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Abstract 

Most demonstrations of how people make decisions in risky situations rely on 

decisions from description, where outcomes and their probabilities are explicitly 

stated. But recently, more attention has been given to decisions from experience 

where people discover these outcomes and probabilities through exploration of the 

problems. More importantly, risky behavior depends on how decisions are made 

(from description or experience), and although Prospect Theory explains decisions 

from description, a comprehensive model of decisions from experience is yet to be 

found. Instance-Based Learning Theory (IBLT) explains how decisions are made 

from experience through interactions with dynamic environments (Gonzalez, Lerch, 

& Lebiere, 2003). The theory has shown robust explanations of behavior across 

multiple tasks and contexts, but it is becoming unclear what the theory is able to 

explain and what it does not. The goal of this chapter is to start addressing this 

problem. I will introduce IBLT and a recent cognitive model based on this theory: the 

IBL model of repeated binary choice; then I will discuss the phenomena that the IBL 

model explains and those that the model does not. The argument is for the theory’s 

robustness but also for clarity in terms of concrete effects that the theory can or 

cannot account for.  
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The Boundaries of Instance-Based Learning Theory to Explaining Decisions 

from Experience 

Theories that explain human decision making have traditionally involved 

principles and developments from Economics and Psychology, and for many years 

these two disciplines have proposed what appear as conflicting mechanisms and 

explanations. On the one hand, Economists have assumed humans to be utility 

maximizers (i.e., "rational"), while Psychologists aimed at demonstrating the many 

different decision situations in which humans are not utility maximizers (i.e., 

"irrational"). A major breakthrough in behavioral decision research was the shift of 

attention from particular examples that dispute expected utility theory to explanations 

of how people make decisions through Prospect Theory (Kahneman & Tversky, 

1979). This theory has been a prominent model used to explain and generalize 

deviations from expected utility theory.  

While demonstrating the explanatory power of Prospect Theory, researchers 

have traditionally used monetary gambles (i.e., "prospects") that explicitly state 

outcomes and associated probabilities. People are presented with a description of the 

alternatives and they are asked to make a choice based on the conditions described, 

they are asked to make decisions from description. For example: 

Which of the following would you prefer? 

A: a .8 chance to get $4 and .2 chance to get $0 

B: get $3 for sure 

Using decisions from description, researchers have investigated a large 

number of situations in which people behave against utility maximization and in 

agreement with Prospect Theory, producing an impressive list of “heuristics and 

biases” (Tversky & Kahneman, 1974). Through the years, these consistent deviations 
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from rational behavior have been identified, replicated, and extended upon using 

laboratory experiments, to the point where this type of research has dominated the 

field of behavioral decision making for the past six decades. 

However, despite the many years of effort, we have only limited answers to 

the question of how people make decisions; rather, most research has aimed at 

demonstrating how people don't make decisions. The large collection of cognitive 

biases cannot be all explained by one comprehensive theory and most importantly, we 

do not know how the biases develop and how do they emerge in the first place. As a 

result, we know little of how to prevent them. Most empirical studies up to date focus 

on the observable processes such as choice selection, and ignore cognitive processes 

that lead to choice, such as recognizing alternatives, deciding when to search for 

information, evaluating and integrating possible outcomes, and learning from good 

and bad decisions, among other processes. 

A recent development in decision sciences has great potential to expand our 

understanding and provide insights into the decision making process. A shift of 

attention to how decisions are made from experience (i.e., decisions from experience), 

rather than from explicit description of options, opens a window towards a better 

understanding of cognitive processes that including: information search, recognition 

and similarity processes, integration and accumulation of information, feedback, and 

learning. Researchers use experimental paradigms that involve repeated decisions 

rather than one-shot decisions, the estimation of possible outcomes and probabilities 

based on the observed outcomes rather than from a written description, and learning 

from feedback. All of which are natural processes for making decisions in many real-

world situations in which alternatives, outcomes, and probabilities are unknown. The 

experimental paradigm often involves two alternatives, represented by two unlabeled 
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buttons, each representing a probability distribution of outcomes that is unknown to 

participants. Clicking a button yields an outcome as a result of a random draw from 

the alternative’s distribution. Although there are multiple paradigms for the study of 

decisions from experience (Hertwig & Erev, 2009; Gonzalez & Dutt, 2011), a 

common paradigm is the "sampling" paradigm (see Figure 1), in which people are 

able to explore the outcomes of the options without real consequences before they 

decide to make a final choice.  

 

 

Figure 1. The sampling paradigm of decisions from experience. 

 

A key observation that contributed to the initial success of the theoretical 

development of decisions from experience was the "description-experience gap" 

(Hertwig, Barron, Weber, & Erev, 2004): that the choice that an individual makes 

depends on how information about the problem is acquired (from description or 

experience); particularly in problems involving outcomes with low probabilities 
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(probabilities less than .2, "rare events"). A robust finding across a range of paradigms 

for decisions from experience is that people behave as if rare events have less impact 

than they deserve according to their objective probabilities. More importantly, this 

finding contradicts the prediction from prospect theory that people behave as if rare 

events have more impact than they deserve. However, this theory only applies to 

"simple prospects with monetary and stated probabilities" (Kahneman & Tversky, 

1979 pp. 274). Thus, although prospect theory seems to provide good explanations for 

decisions from description, findings from decisions from experience may contradict 

those predictions from prospect theory in many cases (Hertwig, 2012). 

Although prospect theory (Kahneman & Tversky, 1979) has been a prominent 

model to explain human-choice behavior in descriptive choices, a comprehensive 

model that can explain decisions from experience has not yet been found. In fact, a 

challenge in understanding the cognitive processes involved in making decisions from 

experience is the proliferation of highly task-specific cognitive models that often 

predict behavior in a particular task, but fail to also explain behavior even in closely 

related tasks (see discussions in Gonzalez & Dutt, 2011; Lejarraga, Dutt, & Gonzalez, 

2012). Gonzalez and colleagues have attempted to address this challenge by providing 

multiple demonstrations of how cognitive computational models based on one theory, 

Instance-Based Learning Theory (IBLT; Gonzalez et al., 2003), account for human 

behavior in a large diversity of tasks where decisions are made from experience. 

