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ABSTRACT

A common practice in cognitive modeling is to develop new models specific to each particular task. We question this approach and draw on an
existing theory, instance-based learning theory (IBLT), to explain learning behavior in three different choice tasks. The same instance-based
learning model generalizes accurately to choices in a repeated binary choice task, in a probability learning task, and in a repeated binary choice
task within a changing environment. We assert that, although the three tasks are different, the source of learning is equivalent and therefore, the
cognitive process elicited should be captured by one single model. This evidence supports previous findings that instance-based learning is a
robust learning process that is triggered in a wide range of tasks from the simple repeated choice tasks to the most dynamic decision making
tasks. Copyright # 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

A common approach in the study of decision making

involves observing human performance in a choice task

followed by the development of a cognitive model that

reproduces that behavior and predicts new unobserved

behavior within the same task (Cassimatis, Bello, & Langley,

2010). Usually, new tasks lead to the design of new models,

resulting in highly task-specific models that fail to reproduce

behavior even in closely related tasks. The efficacy of this

approach, therefore, has been questioned (Anderson &

Lebiere, 2004; Cassimatis et al., 2010; Newell, 1973). A

particular field in which model specificity prevails is

repeated binary choice: Different models have been

proposed to explain behavior in tasks that only differ

slightly. For example, different models are used to predict

learning in repeated binary choice with outcome feedback,

with feedback about foregone payoffs, and probability

learning (one exception has been RELACS by Erev and

Barron, 2005).

Like other researchers, we also question the value of

models that are too task-specific. However, we assert that the

cognitive process underlying learning is more often triggered

by the source of information observed by the decision maker

than solely by the nature of the task. For example, while

probability learning and repeated binary choice are different

tasks, the source for learning is equivalent: Decision makers

rely on exploration of the alternatives and their resulting

outcomes, which are drawn sequentially from binomial

distributions. Therefore, the same model should be used

to explain behavior in different tasks that yield similar

information for learning.

In this paper, we present a model that predicts behavior in

three different choice tasks that provide the same type of

information for learning. The model relies on instance-based

learning theory (IBLT), originally proposed to describe

decision making in complex dynamic decision making tasks

(Gonzalez, Lerch, & Lebiere, 2003).

Next, we describe IBLT and then an instance-based

learning model (hereafter ‘‘IBL model’’) for binary choice.

We then explain how the same IBL model makes relatively

accurate predictions of learning from experience in three

different tasks: a repeated choice task, a probability learning

task, and a repeated choice task in non-stationary environ-

ments. We conclude by suggesting that IBLT is a robust

representation of decisions from experience.

INSTANCE-BASED LEARNING THEORY

IBLT was developed to explain decision-making behavior

in dynamic tasks (Gonzalez & Lebiere, 2005; Gonzalez

et al., 2003). In dynamic tasks, individuals make repeated

decisions attempting to maximize gains over the long run

(Edwards, 1962; Rapoport, 1975). According to Edwards

(1962), dynamic decision tasks are characterized by decision

conditions that change spontaneously and with time,

inaction, and as a result of previous decisions.

Edwards (1962) proposed an initial taxonomy of dynamic

tasks, ranging from the least dynamic tasks, where actions

are sequential in an environment that is constant and where

neither the environment nor the individual’s information

about the environment is affected by previous decisions; to

the most dynamic tasks, where the environment and the

individual’s information about it changes over time and as

a function of previous decisions. This taxonomy was later

extended to include an even more dynamic characteristic in

Edwards’ taxonomy: that decisions are made in real time,

and thus their outcomes depend on the time at which the

decision is made (Brehmer, 1992; Hogarth, 1981).

IBLT was proposed as a descriptive account of the

cognitive structures and learning processes in dynamic

decision making. IBLT characterizes learning in dynamic
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tasks by storing in memory a sequence of action-outcome

links (called ‘‘instances’’) produced by experienced events.

The theory proposes a generic decision-making process

that involves: recognition, judgment, choice, execution,

and feedback as the main steps of the process that allows

decisions to improve as experience accumulates in memory

and according to the variability of the environment. The

following are some of the components that IBLT assumes

(see Gonzalez et al., 2003, for a detailed description of the

theory):

� Instances: Instances are examples of previous choices that

are encoded in memory. Each instance contains cues about

the situation in which a decision was made, the decision

itself, and the subsequent outcome. Situational cues are

relevant in dynamic environments because situations

change and not all experiences are informative for future

choice situations.

