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Abstract

A deterministic learning model applied to a game with multiple equilibria pro-

duces distinct basins of attraction for those equilibria. In symmetric two-by-two

games, basins of attraction are invariant to a wide range of learning rules includ-

ing best response dynamics, replicator dynamics, and fictitious play. In this paper,

we construct a class of three-by-three symmetric games for which the overlap in the

basins of attraction under best response learning and replicator dynamics is arbitrar-

ily small. We then derive necessary and sufficient conditions on payoffs for these two

learning rules to create basins of attraction with vanishing overlap. The necessary

condition requires that pure, uniformly evolutionarily stable strategies are almost

never initial best responses. The existence of parasitic or misleading actions allows

subtle differences in the learning rules to accumulate.

KEYWORDS: Adjustment dynamics, attainability, basins of attraction, best re-

sponse dynamics, coordination game, equilibrium selection, evolutionary game, learn-

ing, replicator dynamics.

JEL classification code: C73
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1 Background

The existence of an equilibrium in a game is insufficient proof of its plausibility as

an outcome. We must also describe a process through which players can achieve

it. The distinction between the existence of an equilibrium and its attainability,

and the necessity of the latter, rests at the foundations of game theory. In Nash’s

1951 thesis, he proposed an adjustment dynamic built on a mass action model to

support the convergence to an equilibrium (Weibull, 1996). The Nash adjustment

dynamic relies on self interested behavior to move a population of players toward

equilibrium. Unfortunately, it fails to achieve equilibria for many games. For this

reason, game theorists building on Nash’s original work focused instead on fictitious

play, a learning rule in which players successively choose a pure strategy which is

optimal against the cumulated history of the opponent’s plays (Brown, 1951). More

recent research by economists, psychologists, and theoretical biologists has produced

a variety of adjustment dynamics, many of which fall into two broad categories: belief

based learning and reinforcement based learning.1 In the former, players take actions

based on their beliefs of the actions of others. In the latter, players mimic actions that

have been successful in the past (see Fudenberg and Levine, 1998; Camerer, 2003;

Swinkels, 1993).

In this paper, we focus on two learning dynamics /adjustment processes: continu-

ous time best response dynamics (Gilboa and Matsui, 1991) and replicator dynamics

1These categories also go by the terms epistemic learning and behavioral learning respectively

(Walliser, 1998).
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(Taylor and Jonker, 1978) and explore the extent to which they can differ in their

basins of attraction for symmetric games with strict equilibria. For any two-by-two

symmetric game, these two learning rules produce identical basins of attraction. We

show that by adding a single action, we can produce a game in which these two

learning rules create basins of attraction that have arbitrarily small overlap. In other

words, best response dynamics lead to a different equilibrium than replicator dynam-

ics almost always. Within our class of three-by-three games, the equilibrium found by

the replicator dynamics is a uniformly evolutionarily stable strategy, but it is almost

never the initial best response. The condition that pure, uniformly evolutionarily

stable strategies satisfy this never an initial best response property proves to be a

necessary requirement for the two learning rules to share vanishing overlap in their

basins of attraction for strict equilibria. These results extend to classes of dynamics

that generalize the best response and replicator rules.

To show how these rules can produce such different outcomes, we must first de-

scribe how best response and replicator dynamics model a population of adapting

agents in the aggregate. In general, we assume players are randomly matched from

large population pools. Best response dynamics are a form of belief-based learning

– players’ action choices depend on their beliefs about the actions of other players.

In continuous time best response dynamics, a population of players moves toward a

best response to the current state of the opposing population. Fictitious play relies

on belief-based learning in discrete time. In each period, the rule assigns new beliefs

based on the average play of the opponent. Actions are chosen rationally given those
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beliefs. The best response dynamics can be thought of as the extension of fictitious

play to continuous time (Hofbauer and Sigmund, 2003).2

In contrast to best response dynamics, replicator dynamics are a form of reinforce-

ment learning – actions spread based on their past success (Erev and Roth, 1998).3

Replicator dynamics have ecological foundations: payoffs are analogous to fitness,

and fitter actions are more apt to survive and grow. Note that actions initially not

present in the population can never be tried with replicator dynamics.

In this paper, we consider symmetric matrix games. The learning dynamics thus

operate in a single, large, well-mixed population. In this setting, the continuous

time best response dynamics and replicator dynamics can be derived as the expected

behavior of agents with stochastic protocols for switching their actions (Sandholm,

2009). In the best response dynamics, some infinitesimal proportion of the agents

are always switching their action to match the current best response. The resulting

flows are piecewise linear. In the replicator dynamics, agents copy better performing

members of the population (Schlag, 1998). Players do not rely on beliefs about

the actions of others. They need only know the payoffs of actions they encounter.

Learning by imitation at the agent level thus leads to reinforcement learning at the

2The connection between fictitious play and best response dynamics requires the view that in

fictitious play, a new agent enters the population each round with an action that is fixed forever.

The state variable must then take on an interpretation as the opponent’s population mixed strategy.
3The aforementioned Nash learning rule, or what is now called the Brown - von Neumann -

Nash (BNN) dynamics also can be interpreted as a form of reinforcement learning (Brown and von

Neumann, 1950; Skyrms, 1990).
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population level.

Belief-based learning rules, such as best response, and reinforcement learning

rules, such as replicator dynamics can be combined in a single learning rule called

experience-weighted attraction (EWA) learning (Camerer and Ho, 1999). EWA can

be made to fit either model exactly or to create a hybrid model that balances beliefs

about future plays against past history of success. In experimental tests across a

variety of games, belief-based learning, reinforcement learning, and EWA learning all

predict behavior with reasonable accuracy. EWA outperforms the two pure models,

though this is partly due to the fact that it has more free parameters.

The extant theoretical and empirical literature suggests that often these distinct

learning rules make similar predictions about rates of change of actions and that

for many games, they select identical equilibria. We know, for example, that any

strict pure Nash Equilibrium will be dynamically stable under nearly all learning dy-

namics and that interior evolutionarily stable strategies are globally stable for both

replicator dynamics (Hofbauer et al., 1979) and best response dynamics (Hofbauer,

1995; Hofbauer, 2000). Hopkins (1999) shows that stability properties of equilibria

are robust across many learning dynamics, and, most relevant for our purposes, that

best response dynamics and replicator dynamics usually have the same asymptotic

properties. Best response dynamics and replicator dynamics are both myopic adjust-

ment dynamics – they both flow towards higher immediate payoffs (Swinkels, 1993).