Recently, they have demonstrated that the same computational model based on IBLT, 

without modifications, is able to account for multiple variations of the dual choice 

paradigms commonly used to study decisions from experience (e.g., Gonzalez & Dutt, 

2011; Lejarraga et al., 2012). 
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In what follows, I summarize IBLT as a general theory of decision making in 

dynamic tasks.  I discuss how IBLT has accounted for decision making behavior on a 

wide range of tasks that vary in their dynamic characteristics across a taxonomy of 

dynamic tasks.  I then concentrate on a model proposed for the study of decisions 

from experience in the least dynamic task of the taxonomy, the repeated choice 

paradigms (e.g., Figure 1). Next I present a set of phenomena in decision sciences that 

the IBL model has shown to explain and predict accurately. I will also summarize the 

type of learning and decisions from experience phenomena that the IBL model in its 

current form does not explain, and conclude on some ideas and plans to expand the 

current IBL model. 

Instance-Based Learning Theory 

Instance-Based Learning Theory (IBLT) was developed to explain human 

decision making behavior in dynamic tasks (Gonzalez et al., 2003). In dynamic tasks, 

individuals make repeated decisions attempting to maximize gains over the long run 

(Edwards, 1961; 1962; Rapoport, 1975). According to Edwards (1962), dynamic 

decision tasks are characterized by decision conditions that change spontaneously and 

with time, inaction, and as a result of previous decisions. 

Based on evidence from studies in naturalistic environments (Dreyfus & 

Dreyfus, 1986; Klein, Orasanu, Calderwood, & Zsambok, 1993; Pew & Mavor, 1998; 

Zsambok & Klein, 1997), laboratory studies with dynamic computer simulations 

(Microworlds) (Brehmer, 1990, 1992; Gonzalez, 2004, 2005; Kerstholt & 

Raaijmakers, 1997), theoretical studies of decisions under uncertainty (Gilboa & 

Schmeidler, 1995, 2000), and other theories of learning in dynamic decision making 

(Dienes & Fahey, 1995; Gibson, Fichman, & Plaut, 1997); IBLT proposed that 
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decisions in dynamic tasks were made possible by referencing experiences from past 

similar situations, and applying the decisions that worked in the past. IBLT’s most 

important development was the description of the learning process and mechanisms 

by which experiences may be built, retrieved, evaluated, and reinforced during the 

interaction with a dynamic environment. 

IBLT characterizes learning in dynamic tasks by storing "instances" in 

memory as a result of having experienced decision making events. These instances 

are representations of three elements: a situation (S), which is defined by a set of 

attributes or cues; a decision (D), which corresponds to the action taken in situation S; 

and a utility or value (U), which is expected or received for making a decision D in 

situation S. IBLT proposes a generic decision making process through which SDU 

instances are built, retrieved, evaluated, and reinforced (see detailed description of 

this process in Gonzalez et al., 2003); with the steps consisting of: recognition 

(similarity-based retrieval of past instances), judgment (evaluation of the expected 

utility of a decision in a situation through experience or heuristics), choice (decision 

on when to stop information search and select the optimal current alternative), 

execution (implementation of the decision selected), and feedback (update of the 

utility of decision instances according to feedback). The decision process of IBLT is 

determined by a set of learning mechanisms needed at different stages, including: 

Blending (the aggregated weighted value of alternatives involving the instance's 

utility weighted by its probability of retrieval), Necessity (the decision to continue or 

stop exploration of the environment), and Feedback (the selection of instances to be 

reinforced and the proportion by which the utility of these instances is reinforced). 

IBLT and IBL Models 
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To test theories of human behavior, we use computational models: 

representations of some or all aspects of a theory as it applies to a particular task or 

context. Thus, the value of models is that they can solve concrete problems and 

provide explicit mathematical and computational representations of a theory, which 

can then be used to make predictions of behavior. 

IBLT constructs and processes were implemented into a computational model 

(called Cog-IBLT) that helped make the theory more explicit, transparent, and precise 

(Gonzalez et al., 2003). Cog-IBLT demonstrated the overall mechanisms and learning 

process proposed by the theory in a dynamic and complex resource allocation task 

(the "water purification plant", reported in Gonzalez et al., 2003). Cog-IBLT was 

constructed within the ACT-R cognitive architecture (Anderson & Lebiere, 1998), 

using the cognitive mechanisms existent in ACT-R. Specifically, Cog-IBLT used the 

ACT-R's experimentally-derived mathematical representations of: Activation (a value 

that determines the usefulness of an instance from memory and experience and the 

relevance of the instance to the current context); Partial Matching (a value that 

determines the similarity of instances and the retrieval of instances that may be only 

similar to a current environmental situation); and Retrieval Probability (a value 

representing the probability of retrieving an instance as a function of Activation and 

Partial Matching). This model also used a modified version of the concept of Blending 

proposed in Lebiere's dissertation (2008): An aggregate or combination of values of 

multiple instances in memory. Through a series of "simulation experiments," the Cog-

IBLT demonstrated the explanatory and predictive potential of IBLT, as it closely 

approximated the learning process from human data in the water purification plant 

task. 
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As a general theory of dynamic decision making (DDM), IBLT aims at 

addressing a wide range of dynamic tasks. Edwards (1962) proposed an initial 

taxonomy of dynamic tasks, ranging from the least dynamic, where actions are 

sequential in an environment that is constant and where neither the environment nor 

the individual’s information about the environment is affected by previous decisions 

(as the repeated choice task in Figure 1); to the most dynamic, where the environment 

and the individual’s information about it changes over time and as a function of 

previous decisions (as in the water purification plant task used in Cog-IBLT). This 

taxonomy was later extended to include an even more dynamic characteristic in 

Edwards’ taxonomy: that decisions are made in real time, and thus their outcomes 

depend on the time at which the decision is made (Brehmer, 1992; Hogarth, 1981). 