� Activation: Learning resides in a mechanism called acti-

vation (Anderson & Lebiere, 1998), which relies on the

frequency and recency of experienced choices and out-

comes. IBLT assumes that the instances experienced by

the decision maker are activated in memory as a function

of the aspects of their previous occurrence: More recent

and frequent instances are more active in memory than less

recent and less frequent ones.

� Similarity: Choice situations are never equivalent in

dynamic tasks as environments change over time. Thus,

past experiences are not necessarily informative in new

conditions. A similarity rule, defined on situational cues,

evaluates the resemblance of previous situations to the

current situation, so that the model only considers experi-

ences that occurred in similar situations.

� Blending: IBLT uses a mechanism originally proposed by

Lebiere (1999) to assess the attractiveness of the alterna-

tive options based on the observed outcomes in previous

similar situations. For each option, the values of all

observed outcomes resulting from selecting that option

are blended into a single blended value. The nature of

blending is similar to that of combining utilities (or values)

and probabilities (or decision weights) in expected utility

theory (von Neumann & Morgenstern, 1947) or prospect

theory (Kahneman & Tversky, 1979).

IBLT was originally implemented within the ACT-R

cognitive architecture (Anderson & Lebiere, 1998) to

account for decision making in a complex dynamic task

within a highly dynamic environment (Gonzalez et al.,

2003). ACT-R is both a theory of human cognition and a

programming environment. As a programming environment,

it allows researchers to design tasks and create models that

incorporate ACT-R’s theory of cognition. After IBLT was

proposed, other models based upon the theory have been

developed within the ACT-R architecture and demonstrated a

close approximation to human decision making in multiple

tasks (e.g., Gonzalez & Lebiere, 2005; Lebiere, Gonzalez, &

Martin, 2007; Martin, Gonzalez, & Lebiere, 2004). More-

over, models based on IBLT and within ACT-R have been

implemented to account for repeated choices (Lebiere et al.,

2007; Stewart, West, & Lebiere, 2009). The diversity of

models based on IBLT that closely represent human behavior

suggests that IBLT is a generic theory of decisions from

experience (Gonzalez & Dutt, 2010). In fact, one indication

of the potential of IBLTas a general theory of decisions from

experience is the observation that the winner of a recent

choice prediction competition (the Technion Prediction

Tournament; Erev et al., 2010) is an ACT-R model based on

IBLT. However, these implementations are often task-

specific and rarely demonstrate that the same model can

account for behavior in multiple tasks.

In part, the generalization of IBLT may have been limited

by the complexity of the ACT-R architecture. The ACT-R

architecture has evolved to be highly complex, often

allowing modelers the freedom to adopt new approaches

in the representation of the learning process. Additionally,

the development of IBL models within the ACT-R

architecture requires considerable technical knowledge.

Such an approach, although convenient for complex tasks,

is not parsimonious for simple tasks like repeated choices,

and hinders model generalization and reuse.

In the current research, we present a simple model based

on IBLT, and show that it accounts for choice behavior in

simple dynamic tasks (i.e., according to the taxonomy

proposed by Edwards, 1962). Given the simplicity of

repeated choice tasks, we developed a simple version of

an IBL model (in Microsoft Excel) to demonstrate the

generality of the learning process in multiple tasks. In the

following section, we describe this model for repeated binary

choice based on the mechanisms proposed in IBLT.

AN INSTANCE-BASED LEARNING MODEL FOR

REPEATED BINARY CHOICE

In repeated binary choice, the model chooses one of two

options by selecting the one with the highest blended value V

(Lebiere, 1999). The blended value of option j (e.g., a gamble

that pays $4 with .8 probability or $0) is defined as

Vj ¼
Xn
i¼1

pixi (1)

where xi is the value of the observed outcome i (e.g., either $4

or $0, in the previous example) and pi is the probability of

retrieval of that outcome from memory. Because xi is the

value of the observed outcome, the number of terms in the

summation changes when new outcomes are observed within

option j. Thus, n¼ 1 if j is a safe option with one possible

outcome. When j is a risky option with n possible outcomes,

n¼ 1 when one of the outcomes has been observed, n¼ 2

when the two different outcomes have been observed, and so

on. Given that the choice rule entails selecting the option

with the highest blended value, the model is naturally suited

for choices among more than two options.