Feltovich (2000) finds that belief-based learning and reinforcement learning generate

qualitatively similar patterns of behavior, as does Salmon (2001), whose analytic sur-
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vey concludes that only subtle differences exist across the various learning rules in

extant experiments. Thus, advocates of each learning rule can point to substantial

empirical support.

Our finding, that the choice of learning rule has an enormous effect on the choice

of equilibrium, points to the importance of determining how people actually learn.

And while the experimental work just mentioned has found this a difficult prospect,

our class of games offers an opportunity to distinguish between different types of

learning. Experiments on our games would have to find one, or possibly both, of the

learning rules to be inconsistent with observed behavior.

Our results may at first seem to contradict the existing current literature. We

want to make clear that they do not. First, many experiments consider two-by-two

games. And as we review here, the two learning rules generate identical basins of

attraction for two-by-two symmetric matrix games. The learning rules differ only in

the time that they take to reach those equilibria. Second, our analysis focuses on

basins of attraction, i.e. we ask which equilibrium is reached given an initial point.

Most of the existing theorems consider stability, i.e. whether an equilibrium is stable

to perturbations. Proving that an equilibrium is stable does not imply anything

about the size of its basin of attraction. An equilibrium with a basin of attraction of

measure epsilon can be stable. Thus, results that strict equilibria are stable for both

replicator dynamics and best response dynamics do not imply that the two dynamics

generate similar basins of attraction.

Conditions on payoff matrices that imply that best response dynamics, replicator
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dynamics, and Nash dynamics all produce similar stability properties need not place

much restriction on basins of attraction, unless the stability is global. Conditions for

global stability of each dynamic, for example if the mean payoff function is strictly

concave (Hofbauer and Sigmund, 2003), imply identical basins of attraction. However,

such conditions also imply a unique stable equilibrium.4 One branch of the learning

literature does consider games in which stability depends on the learning dynamic

(Kojima, 2006) as well as games with distinct basins of attraction for different learning

rules (Hauert et al., 2004). Those models rely on nonlinear payoff structures. Here,

we consider matrix games with linear payoffs.

Of course, in a symmetric rock-paper-scissors game or an asymmetric match-

ing pennies game, best response dynamics converges to the mixed equilibrium while

replicator dynamics cycles. In these games, the mixed equilibrium is attracting un-

der best response dynamics, but is only neutrally stable under replicator dynamics.

Rock-paper-scissors is a knife edge case, where a slight change in payoffs could make

the equilibrium stable under replicator dynamics, but matching pennies illustrates

the inability of replicator dynamics to attain a mixed equilibrium in any asymmetric

game. Our focus here is different. We analyze symmetric games with strict equilibria.

The equilibria are asymptotically stable under both dynamics. We identify divergent

4Similar logic applies to repelling equilibria: if the mean payoff function is strictly convex, then

a possible interior Nash Equilibrium must be repelling for each dynamic. Hofbauer and Sigmund’s

theorem (2003) follows from earlier work with each dynamic (Hofbauer and Sigmund, 1998; Hofbauer,

2000; Hopkins, 1999).
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behavior of the learning rules, not because one rule fails to attain an equilibrium, but

because the two rules select different equilibria.

To prove our results, we consider each possible initial distribution over actions

and then characterize how the various learning rules specify the path of future dis-

tributions. In the games we consider, these continuous flows attain equilibria. Thus,

the equilibrium selected can be thought of as a function of the initial population

distribution of actions and the learning rule.

Our result that the choice of learning rule can determine the equilibrium selected

can be interpreted through the lens of the equilibrium refinement literature (Harsanyi

and Selten, 1988; Govindan and Wilson, 2005; Samuelson, 1997; Basov, 2004). In

games with multiple strict Nash Equilibria, dynamical models with persistent ran-

domness select long run, stochastically stable equilibria, which generalize the notion

of risk dominance from two-by-two games (Foster and Young, 1990; Kandori et al.,

1993). The stochastically stable equilibrium in a 3-by-3 game can vary with the

learning dynamic (Ellison, 2000). Long run stochastic stability depends on the rela-

tive sizes of basins of attraction, given the underlying deterministic dynamic. Thus,

even though we deal with deterministic dynamics only, our result complements the

literature on stochastic stability by further supporting the conclusion that long run

equilibria can be sensitive to how players learn. Our findings establish that the impor-

tance of learning style in equilibrium selection does not strictly rely on the presence

of shocks that shift the population from one equilibrium to another.

The remainder of the paper is organized as follows. In the next section, we define
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the learning rules and show how they generate similar behavior in a simple three-

by-three coordination game. Then, we present our main results, which show that

belief-based learning and reinforcement learning can be very different. In Section 4,

we introduce generalizations of best response and replicator dynamics and extend our

results to these classes of dynamics. We conclude with a discussion of the relevance

of the attainability of equilibria.

2 The Learning Rules

In a population game, the state space for a given population X is the unit simplex 4.

A point x ∈ 4 denotes the fraction of the population playing each action and is thus

called a population mixed strategy. A learning rule for population X operates on the

state space 4 by specifying for any given payoff structure a dynamical system ẋ =

Vπ(x, t) such that 4 is forward invariant, i.e., trajectories stay within the simplex.

We interpret the learning dynamic as tracking the changes in the proportions of agents

choosing the various actions.

We first introduce our learning rules in the context of a two-player game with large

populations X and Y of randomly matched agents with n and m actions respectively.

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be the population mixed strategy vectors.

The component xi (or yi) is the fraction of population X (or Y) choosing action i.

We will refer to the fraction of population X (or Y) choosing an action other than i

as x−i (or y−i). Denote by πµi the payoff a player in population µ gets from action
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i. Of course, payoffs are a function of the opposing population mixed strategy, but

we omit the function’s argument for ease of notation, writing πXi in place of πXi (y).

Denote the vector of these payoffs by ~πµ = (πµ1 , . . . , π
µ
n).

The continuous time replicator dynamics can be written as

ẋi = xi(π
X
i − π̄X)

ẏi = yi(π
Y
i − π̄Y )

where π̄µ is the average payoff in population µ. Specifically, π̄X = x · ~πX and π̄Y =

x · ~πY .

Let BR(y) be the set of best replies to y (for a player in population X),

BR(y) = arg max
v∈4n−1

v · ~πX .

Similarly, the set of best replies to x is:

BR(x) = arg max
v∈4m−1

v · ~πY .

Continuous time best response dynamics can be written as

ẋ ∈ BR(y)− x ẏ ∈ BR(x)− y.

The discrete fictitious play learning rule can be written as

x(t+ 1) =
tx(t) + b(t)

t+ 1

where x(t) is the vector of frequencies each action has been played through period t

and b(t) is a best response to the opponent’s history at this point. Fictitious play
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closely approximates continuous time best response dynamics. To avoid repetition,

we focus on the best response dynamics. Results for best response hold for fictitious

play as well.