After Cog-IBLT, many IBL models have been developed in a wide variety of 

dynamic decision making tasks across the taxonomy of dynamic tasks from the most 

dynamic to the least dynamic task, including: dynamically-complex tasks (Gonzalez 

& Lebiere, 2005; Martin, Gonzalez, & Lebiere, 2004), training paradigms of simple 

and complex tasks (Gonzalez, Best, Healy, Kole, & Bourne, 2010; Gonzalez & Dutt, 

2010), simple stimulus-response practice and skill acquisition tasks (Dutt, 

Yamaguchi, Gonzalez, & Proctor, 2009), and repeated binary-choice tasks (Lebiere, 

Gonzalez, & Martin, 2007; Lejarraga et al., 2012) among others. 

A recent IBL model has shown generalization across multiple tasks that share 

structural similarity with the paradigms used to study decisions from experience (as in 

Figure 1). Although these tasks are the least dynamic in the taxonomy of Edwards 

(1962), they shown great potential to develop and test IBLT, given their simplicity. 

An IBL model was initially built to predict performance in individual repeated binary-

choice tasks. Motivated by the work of Erev and Barron (2005), we built a model of 
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repeated binary choice based on IBLT but within the ACT-R architecture (Lebiere et 

al., 2007). Erev and Barron (2005) demonstrated robust deviations from maximization 

in repeated binary choice and proposed the Reinforcement Learning Among 

Cognitive Strategies (RELACS) model, which closely captures human data and 

outperforms other models. We argued for a simpler model, the IBL model, which was 

able to fit the data as well as RELACS (Lebiere et al., 2007). 

The IBL model’s development took an important turn when it was submitted 

to the Technion Prediction Tournament (TPT; Erev, Ert, Roth et al., 2010), a 

modeling competition that involved fitting and prediction phases, where the model 

authors were given a data set to fit their models to and were evaluated in a novel data 

set. The IBL model was developed independently and outside from ACT-R, and the 

mechanisms of this model were isolated from all the other ACT-R mechanisms (see 

Gonzalez, Dutt, & Lebiere, in press for a validation of this model within ACT-R and 

outside of ACT-R). Although this model did not win the TPT, the model’s 

transparency, simplicity, and flexibility outside of ACT-R have been an advantage to 

recent developments. The IBL model has now been shown to predict performance 

better than the winner models of the TPT (Gonzalez & Dutt, 2011; Lejarraga et. al., 

2012); to predict performance in a variety of repeated binary-choice tasks, 

probability-learning tasks, and dynamic choice task across the multiple paradigms of 

decisions from experience; and at the individual and team levels (Gonzalez & Dutt, 

2011; Gonzalez, Dutt, & Lejarraga, 2011; Lejarraga et al., 2012). The discussions 

from this point on will refer to this particular IBL model, which is explained in detail 

next. 

The IBL Model of Decisions from Experience 
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Instances in a model of the decision from experience paradigms (e.g., that 

shown in Figure 1) have a much simpler representation compared to instances in Cog-

IBLT or in other IBL models. The instance structure is simple because the task 

structure is also simple. Each instance consists of a label that identifies a decision 

option in the task and the outcome obtained. For example, (Left, $4) is an instance 

where the decision was to click the button on the left side and the outcome obtained 

was $4. The details of this IBL model and its relevance were fully explained in 

Gonzalez and Dutt (2011), but the main aspects of this model are summarized here.  

The IBL model of decisions from experience ("IBL model" hereafter) assumes 

that choices from experience are based on either a repetition of past choices (i.e., 

"inertia") or on the aggregation of past experiences (i.e., “instances”) of payoffs in 

memory that have been observed as a result of past choices (i.e., "blending"). At trial 

    , the model starts with a random choice between the two options. Then, in each 

trial    , the model first applies a probabilistic rule (based upon a free parameter 

called pInertia) to determine whether to repeat its choice from the previous trial or 

not. If this probabilistic rule fails, then inertia does not determine the choice and the 

model chooses the option with the highest blended value. An option's blended value is 

a weighted average of all observed payoffs on that option in previous trials. These 

observed payoffs are stored as instances in memory and are weighted such that 

payoffs observed more frequently and recently receive a higher weight compared to 

the less frequent and distant payoffs. This weight is a function of the recency and 

frequency of the instances’ use, where the instance contains the observed payoffs. 

Formally, the model works as follows: 

In      choose randomly between the two choice options      (1) 

For each trial    ,  
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If the draw of a random value in the uniform distribution U (0, 1) < pInertia,  

Then  

Repeat the choice as made in the previous trial 

Else 

Select an option with the highest blended value as per Equation 2 

(below)        

The blended value V of option j is: 

   ∑       
 
          (2) 

where     is the observed payoff in instance i for the option j, and     is the 

probability of retrieving that instance for blending from memory (Gonzalez & Dutt, 

2011; Lejarraga et al., 2012). Since the sampling paradigm involves a binary-choice 

with two options, the values of   can be either 1 or 2 (i.e., right or left choice options). 

Thus, the blended value of an option   is the sum of all     stored in instances in 

memory, weighted by their probability of retrieval    . The n value is the number of 

different instances containing observed payoffs on option   up to the last trial. For 

example, if by trial t = 2, option j revealed 2 different payoffs stored in two instances, 

then n = 2 for option  . If the two observed payoffs on option   are the same in the 

previous two trials, then only one instance is created in memory and n = 1. 