As Equation (1) shows, the blended value of an option is

the sum of all the observed outcomes xi weighted by their

probability of retrieval. At any trial t, the probability of

retrieval of observed outcome i is a function of the activation

of that outcome relative to the activation of all the observed
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outcomes within that option, given by

Pi;t ¼ eAi;t=tP
je
Aj;t=t

(2)

where t is random noise defined as t ¼ s � ffiffiffi
2

p
, and s is a

free noise parameter. Noise in Equation (2) captures the

imprecision of recalling past experiences from memory.

The activation of each outcome in memory depends upon a

mechanism from ACT-R (Anderson & Lebiere, 1998). The

activation of an outcome in a given trial is a function of

the frequency of its occurrence and the time past since each

of these outcomes occurred. At each trial t, activation A of

outcome i is

Ai;t ¼ s ln
1�g i;t

g i;t

 !
þ ln

X
tp2f1;...;t�1g

ðt�tpÞ�d
(3)

where d is a free decay parameter; gi;t is a random draw

from a uniform distribution bounded between 0 and 1; and

tp is each of the previous trial indexes in which the outcome

i was observed. The first term in the right-hand side of

Equation (3) adds a random error to the activation process,

and it is intended to represent the noise associated with

memory activation. The summation will include a number

of terms that coincides with the number of times that

outcome i was observed in previous trials. Therefore, the

activation of an outcome increases with the frequency of

observation (i.e., by increasing the number of terms in the

summation) and with the recency of those observations

(i.e., by small differences in t�tp). The decay parameter

d affects the activation of the outcomes directly, as it

captures the rate of forgetting. A low decay value translates

into higher activations in memory, which implies longer

lasting memory.

Because memory is unlikely to be empty when starting a

task, the model assumes that some initial expectation exists

in memory before any choice is made. One initial outcome

for each option is pre-populated in memory and may

represent the initial payoff expectations that participants

bring to the laboratory. These values are set to be higher than

those observed in the gamble in order to trigger exploration

between options in early choices. Because these outcomes

are never observed, they are never reinforced and therefore

their activation decays in memory and soon becomes trivial.

These initial outcomes are not model parameters.

When choices yield feedback about foregone outcomes

in addition to obtained outcomes, the model activates the

observed outcomes of the non-chosen option in the same

manner as if they were the outcomes of a chosen option.

Notably, the same activation (Equation (3)) process affects

obtained and foregone outcomes. The model, thereby, is

suited to process foregone payoffs naturally.

Table 1 shows how the IBL model works for a choice

between options A and B. Option A is a risky prospect that

offers $4 with a .8 probability or $0 otherwise, and option B

is a safe prospect that offers $3 with certainty. The table

shows a simulation for 10 trials, as indicated in the leftmost

column. The second column shows the choice between A and

B, derived from comparing the blended value of each option

displayed in the two rightmost columns. The 3rd and 4th

columns show the outcomes observed by the model in each

trial. The following set of columns shows the activation of

each of the observed outcomes and a pre-populated initial

expectation set arbitrarily at $30. The following set of

columns shows the probability of retrieval of each observed

outcome and the blended values.

In trial 1, none of the possible outcomes ($4 and $0 for

option A, or $3 for option B) are active in memory because

the hypothetical subject is not aware that they exist. The only

active outcome is $30, the initial expectation for each option.

The initial expectations are not assumed to be known by the

subjects, but they are arbitrarily pre-populated in memory to

trigger exploration in initial trials. As a result, the probability

of retrieval of each initial expectation is 1, given that it is the

only outcome active in memory for each option. Thus, the

model chooses randomly in the first trial. The observed

outcome of choosing A in trial 1 is $4, as shown in column 3.

Table 1. Application of the IBL model on a sample choice problem between a risky option ($4 with .8 probability or $0 otherwise) and a safe
option ($3 for sure)

Trial Choice

Outcomes
for

Option A

Outcomes
for

Option B

Activation
(Equation (3))

Probability of retrieval
(Equation (2))

Blended values
(Equation (1))