This paper focuses on symmetric matrix games. In these games, both players have

the same set of available actions and payoffs are linear. We can define the learning

rules in the context of a single, well-mixed population, suitable for a symmetric game.

The replicator dynamics are

ẋi = xi(πi − π̄).

The superscripts can be dropped because in the single population setting there is no

ambiguity in referring to the payoff to the average payoff π̄ or the payoff to action i,

πi. The best response dynamics are

ẋ ∈ BR(x)− x.

2.1 An Example

To show how to apply these learning rules, we begin with an example of a simple

three-by-three coordination game. In this game, the various learning rules generate

similar basins of attraction. We borrow this game from Haruvy and Stahl (1999; 2000)

who used it to study learning dynamics and equilibrium selection in experiments with

human subjects. The payoff matrix for the Haruvy-Stahl game is written as follows:
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60 60 30

30 70 20

70 25 35

 .

The entry in row i and column j gives the payoff to a player who chooses action i

and whose opponent chooses action j. This game has two strict pure Nash Equilibria:

(0, 1, 0) and (0, 0, 1) as well as a mixed Nash Equilibrium at (0, 1
4
, 3

4
). It can be shown

for both best response dynamics and replicator dynamics that the two pure equilibria

are stable and that the mixed equilibrium is unstable.

Given that this game has three possible actions, we can write any distribution

of actions in the two dimensional simplex 42. To locate the basins of attraction of

each equilibrium, we must first identify those regions of the simplex 42 in which each

action is a best response. This is accomplished by finding the lines where each pair

of actions performs equally well. Let πi be the payoff from action i. We find π1 = π2

when 4x2 + 2x3 = 3, π2 = π3 when 17x2 + 5x3 = 8, and π1 = π3 when 9x2 + x3 = 2.

These three lines determine the best response regions shown in Figure 1.

We can use Figure 1 to describe the equilibrium chosen under best response dy-

namics. Regions A, B, and C all lie the basin of attraction of action 3, while region D

is in the basin of action 2. Note that the boundary of the basins of attraction under

best response dynamics is a straight line.

In Figure 2, we characterize the basins of attraction for replicator dynamics. The

boundary separating the basins of attraction here becomes a curve from the point
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A B C D

1 2

3

Figure 1: Best response regions. In region A, action 3 is the best response. In regions

B and C, action 1 is the best response, but in B π3 > π2, while in C the opposite is

true. In region D, action 2 is the best response.
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1 2

3

Figure 2: Basins of attraction under replicator dynamics.

(1
4
, 3

4
, 0) to (0, 1

4
, 3

4
) entirely within region C of Figure 1. Notice that the basins of

attraction under best response dynamics and replicator dynamics differ. Best response

dynamics creates basins with straight edges. Replicator dynamics creates basins with

curved edges. This curvature arises because the second best action can also grow in

the population under replicator dynamics. As it grows in proportion, it can become

the best response. As a result, the population can slip from one best response basin

into another one. Even so, notice that the difference in the two basins of attraction

comprises a small sliver of the action space. We show this in Figure 3.

In games such as this, the two dynamics not only select the same equilibrium

almost all of the time, but also generate qualitatively similar behavior. If the initial

distribution of actions is close to (0, 1, 0), the dynamics flow to that equilibrium point.
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1 2

3

Figure 3: The small difference between best response and replicator dynamics. The

shaded area flows to action 2 under replicator dynamics, to action 3 with best response

dynamics.
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If not, they flow to (0, 0, 1).

In this game, the two learning rules create similar basins of attraction. Intuitively,

we might expect only these small differences for all games with three actions, given

the similarities of the learning rules. However, as we show in the next section, even

with three-by-three games, the sliver can become almost the entire simplex.

3 Results

We now turn to our main results. We first present the well known fact that best

response dynamics and replicator dynamics are identical for games with two possible

actions. We consider learning dynamics to be identical if the direction of their flows

is the same. This allows for differences in the speed of the flow. We then define a

class of games with three actions in which the two learning rules generate basins of

attraction with vanishing overlap. Within that class of games, an equilibrium action

is almost never the initial best response. We show that to be a necessary condition for

any symmetric game for which the two learning rules almost always lead to different

strict equilibria.

Proposition 1 For symmetric two-by-two matrix games, best response dynamics and

replicator dynamics produce identical dynamics (Fudenberg and Levine, 1998).
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Proof The best response dynamics reduces to

ẋi = xj

ẋj = −xj

when πi > πj, and to ẋ = 0 when they payoffs are equal. The replicator dynamics

reduces to

ẋ1 = (π1 − π2)x1x2

ẋ2 = (π2 − π1)x1x2.

In both dynamics, the action with the higher payoff increases until the two payoffs

become equal or the other action is completely eliminated.

Our first theorem says that there are three-by-three matrix games such that the

two learning dynamics lead to different outcomes, for nearly all initial conditions.

The claim cannot hold for all initial conditions because of the case where the initial

point is a Nash Equilibrium of the game.

Theorem 1 For any ε, there is a three-by-three game such that the fraction of the

space of initial conditions from which best response dynamics and replicator dynamics

lead to the same outcome is less than ε.

We present a proof by construction. Consider the class of games with payoff

matrix
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1 −N −N−1

2−N3 2 2

0 0 0

 . (1)

Lemma 1 For any N > 1, both best response dynamics and replicator dynamics have

two stable fixed points at: x = (1, 0, 0) and x = (0, 1, 0).

Proof Both configurations are strict Nash Equilibria because both actions are strict

best responses to themselves. Thus, a population in which all players take action

1 (resp. 2) would remain fixed. Strict Nash Equilibria are necessarily stable fixed

points of both best response and replicator dynamics. The game also has an interior

Nash Equilibrium which is unstable under either learning rule. These stable fixed

points have to be Nash Equilibria, and no other Nash Equilibria exist.

Note that (0, 0, 1) is not a Nash Equilibrium because action 2 is a best response.

While it is a fixed point with respect to replicator dynamics, it cannot be stable.

Given two stable rest points, the eventual choice of one or the other depends on

the initial distribution of play. The next result shows that for large N , best response

dynamics almost always converge to all players taking action 2. The accompanying

Figure 4 shows the flow diagram for the best response dynamics when N = 5.