In any trial, the probability of retrieving from memory an instance i containing a 

payoff observed for option   is a function of that instance’s activation relative to the 

activation of all other instances that contain observed payoffs   occurring within the 

same option. This probability is given by: 

    
 
  
 

∑  
  
  

                                                                  (3) 
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where   refers to the total number of payoffs observed for option   up to the 

last trial, and   is a noise value defined as      (Lebiere, 1998). The   variable is a 

free noise parameter expected to capture the imprecision of recalling instances from 

memory from one trial to the next. 

The activation of each instance in memory depends upon the activation 

mechanism originally proposed in the ACT-R architecture (Anderson & Lebiere, 

1998). The IBL model uses a simplified version of that activation mechanism. In each 

trial t, activation   of an instance   is 

     [∑ (    )
  

    *       +
]      (

    

  
)                              (4) 

where   is a free decay parameter, and    refers to previous trials when payoff 

contained in the instance   was observed (if a payoff occurs for the first time in a trial, 

a new instance containing this payoff is created in memory). The summation will 

include a number of terms that coincides with the number of times that a payoff has 

been observed after it was created (the time of creation of instance itself is the first 

timestamp). Therefore, an instance’s activation containing a payoff increases with the 

frequency of observing that payoff (i.e., by increasing the number of terms in the 

summation) and with the recency of observing that payoff (i.e., by small differences 

in     ). The decay parameter   affects the activation of the instances directly, as it 

captures the rate of forgetting. The higher the value of the   parameter, the faster the 

decay of instances’ activations in memory is. 

The    term is a random draw from a uniform distribution defined between 0 and 

1, and     (
    

  
) represents the Gaussian noise that is important for capturing 
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variability in behavior from one trial to the next. The   variable is the same noise 

parameter defined in equation 3 above. A high   implies a high noise in activation. 

The most recent developments of the IBL model of decisions from experience 

are important given the simplicity of this model and the broad predictions that it can 

make (e.g., Gonzalez & Dutt, 2011; Gonzalez et al., 2011; Lejarraga et al., 2012). 

Next section describes some examples of what the model is able to explain and what 

the model in its current form does not explain. All examples below rely on two 

parameters: the decay,  , and the noise   with values 5.0 and 1.5 respectively.  

However, the models reported below vary in the inclusion or not of the pInertia 

parameter (see Dutt & Gonzalez, 2012 for a discussion on the value of this 

parameter), and also on the specific values of the parameters.  As explained next, we 

have used a fit and generalization procedure, in which the parameters values are fit to 

particular data sets and then used these parameters to predict the behavior in a new 

data set. 

What the IBL model explains and what it does not explain 

Existent demonstrations from IBL models suggest the generality of the theory, 

and not only the descriptive power of the theory but the explanatory one. That is, the 

theory not only describes the kind of constructs and processes existent in dynamic 

decision making, but it helps explain why decision making in dynamic tasks occur in 

the way described. But with generality and robustness also comes the lack of 

specificity: What are the effects and phenomena that the IBL model can explain and 

predict? Here we first summarize this tradeoff between generality and specificity, then 

we present the concrete phenomena that the model in its current form is capable and 

not capable of explaining. 
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What the IBL model explains. 

Two comprehensive and important demonstrations of the IBL model’s 

robustness are the fitting and predictions obtained against a large and publicly 

available data set, the TPT (Erev et al., 2010). TPT was a competition in which 

different models were submitted to predict choices made by experimental participants. 

Competing models were evaluated following the generalization criterion method 

(Busemeyer & Wang, 2000): they were fitted to choices made by participants in 60 

problems (the estimation set) and later tested using the parameters that best fitted the 

estimation data set to predict a new set of choices in 60 problems (the test set). This 

process of fitting and generalization procedure is useful as generalization is regarded 

as pure prediction of behavior.  

TPT involved 2 types of experimental paradigms of decisions from 

experience, Sampling and Repeated choice; and all the problems in the TPT involved 

a choice between two options: 

Safe: M with certainty 

Risky: H with probability Ph; L otherwise (with probability 1-Ph) 

A safe option offered a medium (M) payoff with certainty, and a risky option 

that offered a high (H) payoff with some probability (pH) and a low (L) payoff with 

the complementary probability. M, H, pH, and L were generated randomly, and a 

selection algorithm assured that the 60 problems in each set differed in domain 

(positive, negative, and mixed payoffs) and probability (high, medium, and low pH).  

An example of the IBL model’s predictions has been reported by Lejarraga et 

al. (2012) and reproduced in Figure 2. Figure 2 shows the learning curves on the 

proportion of risky choices (P-Risky) of each of the 60 problems in the test set. As 
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can be seen, the IBL model accurately predicted learning in most of the problems (see 

detailed tests in Lejarraga et al., 2012). 

 

 

Figure 2. Learning curves from human and IBL model data in the test set of 

the TPT. Each panel represents one of the 60 problems, each problem ran for 100 

trials (both for the IBL model and human data),and the panels show the proportion of 

risky choices averaged in blocks of 25 trials. The SD in each graph denotes the 

squared distance between the observed R-rate and the IBL predictions across 100 

trials. The IBL model was run in exactly the same experimental paradigm as humans 

were. The model included the same simulated participants as the human data set. 
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The 60 problems represent a large diversity of behavioral effects, and in 

creating this diversity of problems, the organizers of the TPT (Erev et al., 2010) 

aimed at extending the traditional view of using counter-examples of particular 

behavioral effects by demonstrating the robustness of general learning effects. This 

demonstration and additional ones in Lejarraga et al. (2010) and in Gonzalez and Dutt 

(2011) indicate the IBL model’s ability to capture these general learning effects too. 