Option A Option B Option A Option B

Option A Option B$4 $0 $30 $3 $30 $4 $0 $30 $3 $30

1 A 4 �0.90 �0.78 0.00 0.00 1.00 0.00 1.00 30.00 30.00
2 B 3 �4.46 �7.90 �1.67 0.84 0.00 0.16 0.00 1.00 8.29 30.00
3 A 0 �4.83 �6.99 1.98 �4.97 0.73 0.00 0.27 0.96 0.04 10.91 3.99
4 B 3 �5.13 �0.89 �9.37 �3.09 �7.81 0.12 0.87 0.02 0.90 0.10 0.94 5.64
5 A 4 �5.06 �5.09 �4.88 �2.48 �4.02 0.33 0.32 0.35 0.67 0.33 11.92 11.80
6 B 3 0.11 �5.31 �6.95 �4.02 �4.70 0.90 0.07 0.03 0.58 0.42 4.56 14.36
7 A 4 �3.28 �8.46 �8.78 �3.02 �8.74 0.86 0.07 0.06 0.94 0.06 5.38 4.71
8 A 4 �2.08 �8.64 �8.70 �1.83 �10.77 0.92 0.04 0.04 0.99 0.01 4.88 3.39
9 A 4 �3.45 �10.60 �13.16 �6.46 �14.00 0.96 0.03 0.01 0.97 0.03 4.12 3.75
10 A 4 �0.56 �9.21 �17.19 �10.29 �17.82 0.98 0.02 0.00 0.97 0.03 3.94 3.75

Note: The parameters used in this example are d¼ 5 and s¼ 1.5. These values were obtained by fitting the model to experimental data from 60 problems in the
TPT’s estimation set.
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In trial 2, then, $4 is active in memory (activation¼�4.46).

Notice that the probability of retrieval for the outcomes in

option A now becomes distributed between $30 and $4

according to Equation (2): $4 receiving a larger portion of the

weight than $30 because it has been observed more recently.

Further notice that the activation of $30 decays in both

options, and it does so through the end of the task. The

observation of $4 in trial 1 altered the balance in the blended

values, which now favors option B over A (i.e., the $30

expectation is promoting exploration in these initial trials).

Choosing B yields an observed outcome of $3, which now

becomes active in memory and distributes the probability of

retrieval of outcomes within option B. The process continues

successively.

Next, we demonstrate the performance of this IBL model

in three different tasks: repeated binary choice in the

Technion Prediction Tournament (TPT), probability learn-

ing, and repeated choice with non-stationary probabilities.

THE TECHNION PREDICTION TOURNAMENT

The TPT (Erev et al., 2010) was a competition in which

different models were submitted to predict choices made

by experimental participants. Competing models were

evaluated following the generalization criterion method

(Busemeyer & Wang, 2000), by which models were fitted to

choices made by participants in 60 problems (the estimation

set) and later tested in a new set of choices in 60 problems

(the test set) with the parameters obtained in the estimation

set. The 120 problems involved the choice between a safe

option that offered a medium (M) payoff with certainty and a

risky option that offered a high (H) payoff with some

probability (pH) and a low (L) payoff with the complemen-

tary probability, just like the example used in Table 1. M,

H, pH, and L were generated randomly, and a selection

algorithm assured that the 60 problems in each set differed

in domain (positive, negative, and mixed payoffs) and

probability (high, medium, and low pH). The resulting set of

problems was large and representative. The characteristics of

the 60 problems in the test set are included in Figure 2.

For each of the 60 problems, a sample of participants

(100 for the problems in the estimation set and 160 for the

problems in the test set) was randomly assigned into five

groups, and each group completed 12 of the 60 problems.

Each participant was instructed to select between two

unlabeled buttons on a computer screen for an unspecified

number of trials. One button was associated with a risky

option and the other button with a safe option. Each choice

yielded an outcome in Sheqels, and the outcome of the non-

chosen option was not presented. For a more detailed

description of the experimental procedure, please see Erev

et al. (2010, p. 21).

IBL model performance in the Technion Prediction
Tournament
The IBL model described above was evaluated under the

same conditions as the other models in the TPT. Following

the generalization criterion method used in the competition,

we fitted the IBL model to the 60 problems in the estimation

set. We calibrated two free parameters, noise s and decay d,

to minimize the mean squared distance (MSD) between the

observed proportion of risky choices (R-rate) across

problems and the R-rate made by 100 simulated participants

generated by the IBL model. MSD was minimized at .0056

when s¼ 1.5 and d¼ 5. The fitted model yielded a

correlation of r(58)¼ .9060 (p< .01) between participants’

and the model’s R-rate. Then, we evaluated the IBL model

against choices made on the 60 problems of the test set with

the parameters obtained in the estimation set.