Lemma 2 For any ε, there exists M such that for all N ≥M , the basin of attraction

of (0, 1, 0) given best response dynamics is at least 1− ε of the action space.
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Proof First we show any point with x1 >
1
N

and x2 >
1
N

is in the basin of attraction

of (0, 1, 0), assuming N > 2. For such a point, action 3 is initially a best response

because π3 = 0 whereas π1 = x1 −Nx2 − 1
N
x3 < 0 and π2 = 2−N3x1 < 0. Then, as

we show, action 1 never becomes a best response. So, eventually, the dynamic flows

toward action 2.

Because actions which are not best responses have the same relative decay rate,

x1(t)

x1(0)
=
x2(t)

x2(0)

for t such that action 3 is still a best response. So x1(t)−Nx2(t) < 0 for all t because

it holds for t = 0. Action 3 dominates action 1. Action 3 is not a Nash Equilibrium,

so eventually another action must become the best response, and the only candidate

is action 2. Once x1 falls to 2
N3 , action 2 dominates forever.

Thus, by choosing N large enough, the basin of attraction of (0, 1, 0) can be made

as large as desired.

The next lemma shows that for large N , replicator dynamics leads to all play-

ers taking action 1 for almost any initial condition. Figure 5 shows the replicator

dynamics flow pattern when N = 5.

Lemma 3 For any ε, there exists M such that for all N ≥M , the basin of attraction

of (1, 0, 0) given replicator dynamics is at least 1− ε of the action space.

Proof

ẋ1 = x1

(
(x1 −Nx2 −

1

N
x3)(1− x1)− 2x2 +N3x1x2

)
.
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3

1 2

Figure 4: Phase diagram for the best response dynamics in the game used to prove

Theorem 1, setting N = 5. Black (white) circles are stable (unstable) rest points.

Most trajectories initially move towards action 3, but from this corner then flow to

action 2. Figure made by the game dynamics simulation program Dynamo (Sandholm

and Dokumaci, 2007).
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If x1 >
1
N

, then x1− 1
N
x3 > 0. For N > 2, x1 >

1
N

also implies −Nx2(1−x1)− 2x2 +

N3x1x2 > 0 because N3x1 > N2 > N(1− x1) + 2.

So, for N > 2, if x1 >
1
N

, then ẋ1 > 0. This means the replicator dynamics will

flow to action 1.

By choosing N large enough, the basin of attraction of (1, 0, 0) can be made as

large as desired.

Thus, we have proved Proposition 2, that as N approaches infinity, best response

dynamics and replicator dynamics converge to different equilibria.

Proposition 2 In the limit as N → ∞, the Lebesgue measure of the set of initial

starting points for which best response dynamics and replicator dynamics flow to the

same equilibrium tends to zero.

This completes the proof of Theorem 1 above. Notice that in the class of games

used in the proof, neither of the equilibrium strategies is an initial best response

almost anywhere in the action space when N grows large. We say that these strategies

satisfy the Never an Initial Best Response Property for such a sequence of games. To

formally define this property, we must introduce some notation.

Let m be the Lebesgue measure on the action space. Given a vector of parameter

values ~P , let G(~P ) be a class of games with payoffs that depend on those parameters.

Let BR−1(s) be the set of points x for which strategy s is a best response.
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3

1 2

Figure 5: Phase diagram for the replicator dynamics in the game used to prove

Theorem 1, setting N = 5. Most trajectories flow away from action 2 and then

towards action 1. Figure made by the Dynamo program (Sandholm and Dokumaci,

2007).
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Definition Strategy s satisfies the Never an Initial Best Response Property at
~̂
P if

lim
~P→ ~̂

P

m
(
BR−1(s)

)
= 0.

Our next result makes use of the Never an Initial Best Response Property in

establishing a necessary condition for there to be vanishing overlap in the basins

of attraction created by best response dynamics and replicator dynamics. Before

presenting this result, we need to lay down some more groundwork.

Recall that a strict equilibrium of a game is one in which each player’s strategy is

a strict best response to that equilibrium. We now extend the definition of a strict

equilibrium to the limit of a sequence of games. Note that only pure Nash Equilibria

can be strict.

Definition An equilibrium s is strict in the limit as ~P → ~̂
P if for all i such that

si > 0,

lim
~P→ ~̂

P

f(~P ) (πi(s)− πj(s)) > 0 for all j 6= i and some f(~P ) > 0. (2)

Condition (2) is equivalent to the following condition: for all ~P 6= ~̂
P in some neigh-

borhood of
~̂
P ,

(πi(s)− πj(s)) > 0 for all j 6= i.

Strict equilibrium actions are also evolutionarily stable strategies (ESS), as we

can see from Maynard Smith’s original (1974) definition. An equilibrium s is an ESS

if for all s′ 6= s,

s · ~π(s) ≥ s′ · ~π(s),
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with equality implying

s · ~π(s′) > s′ · ~π(s′).

We can think of an ESS as an equilibrium satisfying an evolutionary stability condition

that says that once it is fixed in the population, it will do better than any invading

strategy as long as this invader is rare. Thomas (1985) reformulates this definition to

allow for payoff functions that might be nonlinear.

Definition An equilibrium s is an ESS if for all s′ 6= s in some neighborhood of s,

s · ~π(s′) > s′ · ~π(s′).

We would like to extend this definition of an ESS to the limit of a sequence of games,

but there are two ways to do this, depending on whether a different neighborhood of

s may be chosen for each game in the sequence or a single neighborhood of s is chosen

for the entire sequence. We are interested in the latter concept, which is a stronger

condition, and we call it a uniformly evolutionarily stable strategy.

Definition An equilibrium s is a uniformly ESS in the limit as ~P → ~̂
P if there is

a punctured neighborhood U̇(s) of s (i.e., a neighborhood from which the point s is

removed) such that for all s′ ∈ U̇(s) and all ~P 6= ~̂
P in some neighborhood of

~̂
P ,

s · ~π(s′) > s′ · ~π(s′).

Note that if equilibrium s is strict in the limit as ~P → ~̂
P , this implies that for all

~P 6= ~̂
P in some neighborhood of

~̂
P , the state s is an ESS, but it does not imply that

s is a uniformly ESS in this limit.
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An example of a uniformly ESS can be found in the class of games used to prove

Theorem 1, with payoff matrix given by (1). In the limit as N →∞, the equilibrium

strategy (1, 0, 0) is a uniformly ESS, but the equilibrium strategy (0, 1, 0) is not.

Our next results will make use of some additional notation. Given a learning rule

R and an equilibrium action a of the game G(~P ), let B(R, a, ~P ) denote the basin of

attraction of (xa = 1, x−a = 0). Let R denote the replicator dynamics and B the best

response dynamics.