However, reliance on quantitative model comparison and numerical model 

predictions may lead this work to need of a "help line" (Erev et al., 2010) to guide 

potential users on what phenomena that this model can explain and the predictions 

that it can and cannot currently make. Although the TPT problems represent a large 

diversity of behavioral effects, these are difficult to isolate. This is because the 

problems were created with an algorithm that randomly selected outcomes and 

probabilities in such a way that 1/3 of the problems involve rare High outcomes 

(Ph<0.1) and about 1/3 involve rare Low outcomes (Ph>0.9); also 1/3 of the problems 

are in the gain domain (all outcomes are positive) and 1/3 are in the loss domain (all 

outcomes are negative). Thus, effects such as those found in other studies (e.g., Erev 

& Barron, 2005) may be difficult to isolate in the TPT’s diverse problem sets. 

We aim to address the question of robustness and specificity for the IBL 

model in the following sections, where I summarize results from the model in data 

sets where different type of phenomena were clearly identified: payoff variability 

effect, underweighting of rare events, loss rate effect, individual differences (Erev & 

Barron, 2005), probability matching, and adaptation to nonstationary environments 

(Lejarraga et al., 2012). 

The payoff variability, underweighting of rare events, and loss rate effects. 
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Erev and Barron (2005) demonstrated robust deviations from maximization in 

repeated binary choice tasks. These deviations are classified into three main effects:  

payoff variability, underweighting of rare events, and loss rate. 

The payoff variability effect refers to a tendency to increase exploration when 

payoff variability is associated with an alternative of higher expected value (Erev & 

Barron, 2005). The underweighting of rare events effect refers to the tendency to 

believe that the greater value and least probable outcome is less probable than its 

objective probability in decisions from experience (Erev & Barron, 2005; Hertwig et 

al., 2004), and the loss rate effect indicates that people sometimes tend to prefer 

alternatives that minimize losses over those that maximize gains. Here we 

demonstrate that the same IBL model can explain all three effects in all the problems 

presented in Erev and Barron (2005). 

A replication of Erev & Barron's payoff variability effect in three problems and 

IBL model predictions. 

To calibrate the parameters of the IBL model, we first replicated the payoff 

variability effect with human participants, using the following three problems 

(Haruvy & Erev, 2001; Erev & Barron, 2005): 

Problem 1.   H 11 points with certainty 

   L 10 points with certainty 

 

Problem 2.  H 11 points with certainty 

   L 19 points with probability 0.5 

    1   otherwise 

 

Problem 3.  H 21 points with probability 0.5 

    1   otherwise 

   L 10 points with certainty 

 

All three problems show a choice between a high alternative with an expected 

value of 11 points and a low alternative with an expected value of 10 points, but the 
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problems differ on the variance of the two payoff distributions. We developed a 

computer program for data collection and we ran an experiment where each of 60 

participants, undergraduate and graduate students at Carnegie Mellon University, 

worked on one of the three problems. We followed almost identical instructions as in 

the original experiments: individuals did not receive any information about the payoff 

structure. They were told that their task was to select one of the alternatives by 

clicking on one of two unmarked and masked buttons on the screen and were not 

informed of the trial number. They were provided with the payoff value of the button 

they clicked on. Payoffs were drawn from the distribution associated with the selected 

button. There are two differences between our methods and Erev and Barron’s (2005): 

(1) we did not use a performance-based incentive structure. Participants were paid a 

flat fee for performing the repeated choice task, and (2) we ran 400, rather than 200, 

trials for all problems to better explore learning effects. The average proportions of 

maximization (i.e., Pmax, the rate choices with the highest expected value) in our data 

set are very similar to those reported in Erev and Barron (2005). The average Pmax 

for the second 100-problem block (i.e., Pmax2) was 0.82, 0.61, and 0.50 for Problems 

1, 2, and 3 respectively (compared to .90, .71, and .57 in Erev and Barron (2005)). 

The slight but generally lower Pmax2 values in our replication may be due to the 

difference in the performance-based incentive. 

Figure 3 shows the proportion of maximization (Pmax) choices from humans 

(dark lines) and those from the IBL model (dotted lines) in each of the three problems. 
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Figure 3. The payoff variability effect in Human (dark lines) and IBL Model 

(dotted lilnes). data. The graph shows the Proportion of maximization (Pmax) in each 

block of 100 trials, for a total of 400 trials. The IBL model was run in exactly the 

same experimental paradigm as humans were. The model included the same simulated 

participants as the human data set. 

 

These learning curves illustrate that, as expected from the original 

experiments, an increase in payoff variability impairs maximization. Payoff 

variability for the high alternative decreases maximization over time. The payoff 

variability effect arises from the Blending mechanism (Equation 2) and the dynamics 

of the task values (the IBL model here does not include inertia). The model selects the 

option with the highest blended value; this is clear in problem 1, where the selection 

of the maximum option (11) is only influenced by the noise in activation (Equation 4) 

and in the retrieval of instances (Equation 3). In Problem 2, the model retrieves some 

instances of the maximum value in the risky option, 19, 50%. This makes the 

proportion of maximization less extreme than in problem 1, as the model would select 
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the risky option more often because it results in the maximum Blended value. In 

Problem 3, the risky alternative provides some higher payoffs (e.g., 21), half of the 

time which raises its expected value and leads to its selection more often. But the 

value of the risky alternative appears to quickly even out or decrease over time as a 

series of poor payoffs (e.g., 1) may lower its expected value and make the certain 

alternative (i.e., 10) more attractive, which in turn would increase the activation of 

this option by its more frequent selections.  

Additional demonstrations of IBL predictions of the Payoff Variability, 

underweighting of rare events, and loss rate effects. 