The IBL model predicted choices accurately. Figure 1

shows that in the estimation and test sets, the IBL model

outperformed all competing models in the E-repeated

condition of the TPT, including an instance-based learning

model called ACT-R with sequential dependencies and

blending memory (submitted by Stewart, West, and Lebiere

and reported in Erev et al., 2010, hereafter ‘‘ACT-R model’’)

that won the competition. The results show that IBL’s MSD

is the lowest and the correlation is the highest among

competing models.

It is important to keep in mind that IBL has two free

parameters, the same number of parameters as the winning

ACT-R model, which compares favorably to the four

parameters in the explorative sampler with recency (ESR,

Erev, Ert, & Yechiam, 2008; Erev et al., 2010), the model

used as a benchmark and that provided the best predictions in

the TPT. Figure 2 shows the learning curves of all the 60

problems in the test set of the competition. As can be seen,

the IBL model accurately predicted learning in most of the

problems.

The performance of the IBL model in the 60 problems of

the test set was analyzed as a function of the characteristics

of the problems. The problems were separated by domain

into positive, negative, and mixed, and by the probability of

the high outcome into high, medium, and low. The model

predictions yield no marked pattern of error, so the small

prediction error can be attributed to the inherent randomness

of the experimental data.

The current analysis extends the findings in the TPT in

two ways. First, it examines choice behavior over trials,

whereas the original article focused on the prediction of the

aggregate choice rate across trials (Erev et al., 2010). Second,

it proposes a fundamental simplification of thewinning ACT-

R model, discussed next.

We obtained the ACT-R model from Stewart et al. (2009),

and we generated predictions from our IBL model and the

ACT-R model for comparison. Although the IBL model and

the ACT-R model are based on IBLT, they differ in many

important psychological assumptions. First, the ACT-R

model assumes strong sequential dependencies: Instances

stored in memory include a choice, its outcome, and the

previous two choices that preceded the current choice. To

describe this process, let us refer to the previous example ($4

with a .8 probability or $0 otherwise and $3 with certainty).

Given a hypothetical sequence of choices and observed

outcomes R! $4, S! $3, R! $4, S! $3, R! $4 (R for

risky and S for safe) in the first five trials, the ACT-R model
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would begin to store instances from trial 3 onwards. In trial

3, the model would store an instance that records the

risky choice, the $4 obtained and the two choices leading to

that choice: S (in trial 2) and R (in trial 1). In trial 4, a new

instance would be created that stores the safe choice, the $3

obtained, and the two preceding choices R and S. In trial 5,

upon observing the $4 outcome, the model would store a

new instance even though a $4 outcome had already been

observed in trial 3. The reason that the model stores these

two $4 outcomes as different instances is that they present

different histories (i.e., different two preceding choices),

and therefore, the model assumes they are different

experiences.

Second, the ACT-R model considers only stored instances

whose history matches the current history for each choice.

By recalling the instances with matching histories, the ACT-

R model assumes the following logic: If a given choice

sequence has led to high outcomes in the past, it will also lead

to high outcomes in the current choice which matches that

history. For example, in trial 6 of the previous example, the

model would consider only instances whose history is a

sequence of S and R in the exact order of occurrence. Then,

each instance (with unique histories) is active in memory

according to an activation equation that operates in the same

way as Equation (3) used in the IBL model.

Third, the ACT-R model assumes that only the instances

whose activation surpasses an arbitrary retrieval threshold

will be successfully retrieved from memory.

The IBL model presented here, in contrast, does not store

the history of choices nor does it assume a retrieval threshold.

In our IBL model, every experience has a probability of

being retrieved (Pi) from memory: Old outcomes have a

lesser weight on the option’s blended value (Equation (1))

than recent outcomes, but all experiences receive some

weight. This distinction results in different blending

mechanisms used between the two models. The ACT-R

model assumes that the blended value of an option is the

average of the values of observed outcomes (with unique

histories) weighted by their activations, for those instances

whose activation surpasses the retrieval threshold. In

contrast, the IBL model assumes no retrieval threshold,

and the blended value of an option is the average of the values

of observed outcomes weighted by their probability of

retrieval, as described in Equation (1).

The relatively accurate predictions of the ACT-R model,

in addition to how the model treats the two latest choices,

imply strong sequential dependencies in the observed choice

behavior. The IBL model captures this behavior through a

high decay parameter (d¼ 5 in IBL compared to .5 in the

ACT-R model), which implies that outcomes are quickly

forgotten and only the most recent outcomes receive a

critical weight in decisions.