In Theorem 2 below and the associated Corollary 1, we show that requiring pure,

uniformly ESS to satisfy the Never an Initial Best Response Property is necessary if

best response dynamics and replicator dynamics are to have basins of attraction with

vanishing overlap. In the examples put forth here, this necessary condition entails

the existence of either a parasitic action – an action that feeds off other actions but

cannot survive on its own – or a misleading action – an action that looks good initially

but eventually becomes less attractive as the population evolves.

Theorem 2 Suppose for some action s,

lim
~P→ ~̂

P

m
(
B(R, s, ~P ) ∩B(B, s, ~P )

)
= 0.

Then, if (xs = 1, x−s = 0) is a uniformly ESS, it satisfies the Never an Initial Best

Response Property at
~̂
P .5

5If we were to suppose that best response dynamics and replicator dynamics share vanishing

overlap in their basins of attraction for an interior equilibrium, we could immediately conclude

that this equilibrium is not a uniformly ESS. Interior ESS are, as already mentioned, globally

asymptotically stable for both replicator and best response dynamics.
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Proof We will denote the equilibrium point (xs = 1, x−s = 0) by s. Suppose that s is

a uniformly ESS such that m
(
BR−1(s)

)
remains strictly positive in the limit ~P → ~̂

P .

We will identify a nonvanishing region inside the basins of attraction of s for both

replicator dynamics and best response dynamics.

Let U(s) be a neighborhood of s such that U̇(s) = U(s)\{s} satisfies the condition

for s to be a uniformly ESS. Let ν = supx/∈U(s) xs. Define the neighborhood W (s) ⊆

U(s) of all points satisfying xs > ν. We have constructed W (s) such that x ∈ Ẇ (s)

implies that ẋs > 0 under the replicator dynamics (because by the ESS condition,

action s has better than average payoff here) and in turn, ẋs > 0 implies that x

remains in W (s).

We now observe that BR−1(s) is a convex set because of the linearity of payoffs.

Additionally, since s is a pure Nash Equilibrium, s ∈ BR−1(s). Thus, BR−1(s) and

W (s) have positive intersection. By the fact that W (s) is independent of ~P and

our hypothesis that BR−1(s) is nonvanishing, we conclude that m
(
W (s) ∩ BR−1(s)

)
remains strictly positive in the limit ~P → ~̂

P . Note that by the ESS condition and

the linearity of payoffs, we can rule out the possibility that there are multiple best

responses anywhere in the interior of BR−1(s). For points x in the interior of W (s)∩

BR−1(s), best response dynamics flows to s because BR(x) = {s} and replicator

dynamics flows to s because x ∈ W (s).

Theorem 2 leads directly to the following corollary.
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Corollary 1 Suppose

lim
~P→ ~̂

P

∑
s

m
(
B(R, s, ~P ) ∩B(B, s, ~P )

)
= 0.

Then every pure, uniformly ESS satisfies the Never an Initial Best Response Property

at
~̂
P .

Corollary 1 provides a necessary condition for non-overlapping basins. We can

also derive several different sets of conditions that are sufficient to generate vanishing

overlap in the basins of attraction of strict equilibria with best response and replicator

dynamics. We present one such set of sufficient conditions for a symmetric three-by-

three game here. Observe that the conditions we present are satisfied by the class of

games used in the proof of Theorem 1.

To describe these conditions, we introduce some new notation and some simplify-

ing assumptions. Let πij be the payoff to action i against action j, which by definition

depends on the parameters ~P . Since both dynamics are invariant under the trans-

formations πij → πij + c for all i and fixed j and πij → kπij for all i, j with k > 0,

we can set π3j = 0 for all j and |π11| ∈ {0, 1}. Also without loss of generality we

can renumber the three actions so that (x1 = 1, x−1 = 0) denotes the equilibrium

attained by replicator dynamics and (x2 = 1, x−2 = 0) the equilibrium attained by

best response dynamics. Because these equilibria are strict in the limit as ~P → ~̂
P ,

we have that for j ∈ {1, 2}, i 6= j, lim~P→ ~̂
P
fjji(~P )(πjj − πij) > 0 for some functions

fjji > 0. And, by our choice of which equilibrium is to be found by each dynamic, we

also have lim~P→ ~̂
P
f321(~P )(π23 − π13) > 0 for some function f321 > 0.
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Theorem 3

lim
~P→ ~̂

P

2∑
i=1

m
(
B(R, i, ~P ) ∩B(B, i, ~P )

)
= 0

if: i) π23 > 0; ii) π13 ≤ 0 and lim~P→ ~̂
P
π13 = 0;6 iii) lim~P→ ~̂

P
π12 = −∞; iv)

lim~P→ ~̂
P

π21

π12
=∞; v) lim~P→ ~̂

P

π21

π22
= −∞; and vi) lim~P→ ~̂

P

π21

π23
= −∞.

The proof relies on two lemmas, one for each learning dynamic.

Lemma 4 As ~P approaches
~̂
P , the fraction of the action space inside B(B, 2, ~P )

approaches 1.

Proof We first show that actions 1 and 2 satisfy the Never an Initial Best Response

Property at
~̂
P , that action 3 is initially a best response in all but an arbitrarily small

part of the action space when ~P nears
~̂
P . By the normalization condition, π3 = 0.

Therefore, it suffices to show π1 < 0 and π2 < 0.

1. π2 < 0. Assuming x1 > 0, π2 = x1

(
π21 + x2

x1
π22 + x3

x1
π23

)
. Condition (v)

implies π21 dominates x2

x1
π22. Condition (vi) implies π21 dominates x3

x1
π23. And π21 is

negative. So, for ~P near
~̂
P , π2 < 0.

2. π1 < 0. Assuming x2 > 0, π1 = x2

(
π12 + x1

x2
π11 + x3

x2
π13

)
. The normalization

conditions imply π11 = 1. Condition (iii) states that π12 approaches −∞ while

condition (ii) states that π13 ≤ 0. So, for ~P near
~̂
P , π1 < 0.

Thus, for any point in the interior of the action space, ~P can be chosen such that

action 3 is initially a best response.

6Another set of sufficient conditions might allow π13 > 0, but would then require additional

conditions to ensure that the best response dynamics avoids selecting (1, 0, 0).
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Now we show that under best response dynamics, action 3 dominates action 1

along the path towards (0, 0, 1). Under best response dynamics, actions which are

not best responses have the same relative decay rates. So x1

x2
remains constant along

the path towards (0, 0, 1). So π1 remains negative along this path. By condition

(i), action 3 is not a best response to itself. Eventually action 2 becomes the best

response.

As the dynamic then moves toward (0, 1, 0), π1 remains negative because the π12

term becomes even more significant relative to the others. Action 1 never becomes

the best response, so the best response dynamics lead to (0, 1, 0).