We ran the IBL model in the 40 problems reported in Erev and Barron (2005), 

which belong to the three effects described above. We ran the IBL model in each 

problem over the course of 400 trials for 100 simulated participants. The set of 

simulations resulted in the predicted learning curves summarized as the average Pmax 

in four blocks of 100 trials each. Figure 4 shows the learning curves for humans and 

for the IBL model. The Pmax per block (100 trials in each block) is shown for each of 

the 40 problems from Erev and Barron (2005)1. The figure shows that the IBL model 

can account for problems that demonstrate the payoff variability effect (Problems 1 to 

22), the underweighting of rare events (Problems 23 to 25), and the loss rate effect 

(Problems 26 to 40).   

                                                 

 

1
 The human data reported in this section were obtained from Ido Erev and Greg Barron. 
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Figure 4. Figure shows learning curves from human data (dark lines) and IBL 

model data (dotted lines) for each of the 40 problems in Erev and Barron (2005). Each 

panel represents one of the 40 problems, each problem in the IBL model ran for 400 

trials and the panels show the proportion of maximization averaged in blocks of 100 

trials. The panels demonstrate the payoff variability effect (Problems 1 to 22), the 

underweighting of rare events (Problems 23 to 25), and the loss rate effect (Problems 

26 to 40).  

 

The source of information for learning in this task is the same as in the generic 

demonstrations of the TPT data sets described above: the IBL learning mechanisms 

involving the frequency of observed outcomes, the recency of observed outcomes, 

and the blended value of the outcomes weighted by the probability of memory 

retrieval.  
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Addressing Individual Differences 

Erev and Barron (2005) discussed general boundaries of models as predictors, 

one of them is accounting for individual differences observed in human data. The data 

generated by the IBL model above is able to capture individual differences found in 

the problems reported in Erev and Barron (2005). Figure 5 shows the observed 

distributions of Pmax2 in 32 of the problems (out of the 40 problems shown in Figure 

4) for which we had individual data (the black bars). These distributions correspond to 

the second block (Trials 101-200) over all the participants.  Figure 5 also displays the 

distributions predicted from the IBL model (the white bars). The results show large 

individual differences in the proportion of maximization in all problems, and 

remarkably, the same IBL model that predicts the proportion of maximization over 

time (Figure 4) reproduces the distributions of participants' maximization behavior 

quite well in the majority of the problems. Although Erev and Barron's RELACS 

model also produce similar variability in human data, it is worth noting the simplicity 

of the IBL model compared to RELACS and the generality of the demonstrations 

from the IBL model compare to those of RELACS.  
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Figure 5. Distribution of proportion of maximization in the second block 

(Pmax2) over Humans and those produced by the IBL model with the simulated 

participants in 32 of the 40 problems reported in Erev and Barron (2005) and 

corresponding to the behavior in Figure 4, for the second block.  Each panel 

represents a problem and the distributions of participants' proportion of 

maximizations. The y-axis shows the proportion of participants (Humans, dark bars, 

and simulated by IBL model, white bars). 

 

Probability matching effect 

Probability learning refers to the study of how individuals predict the outcome 

of two mutually exclusive, random events. In a typical probability learning task, 

participants predict which of two lights will turn on in a number of trials. In the 
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standard version of the task, the probability that a light will turn on is unknown to 

participants, who learn so from experience. Early studies (Edwards, 1961) suggest a 

tendency where participants choose the more likely event with a probability that is 

similar to the event probability, a phenomenon referred to as “probability matching.”  

Lejarraga et al. (2012) reported the predictions of the IBL model to a set of 

probability matching problems that were also reported by Erev and Barron (2005) as a 

test of their RELACS model. The 27 problems were originally taken from Myers et al. 

(1961). Participants in these experiments had to predict, in each of 150 trials, which of 

two lights would turn on. Each participant was awarded 100 chips (worth 5¢ each) as 

game currency, and they could win additional chips by predicting correctly or lose 

chips by predicting incorrectly. The amount of chips earned at the end of the 

experiment was exchanged for money. The frequencies of the two lights were 90-10 

(i.e., one light turned on 90% of the times and the other light turned on 10% of the 

times), 70-30, and 50-50. The amount of chips gained with each correct prediction 

depended on the light being correctly predicted. Because high frequency lights are 

easier to predict, correct predictions of high frequency lights were rewarded with 

fewer chips than correct predictions of low frequency lights. There were three gain 

ratios that determined the rewards: 1:4, 1:2, and 1:1. For example, in the 1:4 

condition, correct predictions of low frequency lights were rewarded with 4 chips, 

while correct predictions of high frequency lights were rewarded with 1 chip. In the 

1:1 condition, correct predictions were rewarded with 1 chip irrespective of the lights’ 

frequency. Likewise, because high frequency lights are easier to predict, incorrect 

predictions for high frequency lights cost more than incorrect predictions for low 

frequency lights. The cost ratios for incorrect predictions followed the same ratios as 

for gains. In the 1:4 condition, incorrect predictions of high frequency lights cost 4 
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chips, while incorrect predictions of low frequency lights cost 1 chip. In the 1:1 

condition, incorrect predictions cost 1 chip for both lights. When the two lights 

occurred with the same frequency (in the 50-50 condition), the light assigned a higher 

gain was also assigned a lower cost.  

The IBL model and the predictions as compared to the results in Myers et al. 

(1961) were reported in Lejarraga et al. (2012) and reproduced here in Figure 6. The 

figure shows the mean number of choices for one of the options across participants in 

each of the 27 problems of Myers et al., (1961). The figure shows accurate predictions 

of the IBL model (white bars) compared to human data (dark bars) in all the 27 

problems.  

 

Figure 6. Average choices of option A in 27 problems of Myers et al., (1961) 

probability learning experiment.  The predictions of the IBL model for each problem 

(white bars) are close to human data (dark bars).  For details on the numerical 

comparison and explanations of the data set see Lejarraga et al. (2012). 

 

Adaptation to nonstationary environments. 