The 60 problems in the test set of the TPT were ranked

according to the accuracy of the IBL predictions. Overall, the

IBL model performs better than the ACT-R model in 34 of

the 60 problems. Figure 3 shows the observed and predicted

choices for nine problems that represent the deciles from the

1st to the 9th. In each of the nine graphs, we plotted the

predictions by the IBL model and those by the winning

model of the competition across the 100 trials.

Figure 3 shows the relative accuracy of both models

across the 60 problems: Even in the problems with less

accurate predictions (e.g., 1st through 3rd deciles), both

models performed relatively well.

PROBABILITY LEARNING

Probability learning refers to the study of how individuals

predict the outcome of two mutually exclusive, random

events. In a typical probability-learning task, participants

predict which of two lights will turn on in a number of trials.

In the standard version of the task, the probability that a light

turns on is unknown to participants, who learn it from

experience. Early studies (Edwards, 1961) suggest a

tendency of participants to choose the more likely event

with a probability that is similar to the event probability, a

phenomenon referred to as ‘‘probability matching.’’ The

source of information for learning in this task is the same as

in the TPT task described above: an observed frequency of

random binary outcomes. Because the source of information

for learning is the same between the probability learning and

Figure 1. Scores of IBL and the models that participated in the
Technion Prediction Tournament. The upper graph shows the mean
squared distance between observed R-rate and each model’s
prediction. The lower graph shows the correlation between the
observed R-rate and each model’s prediction. The number of free
parameters of each model appears in parenthesis after each

model name
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the repeated choice tasks, we hypothesize that the same IBL

model presented above will predict probability learning

accurately.

Myers, Reilly, and Taub (1961) examined probability-

learning behavior in a set of 27 diverse problems (displayed

in Table 2). They designed a 3� 3 between-subjects

experiment where problems varied in the frequency of

occurrence of the two lights, the reward for correct

predictions, and the cost for incorrect predictions. As a

result, the problems covered a wide space of probability

learning problems.

Participants in Myers et al. (1961) were assigned

randomly to play one of the 27 problems. They had to

predict, in each of 150 trials, which of two lights would turn

on. Each participant was awarded 100 chips (worth .5¢ each)

as game currency, and they could win additional chips by

predicting correctly or lose chips by predicting incorrectly.

The amount of chips earned at the end of the experiment was

exchanged for money.

The frequencies of occurrence of the two lights were 90-

10 (i.e., one light turned on 90% of the times and the other

light turned on 10% of the times), 70-30, and 50-50. The

amount of chips gained with each correct prediction

depended on the light being correctly predicted. Because

high frequency lights are easier to predict, correct predictions

of high frequency lights were rewarded with fewer chips than

correct predictions of low frequency lights. There were three

gain ratios that determined the rewards: 1:4, 1:2, and 1:1. For

example, in the 1:4 condition, correct predictions of low

frequency lights were rewarded with 4 chips, while correct

predictions of high frequency lights were rewarded with 1

chip. In the 1:1 condition, correct predictions were rewarded

Figure 2. Mean observed proportion of risky choices (R-rate) and IBL predictions for each block of 25 trials in each of the 60 problems in
TPT’s test set. The title of each individual graph indicates the problem number followed byH, p(H), L, andM. For example, problem 1 involves
a risky option that offers�8.7 with a 0.06 probability or�22.8 otherwise and a sure option of�21.4 with certainty. SD in each graph denotes

the squared distance between observed R-rate and IBL predictions across the 100 trials
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Figure 3. Mean observed R-rate and predictions by 100 trials by the IBL model and ACT-R with sequential dependencies. The title of each
individual graph indicates the problem rank according to the accuracy of IBL predictions, followed by the problem number, and then followed
by H, p(H), L, and M. For example, the first problem in the upper left ranks in the 9th decile (90% of the 60 problems lie below this problem in
the IBL accuracy rank), is problem 50, and involves a risky option that offers 12.8 with a 0.04 probability or 4.7 otherwise and a sure option of

4.9 with certainty

Table 2. Probability learning problems in Myers et al. (1961) and prediction by RELACS and IBL