Lemma 5 As ~P approaches
~̂
P , the fraction of the action space inside B(R, 1, ~P )

approaches 1.

Proof Under the replicator dynamics,

ẋ1 = x1

(
π11x1(x2 + x3) + π12x2(x2 + x3) + π13x3(x2 + x3)− π21x1x2 − π22x

2
2 − π23x3x2

)
.

Consider initial points that satisfy x1 > −π13 and x2 > 0. Recalling that π11 = 1,

this gives

π11x1(x2 + x3) + π13x3(x2 + x3) > 0. (3)

By conditions (iv), (v), and (vi), |π21| grows faster than |π12|, π22, and π23 as ~P nears

~̂
P . Consequently, the term with π21 dominates the other remaining terms in the

expansion of ẋ1. So, for ~P near
~̂
P ,

π12x2(x2 + x3)− π21x1x2 − π22x
2
2 − π23x3x2 > 0. (4)

30



Thus, initially ẋ1 > 0. Moreover, by choosing ~P such that π21 <
1

x1(0)
(π12−π22−π23),

we can be sure equation (4) holds as x1 increases. As x1 increases, it remains above

−π13, so equation (3) continues to hold as well. Thus, ẋ1 > 0 at all times.

It remains to show that the fraction of the action space satisfying x1 > −π13 and

x2 > 0 approaches 1 as ~P approaches
~̂
P . This follows from (ii), which states that

lim~P→ ~̂
P
π13 = 0. This implies that a point x need only satisfy x1 > 0 and x2 > 0 to

be in B(R, 1, ~P ) for some ~P near
~̂
P .

We have thus described a set of six conditions which generate vanishing overlap in

basins of attraction with best response dynamics and replicator dynamics in a class

of games with only three actions.

Admittedly, none of the games within this class may be likely to arise in the

real world. However, if we widen our scope and allow for more strategies, we can

find games that map more tightly to real world phenomena and exhibit this same

behavior. Consider the following symmetric matrix game with four actions, selected

from a class of generalized stag hunt games (Golman and Page, 2008):



2 2 2 2

1 N + 1 1 1

0 0 0 N2

0 0 −N2 0


.

In this game, the first action is a safe, self interested action like hunting hare.

The second action represents an attempt to cooperate, to hunt a stag, for example.
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The third action is predatory toward the fourth action, which can be thought of as

a failed attempt at cooperation. This fourth action fails to protect itself from the

predator, fails to accrue benefits from coordination, and fails to guarantee itself a

positive payoff. Clearly, a rational player would not choose it, and it is not played

in equilibrium. Nevertheless, introducing predation into the stag hunt enhances the

strategic context. This game captures a choice between the security of self-reliance,

the productivity of cooperation, or the temptation of exploiting those agents who

haven’t yet learned what not to do. As we now show, when N goes to infinity, best

response dynamics flow to an equilibrium in which all players choose action 1, but

replicator dynamics flow to an equilibrium in which all players choose action 2.

Proposition 3 In the four-by-four game above, as N → ∞, the Lebesgue measure

of the set of initial starting points for which best response dynamics and replicator

dynamics flow to the same equilibrium tends to zero.

Once again, the proof relies on three lemmas, one to identify the stable equilibria

and two to describe the behavior of the learning rules.

Lemma 6 Both best response dynamics and replicator dynamics have two stable fixed

points: x = (1, 0, 0, 0) and x = (0, 1, 0, 0).

Proof Here again, both configurations are strict Nash Equilibria because each of

action 1 and 2 is a strict best response to itself. The only other Nash Equilibrium,

x =
(
N−1
N
, 1
N
, 0, 0

)
, is clearly unstable given either dynamics. Note that action 4 is

32



strictly dominated, and if we apply iterated elimination of strictly dominated actions,

action 3 becomes strictly dominated once action 4 is eliminated.

The next lemma shows that for large N , best response dynamics leads to action

1 starting from almost any initial condition.

Lemma 7 For any ε, there exists M such that for all N ≥M , the basin of attraction

of (1, 0, 0, 0) given best response dynamics is at least 1− ε of the action space.

Proof First we show any point with x4 >
2
N

is in the basin of attraction of (1, 0, 0, 0),

assuming N > 2. For such a point, action 3 is initially a best response because

π3 > 2N whereas π1 = 2, π2 < 1 + N , and π4 < 0. Then, as we show, action 1

becomes a best response before action 2. Once it becomes a best response, it remains

one forever, because its payoff is constant, while the payoffs to actions 2 and 3 are

decreasing. So, once action 1 becomes a best response, the dynamic flows toward it

thereafter.

Now we show that action 1 does become the best response before action 2. We

define

α(t) =
x1(t)

x1(0)
=
x2(t)

x2(0)
=
x4(t)

x4(0)

for t such that action 3 is still a best response. The latter equalities hold because

actions which are not best responses have the same relative decay rate. Note that

α(t) is a strictly decreasing function. Now

π1 = π3 when α =
2

N2 (x4(0))
.
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But

π2 < π3 if α >
1

N (Nx4(0)− x2(0))
.

Action 1 eventually becomes the best response because

2

N2 (x4(0))
>

1

N (Nx4(0)− x2(0))
,

as long as Nx4(0) > 2x2(0). This condition holds if x4(0) > 2
N

.

Thus, by choosing N large enough, the basin of attraction of (1, 0, 0, 0) can be

made as big as desired.

Unlike best response dynamics, for large N , replicator dynamics leads to almost

all players taking action 2 for almost any initial condition.

Lemma 8 For any ε, there exists M such that for all N ≥M , the basin of attraction

of (0, 1, 0, 0) given replicator dynamics is at least 1− ε of the action space.

Proof We now have ẋ2 = x2 ((1 +Nx2)(1− x2)− 2x1). So ẋ2 ≥ 0 if x2 ≥ 1
N

. By

choosing N large enough, the basin of attraction of (0, 1, 0, 0) can be made as big as

desired.

This completes the proof of Proposition 3. In this class of games, replicator

dynamics flows to the equilibrium with the higher payoff, whereas in the class of

games used in the proof of Theorem 1, the best response dynamics flows to the

optimal equilibrium. Neither learning dynamic can find the optimal equilibrium in

all classes of games because a different set of normalization conditions can change

which equilibrium is optimal.
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4 Broader Classes of Dynamics

We introduce two new classes of adjustment dynamics: one-sided payoff positive dy-

namics, which generalize the replicator dynamics, and threshold dynamics, a general-

ization of the best response dynamics. We then extend our results from the previous

section to describe vanishing overlap in the basins of attraction of a one-sided payoff

positive dynamic and a threshold dynamic.