Rakow and Miler (2009) explored repeated choice in situations where the 

outcome probabilities for one of the two options changed over trials. In their 
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Experiment 1, 40 participants made 100 repeated choices between two risky options 

in four problems. In all of these problems, each of two options involved a positive and 

a negative outcome, so participants could win or lose money with each decision. The 

novelty of the problems studied by Rakow and Miler (2009) is that for one of the 

options, the probability of the positive outcome remained constant across trials (i.e., 

the stationary option, S), while this probability changed across trials in the other 

option (i.e., nonstationary option, NS). Changes in the probabilities for the NS option 

were gradual: the probability changed .01 per trial and over 40 trials. For example, 

problem 1 involved a choice between S that offered 10 with a .7 probability or -20 

otherwise, and NS that initially offered 10 with a .9 probability or -20 otherwise. 

From trials 21 to 60, the probability of 10 in NS reduced by .01 in each trial, such that 

the probability of 10 in trial 60 and onwards was .5. In all four problems, the change 

in the probability was by .01 per trial and after the 40 changing trials, the probability 

remained unchanged at .5. After each choice, participants observed the outcome of the 

chosen option as well as the outcome of the option not chosen (i.e., the foregone 

payoff). The apparatus and procedures are carefully described in Rakow and Miler 

(2009). Their results showed that participants adapted slowly to probability changes, a 

behavior that was not captured particularly well by the associative choice model fitted 

in that study (Bush & Mosteller, 1955).  

We obtained the experimental data from Rakow and Miler (2009) for the four 

problems in their Experiment 1, and we generated predictions from our IBL model 

using 100 simulated participants. Detailed results are reported in Lejarraga et al. 

(2012). Figure 7 shows the IBL model predictions (dotted lines) as compared to the 

observed data (solid lines), originally reported in Lejarraga et al. (2012). 
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Figure 7. Predictions of the IBL model and human data in four problems 

designed by Rakow and Miler (2009). Data and tests of the IBL model predictions 

were reported in Lejarraga et al. (2012). 

 

The accurate predictions of human behavior by the IBL model in all the 

phenomena demonstrated above support the assertion that the model is an accurate 

representation of decisions from experience in choice tasks with nonstationary 

environments. Because the choice problems change gradually across trials, recent 

experiences are more informative than distant past experiences. In this environment, 

recency is an adaptive behavior. As Figure 7 shows, participants in Rakow’s and 

Miler's (2009) experiment adapted to changing conditions: Each of the observed 

learning curves shows a marked change in the trend of choices.  

What the IBL model does not explain. 
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Although the IBL model provides robust predictions across a wide diversity of 

problems and explains a good number of well-known effects in decisions from 

experience, the model is not expected to predict behavior accurately in a number of 

situations. Below there are examples of situations in which the model does not 

provide accurate predictions. We know there might be many other effects that the 

model cannot predict and we hope to address the model's miss-predictions in future 

research. 

Pure Risk Aversion 

In the demonstrations of the payoff variability effect, Erev and Barron (2005) 

interpreted the difference between problems 1 and 3 (see Figure 2) as reflecting risk 

aversion (the high alternative is less attractive when the payoff variability increases) , 

and the difference between problems 1 and 2 as reflecting risk seeking preferences 

(the low alternative is less attractive when its payoff variability increases). In these 

problems, however, risk is confounded with expected value, and thus it cannot be 

interpreted cleanly as a pure risk aversion effect. To explore the pure risk aversion 

effect, we collected data on a fourth problem not reported in Erev and Barron (2005), 

in which alternatives are of equal value but they only differ in the variability of the 

payoff:  

Problem 4. Certain  11   points with certainty 

  Risky  21   points with probability 0.5 

1 Otherwise 

Using the same methods as in the first 3 problems, we collected data from 20 

participants in problem 4. Results shown in Figure 8 indicate that humans starting at 

an indifference point (solid line), reduce the proportion of risky choices over time. 
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The IBL model in contrast (dotted line), starts with a larger preference towards the 

certain alternative (11) than the risky alternative (21,.5; 1,.5) and moves towards 

indifference over time. Although the effect is relatively small, the model’s trends are 

in opposition to the humans', and they would be expected to continue in the same 

direction with even more practice. 

 

Figure 8. Average human proportions of risky choices (solid line) and the 

predictions of the IBL model (dotted line), in Problem 4 during 400 trials, averaged in 

4 blocks of 100 trials each. 

 

The key insight is that initial experiences of the "1" outcome in the risky 

option produce a higher blended value for the certain alternative (11) than the risky 

alternative in the IBL model.  The periods in which the risky alternative is selected 

and the lowest outcome (i.e., 1) is obtained must be longer than the periods of 

selecting the certain alternative in the first block. Over time, the model "balances out" 
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the value of the two alternatives as experiences of the "21" outcome produce a 

preference towards the risky alternative. 

The question is of course, why do humans and the IBL model differ.  The 

model, building on experiences over time, realizes little by little that the two options 

have the same expected values through the blended values, and moves towards 

indifference between the two options.  Humans in contrast, seem to maintain and even 

avoid the "fear" of obtaining a value of "1" that is lower than what they obtain by 

clicking the safe button "11". This type of "meta-reasoning", beyond reactive 

decisions based on pure feedback from actions taken are not captured by the IBL 

model as currently defined.  One way in which this initial tendency to "fear" the low 

outcome of the risky choice might be captured in the model is by creating initial 

tendencies (higher blended values) for the safe than the risky option.  

More risk seeking in losses compared to gain domains 

A common effect widely discussed in decisions from description implies that 

the subjective enjoyment from gaining a certain amount tends to be less than the 

subjective pain from losing the same amount (Kahneman & Tversky, 1979). Some 

researchers have demonstrated that loss aversion does not hold in decisions from 

experience, where decision makers seem indifferent between an equal chance of 

gaining or losing the same amount (Erev, Ert, & Yechiam, 2008; Ert & Erev, 2011). 

