_i) \) for the manager’s signal given employee competence and for employee ability to find expected profit:

\[
\Pi(\beta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{k(\alpha_i + \rho e^*(\beta))} - \alpha(\beta) e^{\beta \left((y_i - \bar{x}) \frac{\theta^2}{\sigma^2 + \theta^2} + \bar{x} + \sqrt{\frac{2 \theta^2}{\sigma^2 + \theta^2} \operatorname{erf}^{-1}(\eta \beta)} \right)}
\]

\[
- L \left((y_i - \bar{x}) \frac{\theta^2}{\sigma^2 + \theta^2} + \bar{x} + \sqrt{\frac{2 \theta^2}{\sigma^2 + \theta^2} \operatorname{erf}^{-1}(\eta \beta)} - (a_i + \rho e^*(\beta)) \right) dP_{y|x}(y_i|a_i + \rho e^*) dP_a(a_i)
\]

\[
= e^{\frac{1}{2}k^2 \theta^2 + k(\bar{a} + \rho e^*(\beta))} - \alpha(\beta) e^{\frac{1}{2} \beta^2 \frac{\theta^2}{\sigma^2 + \theta^2} + \bar{x} + \sqrt{\frac{2 \theta^2}{\sigma^2 + \theta^2} \operatorname{erf}^{-1}(\eta \beta)}} - E[L(|\Delta|)]
\]
where we have introduced the random variable $\Delta \sim N\left(\sqrt{\frac{2 \sigma^2 \theta^2}{\sigma^2 + \theta^2}} \text{erf}^{-1}(\eta \beta), \frac{\sigma^2 \theta^2}{\sigma^2 + \theta^2}\right)$.

Plugging in for the functions $e^*(\beta)$ and $\alpha(\beta)$, we have

$$
\Pi(\beta) = e^{\frac{1}{2} k^2 \theta^2 + k(\bar{a} + \rho(c')^{-1}(\beta \rho - \sigma^2 \theta^2))} - e^{\frac{1}{2} \beta^2 \theta^4 + c(c')^{-1}(\beta \rho - \sigma^2 \theta^2)} - E[L(\Delta)]
$$

To guarantee $\Pi(\beta)$ attains a maximum on $\beta \in [0, \frac{1}{\eta}]$, we observe that $\lim_{\beta \to \frac{1}{\eta}} \Pi(\beta) = -\infty$ because the expected loss in organizational capital blows up. Thus, Equation (3) is well-defined.

References