A B A-rate

Problem High Low High Low p(high) Observed RELACS IBL

1 1 �1 1 �1 .5 .55 .50 .49
2 1 �1 1 �1 .7 .80 .83 .72
3 1 �1 1 �1 .9 .96 .96 .84
4 1 �1 2 �1 .5 .35 .36 .35
5 1 �1 2 �1 .7 .63 .74 .63
6 1 �1 2 �1 .9 .96 .95 .83
7 1 �1 4 �1 .5 .33 .25 .24
8 1 �1 4 �1 .7 .46 .58 .48
9 1 �1 4 �1 .9 .86 .92 .79
10 1 �2 1 �1 .5 .28 .36 .40
11 1 �2 1 �1 .7 .76 .74 .64
12 1 �2 1 �1 .9 .91 .95 .82
13 1 �2 2 �1 .5 .23 .29 .27
14 1 �2 2 �1 .7 .60 .66 .57
15 1 �2 2 �1 .9 .90 .94 .81
16 1 �2 4 �1 .5 .34 .23 .20
17 1 �2 4 �1 .7 .54 .52 .44
18 1 �2 4 �1 .9 .92 .91 .78
19 1 �4 1 �1 .5 .11 .26 .25
20 1 �4 1 �1 .7 .65 .58 .50
21 1 �4 1 �1 .9 .91 .92 .79
22 1 �4 2 �1 .5 .18 .23 .19
23 1 �4 2 �1 .7 .47 .51 .42
24 1 �4 2 �1 .9 .89 .91 .77
25 1 �4 4 �1 .5 .16 .21 .14
26 1 �4 4 �1 .7 .33 .42 .33
27 1 �4 4 �1 .9 .82 .87 .73

Note: The prediction problems in Myers et al. (1961) are expressed as choices between gambles in the following form: In both options, the gambles offer a high
amount with probability p(high) and a low amount otherwise. Both gambles depend on the same random draw that determines the realization of high.
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with 1 chip irrespective of the frequency of the lights.

Likewise, because high frequency lights are easier to predict,

incorrect predictions in high frequency lights cost more than

incorrect predictions in low frequency lights. The cost ratios

for incorrect predictions followed the same ratios as the

gains. In the 1:4 condition, incorrect predictions of high

frequency lights cost 4 chips, while incorrect predictions

of low frequency lights cost 1 chip. In the 1:1 condition,

incorrect predictions cost 1 chip for both lights. When the

two lights occurred with the same frequency (in the 50-50

condition), the light assigned a higher gain was also assigned

a lower cost.

IBL model performance in the probability
learning problems
Myers et al. (1961) reported the mean choices for one of the

options (the A-option) across participants and between trials

101 and 150. The observed outcomes (xi) for the IBL model

were the number of chips either earned or lost with each

prediction. For example, in problem 1 (see Table 2), the

observed outcomes of the A-option were 1 and�1 chips, and

those of the B-option were 1 and �1 chips. The same

representation of these probability-learning problems was

followed by Erev and Barron (2005). IBL predictions were

compared to the same dependent measure reported by Myers

et al. (1961).

The results displayed in Table 2 show an accurate fit of the

IBL model to the 27 problems. Of particular importance is

the fact that the predictions for the probability learning

problems were obtained with the same model used in the

TPT task, and without altering the free parameters estimated

in the previous task. The MSD between the observed

proportion of A-choices (A-rate) and that predicted by the

IBL model is .009, and the correlation across problems is

r(25)¼ .973, p< .01. Erev and Barron (2005) tested

RELACS, a four-parameter model with pre-defined strat-

egies, in the same 27 problems reported here. The MSD

between the observed A-rate and that predicted by RELACS

is .004, and the correlation is r(25)¼ .976, p< .01. Although

RELACS performs slightly better than our IBL model, IBL

proposes a more parsimonious account of probability

learning.

RELACS assumes that decisions follow one of three

strategies: A strategy that selects the option with the highest

recent payoff (fast best reply); a strategy that moves from a

random selection in early trials to a two-stage case-based

reasoning; and a strategy that involves continuous but

diminishing exploration. In RELACS, these strategies are

used stochastically, and the probability that each strategy is

used is updated according to the outcomes that they

determine. Despite different assumptions and levels of

complexity, IBL and RELACS produce similar predictions.

It is unclear which of RELACS’ strategies was responsible

for the choice pattern in the 27 probability learning problems

and therefore it is difficult to establish a more meaningful

comparison of models. Yet, given the high recency in the

experimental data suggested by IBL’s accurate fit and its high

decay parameter, it is likely that RELACS relied mainly on

the fast best reply strategy.