In decisions from description, decision makers are risk averse in the gain domain and 

risk seeking in the loss domain (Kahneman & Tversky, 1979), and this pattern may 

reverse or disappear in decisions from experience (Erev & Barron, 2005).  

Although much work needs to be done in regards to the differences between 

gains and losses in decisions from experience, our initial analyses of decisions from 
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experience in the sampling paradigm of the TPT indicate no difference in risky 

behavior between gains and losses (= .308, p=.580). The IBL model, however, 

predicts a difference between gains and losses, which although small, it is significant 

( = 12.462, p<.001). These effects are illustrated in Figure 9. Interestingly, human 

behavior as well as the IBL model prediction are in disagreement with the predictions 

from prospect theory:  Humans do not show higher risk-seeking tendency in problems 

involving losses than gains and the IBL model, shows a higher tendency for risky 

choices in problems involving gains than losses. Both, human data and the IBL model 

data illustrate opposite effects than those expected in prospect theory. 

 

 

 Figure 9. Proportion of risky choices in the gain and loss domains for the TPT 

sampling paradigm and the predictions of the IBL model. 

 

Emotions, Social, and Non-Cognitive effects 

In general, IBLT is a cognitive theory and IBL models are based on memory 

mechanisms. IBL models are not expected to predict social, emotional, and non-
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cognitive actions. However, we have started to investigate how the IBL model may 

account for situations involving two or more individuals involving non-cognitive 

aspects (e.g., emotions, power, trust). We propose that IBL models may also help in 

understanding how conflictual social interactions are influenced by the prior 

experiences of the individuals involved and by the information available to them 

during the course of interaction (Gonzalez & Martin, 2011). Some initial steps have 

been taken to use IBL models in multi-person games. For example, Gonzalez and 

Lebiere (2005) reported a cognitive model for an iterated prisoner's dimella (IPD), 

initially reported by Lebiere, Wallach, and West (2000), that assumes instances are 

stored in memory, including one’s own action, the other player’s action, and the 

payoff. More recently, the IBL model was used in more complex multi-person task, 

the market entry game (Gonzalez et al., 2011). This model, which obtained the 

runner-up prize in a modeling competition, shares basic features with IBL models of 

individual choice (e.g., Lejarraga et al., 2012), and importantly no explicit 

modifications were included in the model to account for the effects of the market 

entry task. 

Many models of individual decisions from experience are incapable of 

representing human behavior in social contexts. For example, Erev and Roth (2001) 

noted that simple reinforcement learning models predicted the effect of experience in 

two-person games like the Iterated Prisoner's Dilemma (IPD) only in situations where 

players could not punish or reciprocate. A simple model predicts a decrease in 

cooperation over time, even though most behavioral experiments demonstrate an 

increase in mutual cooperation due to the possibility of reciprocation (Rapoport & 

Chammah, 1965; Rapoport & Mowshowitz, 1966). To account for the effects of 

reciprocation, Erev and Roth (2001) made two explicit modifications to the basic 
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reinforcement learning model: if a player adopts a reciprocation strategy, he will 

cooperate in the next trial only if the other player has cooperated in the current trial; 

the probability that a player continues to do so will depend on the number of times the 

reciprocation strategy was played. Although these tweaks to the model may accurately 

represent the kind of cognitive reasoning that people actually use in the IPD, they are 

unlikely to generalize to other situations with different action sets or outcomes.  The 

IBL model appears to account for these reciprocity effects without the need for 

explicit and situation-specific rules (Gonzalez, Dutt, Martin, & Ben-Asher, 2012; in 

preparation; Juvina et al., 2011).  However, much work is needed for understanding 

how the IBL model can be extended to account for the effect of non-cognitive 

variables (e.g., emotions, social considerations such as power, fairness, envy, etc. ) on 

decision making. 

Conclusions 

Research on decisions from experience has demonstrated great potential to 

expand our understanding of the processes involved in making decisions. 

Experimental and cognitive modeling approaches to study of experience-based choice 

help open a window to understanding processes beyond the observable choice. With 

simple experimental paradigms, researchers have improved our understanding of the 

processes that lead to a choice, such as the recognition of alternatives, the formation 

of preferences, the evaluation of outcomes, the integration of experiences and the 

projection of costs and benefits.  With cognitive models, researchers have helped to 

explain how these processes develop, and to predict behavior in some novel 

circumstances. 
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A problem, which I have aimed to address in the past years, is the lack of a 

comprehensive model for experience-based choice  behavior and the proliferation of 

task-specific models of decisions from experience. Several on-going efforts have 

addressed this issue in many different ways through comprehensive model 

comparison and demonstrations (Gonzalez & Dutt, 2011; Lejarraga et al., 2012), and 

through model prediction competitions (Erev, Ert, & Roth, 2010; Erev et al., 2010). 

These efforts are converging over how decisions from experience are explained: via 

cognitive memory processes, including recency and frequency of events. Our 

explanations come from models based on IBLT that have shown robust and accurate 

predictions in multiple tasks. 

This chapter summarizes the history of IBLT and IBL models. Furthermore, it 

highlights and attempts to start addressing an important problem in this research 

program: the robustness and specificity tradeoff. Although the IBL models have 

shown robustness and generality, they also need to clearly and more specifically guide 

the potential users of these models to explain concrete phenomena in decision 

sciences. We summarized some phenomena that the IBL model explains: payoff 

variability effect, underweighting of rare events, loss rate effect, individual 

differences, probability matching, and adaptation to nonstationary environments. We 

also summarized some phenomena that the model in its current form is unable to 

capture: the pure risk aversion effect, more risk seeking in losses compared to in gains 

domains, and emotions, social, and non-cognitive effects. Future research will address 

these and many other challenges that the IBL model faces. 
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