As the name suggests, our one-sided payoff positive dynamics are closely related

to the commonly known payoff positive dynamics (Weibull, 1995). Payoff positive

dynamics assume that actions with above average payoffs have positive relative growth

rates and actions with below average payoffs have negative relative growth rates.7 The

one-sided class of dynamics still captures the property that actions with above average

payoffs grow in the population, but does not address what happens to actions with

below average payoffs. Thus, the class of one-sided payoff positive dynamics includes

all the payoff positive dynamics. They in turn contain the replicator dynamics, which

prescribe a relative growth rate proportional to the difference between action’s payoff

and population mean payoff. Neither class of dynamics specifies precise rates of

growth the way replicator does, making them both quite general.

Definition A one-sided payoff positive dynamic is one that satisfies the following

condition:

ẋi > 0 if πi > π̄ and xi > 0 (5)

7These dynamics are also termed sign-preserving (Nachbar, 1990).
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as well as the requirements that Nash Equilibria are rest points and that if z is the

limit of an interior orbit for t→∞, then z is a Nash Equilibrium8.

These basic requirements are satisfied by most adjustment dynamics as part of a

folk theorem (see Cressman, 2003). The second requirement holds whenever relative

growth rates are Lipschitz continuous, for example. The other statements of the folk

theorem, namely that stable rest points are Nash Equilibria and that strict equilibria

are asymptotically stable, can be shown to hold from our definition of one-sided payoff

positive dynamics.

Lipschitz continuous one-sided payoff positive dynamics fit into the even broader

class of weakly payoff positive dynamics, which assume that some action with above

average payoff will have positive relative growth whenever there is such an action.

The distinction is that weak payoff positivity does not guarantee growth for all the

above average actions in the population.

In contrast to one-sided payoff positive dynamics, in which agents seek actions

with above average payoffs, we can conceive of a learning rule in which agents switch

actions when their payoffs are at or below the median. But, there is no need to hold

the 50th percentile payoff in such special regard as the threshold for switching. We

define threshold dynamics by the property that agents switch away from actions with

8Theorem 5 would hold without these requirements, but with the possibility that the one-sided

payoff positive dynamics have measure zero basins of attraction for all strict equilibria. We want to

focus on the case that the one-sided payoff positive dynamic selects a different equilibria than the

threshold dynamic.
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payoffs at or below the Kth percentile as long as there is something better to switch

to. We do not restrict ourselves to a particular threshold by setting a value for K.

Instead, we allow K to vary over time within a range that is bounded below by some

K̂ > 0. We sometimes omit writing the input t when dealing with a fixed instant in

time and use K to mean the function K(t). But K̂ is always a constant. We want

agents to be as averse as possible to actions whose payoffs fall below the threshold,

but recognizing that the speed of the dynamics can be adjusted by an overall scaling

factor, we only require that such an action has a relative rate of decline as quick as

any in the population.

Definition Consider any K(t) ≥ K̂ where K̂ > 0. A threshold dynamic is one that

satisfies the following condition:

If at time t ∑
µ:πµ<πi

xµ < K and for some l, πl > πi, (6)

then when xi > 0,

ẋi
xi
≤ ẋj
xj

for all actions j such that xj > 0 (7)

and when xi = 0, ẋi = 0.

Note that if two actions both have payoffs below the Kth percentile, they must have

the same relative rate of decline. In addition, it is always the case that the action with

the worst payoff declines in the population. On the other hand, there is no guarantee

that the best response grows in the population unless other actions are sufficiently

rare.
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Definition A threshold dynamic is properly scaled if the speed of the dynamic has a

lower bound v(x) such that v(x) ≥ κd where d represents the distance to the nearest

equilibrium point and κ is some constant of proportionality.

As previously mentioned, the speed of a dynamic can be adjusted by an overall

scaling factor. Usually we do not care about speed at all because the scaling of the

time parameter does not have physical significance. In this case, we must assume a

threshold dynamic is properly scaled in order to ensure that it does not slow to a halt

at an arbitrary point in the strategy space. In this paper, we consider only properly

scaled threshold dynamics.

Let us briefly consider a few particular constant functions we might use for K(t)

in the threshold dynamics. If we do want the median payoff to be the threshold, we

can choose K(t) = .5 for all t. Then all actions with payoffs equal to or below the

median will have the same relative rate of decline, and actions with payoffs above the

median will do no worse. That is, an action with a higher payoff may still decline at

the same relative rate as the former or may grow very quickly; the threshold dynamics

allow for either. This example suggests that when K(t) is small, the dynamics allow

for quite a bit of freedom in the center of the strategy space.

Alternatively, we could set the threshold below which agents switch actions to

be the 100th percentile payoff at all times, K(t) = 1. Obviously, every action has a

payoff at or below the 100th percentile payoff, so inequality (7) applies to every action

present in the population that is not a best response. An agent already playing a
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best response cannot find something better to switch to, and thus best responses are

not subject to this inequality. Every action that is subject to inequality (7) has the

same relative rate of decline, and if we set this rate to be −1, we then obtain the

best response dynamics. Thus, threshold dynamics are a generalization of the best

response dynamics.

We now show that requiring pure, uniformly ESS to satisfy the Never an Initial

Best Response Property is necessary if a one-sided payoff positive dynamic and a

threshold dynamic are to have basins with vanishing overlap, just as Theorem 2 and

Corollary 1 showed it is for best response and replicator dynamics. Let OSPP denote

any one-sided payoff positive dynamic and TD any threshold dynamic.

Theorem 4 Suppose for some action s,

lim
~P→ ~̂

P

m
(
B(OSPP, s, ~P ) ∩B(TD, s, ~P )

)
= 0.

Then, if (xs = 1, x−s = 0) is a uniformly ESS, it satisfies the Never an Initial Best

Response Property at
~̂
P .

Proof The proof here mirrors the one for Theorem 2. We construct the neighborhood

W (s) in the same way, but with the additional condition that xs > 1− K̂. We need

only show that for x ∈ int
(
W (s) ∩ BR−1(s)

)
, both classes of dynamics flow to s.

Under one-sided payoff positive dynamics, ẋs > 0 for x ∈ W (s) because action s

has an above average payoff, and such a flow cannot leave W (s). Under threshold

dynamics, when x ∈ int
(
W (s) ∩ BR−1(s)

)
, inequality (7) applies to all actions other
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than s because they have payoffs below the K̂th percentile. All other actions must

have the same negative growth rate, so ẋ = κ(s− x) for some positive constant κ.

Corollary 2 Suppose

lim
~P→ ~̂

P

∑
s

m
(
B(OSPP, s, ~P ) ∩B(TD, s, ~P )

)
= 0.

Then every pure, uniformly ESS satisfies the Never an Initial Best Response Property

at
~̂
P .

We also find that the same set of conditions used in Theorem 3 is sufficient for a

one-sided payoff positive dynamic and a threshold dynamic to share vanishing overlap

in their basins. Recall that the setting for this theorem is a symmetric three-by-three

game with two strict equilibria.

Without loss of generality we choose (x1 = 1, x−1 = 0) to be the equilibrium at-

tained by the one-sided payoff positive dynamic and (x2 = 1, x−2 = 0) the equilibrium

attained by the threshold dynamic. Because these equilibria are strict in the limit as

~P → ~̂
P , we have that for j ∈ {1, 2}, i 6= j, lim~P→ ~̂

P
fjji(~P )(πjj − πij) > 0 for some

functions fjji > 0. And, by our choice of which equilibrium is to be found by each dy-

namic, we also have lim~P→ ~̂
P
f321(~P )(π23 − π13) > 0 for some function f321 > 0. Once

again, we set π3j = 0 for all j and π11 = 1, but no longer are our dynamics necessarily

invariant under positive affine transformations of the payoffs. If the dynamics happen

to retain this invariance, then this still amounts to a choice of payoff normalization.

However, in general, we are making an additional assumption about payoffs here.
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Theorem 5

lim
~P→ ~̂

P

2∑
i=1

m
(
B(OSPP, i, ~P ) ∩B(TD, i, ~P )

)
= 0

if: i) π23 > 0; ii) π13 ≤ 0 and lim~P→ ~̂
P
π13 = 0; iii) lim~P→ ~̂

P
π12 = −∞; iv)

lim~P→ ~̂
P

π21

π12
=∞; v) lim~P→ ~̂

P

π21

π22
= −∞; and vi) lim~P→ ~̂

P

π21

π23
= −∞.

Again, we break up the proof into two lemmas, one for each learning dynamic.

Lemma 9 As ~P approaches
~̂
P , the fraction of the action space inside B(TD, 2, ~P )

approaches 1.

Proof Consider the threshold dynamics with any value of K̂ and any threshold func-

tion K(t) ≥ K̂. We show that if initially x2 > 0, then for ~P near
~̂
P , π1 < π3 at all

times. As π3 = 0 by the normalization condition, this amounts to showing π1 < 0

forever. We know π1 = π11x1 + π12x2 + π13x3. Recall that π11 = 1. Condition (ii)

states that π13 ≤ 0. So π1 < 0 as long as

x1 + π12x2 < 0. (8)

Consider first the case that x2(0) ≥ K̂. Take ~P near enough
~̂
P that π12 < − 1

K̂
.

Condition (iii) makes this possible. As long as x2 ≥ K̂, equation (8) holds and we

still have π1 < 0.

In the case that x2(0) < K̂, condition (iii) allows us to take ~P near enough
~̂
P that

π12 < − 1
x2(0)

. This guarantees that π1 < 0 initially.

If ever x2 < K, then π1 is below the Kth percentile and ẋ1

x1
≤ ẋ2

x2
, so equation (8)

continues to hold. Still π1 < 0.
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In fact, the only way to avoid x2 < K at some time would involve π2 > 0 pretty

quickly. But, if indeed x2 < K at some time, then the decline in x1 also would lead

to π2 > 0 eventually. So, one way or another, action 2 becomes the best response and

x1 has to decline. When x1 < K̂ ≤ K, the Kth percentile payoff is either 0 or π2,

and when additionally π2 > 0, then only x2 can grow. From then on, the dynamic

moves straight toward (0, 1, 0).

Lemma 10 As ~P approaches
~̂
P , the fraction of the action space inside B(OSPP, 1, ~P )

approaches 1.

Proof The proof of Lemma 5, which applied replicator dynamics to this game, carries

over here, applying to all one-sided payoff positive dynamics with only trivial changes.

We no longer have an exact formula for ẋ1, but the argument that it is always positive

still applies because it was based on the fact that π1 > π̄ at all times for almost all

initial points. The definition of a one-sided payoff positive dynamic requires that

the limit of an interior orbit is a Nash Equilibrium, and the only one that can be

approached with ẋ1 > 0 is (1, 0, 0).

We have thus extended our finding of vanishing overlap in basins of attraction for

strict equilibria to entire classes of dynamics.

5 Discussion

In this paper, we have shown that it is possible to construct three-by-three symmetric

games in which two common learning rules – replicator dynamics, and best response
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dynamics – have vanishing overlap in their basins of attraction. That so few ac-

tions are required is surprising, making the game we have constructed of significant

pedagogical value. Our more general results describe necessary and sufficient condi-

tions for vanishing overlap. The necessary condition – that for any game in which the

learning rules attain distinct strict equilibria from almost any starting point the initial

best response cannot be a uniformly ESS - has an intuitive explanation. The initial

incentives must be misleading. They should point the agents away from equilibria

and in some other directions. In doing so, these initial incentives allow for even small

differences in the dynamics to take root and drive the two learning rules to distinct

equilibria.

We also derived a set of sufficient conditions for the basins of attraction of two

stable equilibria under best response learning and replicator dynamics to have almost

no overlap. Other sufficient conditions could also be constructed. What appears

invariant to the construction is that some payoffs must grow arbitrarily large.

Our focus on basins of attraction differentiates this paper from previous studies

that consider stability. Nash was aware that the existence of an equilibrium is not

sufficient proof that it will arise. Nor is proof of its local stability. We also need

to show how to attain an equilibrium from an arbitrary initial point (Binmore and

Samuelson, 1999). And, as we have just shown, the dynamics of how people learn

can determine whether or not a particular equilibrium is attained. Richer models

of individual and firm behavior can also support diverse choices of equilibria (Allen,

Strathern, and Baldwin, 2007). Here, we emphasized the minimal conditions neces-
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sary for the learning rule to matter.

We also focused on the extreme case of no overlap. That said, our general findings

about the necessity of misleading actions and the nature of our sufficient conditions

should help us to identify games in which learning rules might matter. In particular,

the idea that temporary best responses create opportunity for differences in learning

rules to accumulate would seem to have wide applicability. It provides logical founda-

tions for the intuition that learning rules matter more in more complex environments.

In conclusion, we might add that games in which best response dynamics and

replicator dynamics make such different equilibrium predictions would seem to lend

themselves to experiments. These games would allow experimenters to distinguish

among learning rules more decisively than games in which the learning rules converge

to the same equilibrium.
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