The analysis of the predictions by problem suggests that

the IBL model produces more conservative predictions when

compared to the observed proportions and when compared to

the predictions by RELACS. In general, the IBL model

predicts choice proportions that are closer to 0.5 than those

revealed by participants. More extreme choice proportions

are expected in the probability learning problems than in the

TPT problems because the former involve mutually

exclusive events. Since only one of the two lights turns on

in each trial, the participant observes the outcome of the

predicted option and also the outcome of the non-chosen

option. Observing foregone outcomes reduces the motivation

to explore and therefore produces more extreme choice

proportions. Although the IBL model captures foregone

payoffs naturally, the high decay parameter (d¼ 5) suggests

heavy reliance on recent outcomes, which implies more

unstable learning and high alternation between options.

Moreover, greater noise (s¼ 1.5) associated with the

activation process implies an additional propensity to

explore. Overall, high decay and noise translate into less

extreme predictions. It is reasonable to assume, then, that the

availability of foregone payoffs eases recall of each outcome,

because outcomes are observed more frequently, and so

lower decay and noise parameters may have produced even

more accurate predictions.

Another reason that may contribute to the conservative

predictions produced by the IBL model is the observation by

Myers et al. (1961) that a few subjects were utilizing a

maximizing strategy at the end of 150 trials. Maximizers

generate more extreme choice proportions, and are unlikely

to follow the assumptions of the IBL model. Therefore, it is

reasonable to expect that the IBL model is capturing the non-

maximizing majority in Myers et al. (1961).

NON-STATIONARY PROBABILITIES

Rakow and Miler (2009) explored repeated choice in

situations where outcome probabilities for one of two

options changed over trials. In their Experiment 1, 40

participants made 100 repeated choices between two risky

options in four problems. In all the problems, each of two

options involved a positive and a negative outcome, so

participants could win or lose money with each decision. The

novelty in the problems studied by Rakow and Miler (2009)

is that, for one of the options, the probability of the positive

outcome remained constant across trials (i.e., the stationary

option S), while this probability changed across trials in the

other option (i.e., non-stationary option NS). Changes in the

probabilities for the NS option were gradual: The probability

changed .01 per trial and over 40 trials. For example,

problem 1 involved a choice between S that offered 10 with a

.7 probability or�20 otherwise, and NS that initially offered

10 with a .9 probability or �20 otherwise. From trials 21 to

60, the probability of 10 in NS reduced by .01 in each trial,

such that the probability of 10 in trial 60 and onwards was .5.

In all four problems, the change in the probability was of .01

Copyright # 2010 John Wiley & Sons, Ltd. J. Behav. Dec. Making (2010)

DOI: 10.1002/bdm

Journal of Behavioral Decision Making



per trial and after the 40 changing trials, the probability

remained unchanged at .5. The characteristics of each of the

four problems are displayed in the titles of the individual

graphs in Figure 4. After each choice, participants observed

the outcome of the chosen option as well as the outcome of

the option not chosen (i.e., the foregone payoff).

The apparatus and procedures are carefully described in

Rakow and Miler (2009). Their results show that participants

adapted slowly to probability changes, a behavior that was

not captured particularly well by the associative choice

model fitted in that study (Bush & Mosteller, 1955).

IBL model performance in repeated choices with
non-stationary probabilities
We obtained the experimental data from Rakow and Miler

(2009) for the four problems of Experiment 1, and we

generated predictions from our IBL model by generating 100

simulated participants. For use as a benchmark, we also

generated predictions from the explorative sampler model

with recency (ESR, Erev et al., 2008, 2010), which provided

the best predictions in the E-repeated condition of the TPT

(ESR was a baseline model provided to contestants of the

TPT to compare with their competing models). The same

IBL and ESR models with the parameters estimated in the

TPT’s estimation set were tested against Rakow and Miler’s

(2009) data set. The IBL model fits the observed data

particularly well (Figure 4). The MSD between observed and

predicted NS choices in the four problems were .0009 for the

IBL model and .0175 for the ESR model. When the MSD is

measured across trials and problems, IBL yielded a .013 and

a correlation of r(398)¼ .816 (p< .01), while the ESR

model yielded an MSD of .033 and a correlation of

r(398)¼ .497 (p< .01).

The ESR as implemented in Erev et al. (2010) included a

simplification that assumes all of the previous experiences

are equally similar. Biele et al., (2009), however, imple-

mented a variant of the ESR model (the Contingent Sampler

Model, CSM) better suited for dynamic problems that

assumes contingent sampling. We adapted CSM to account

for foregone payoffs and used it as a benchmark in Rakow

and Miler’s (2009) problems. However, the fit of CSM to

the observed data was poorer than ESR’s (MSD¼ .041

and correlation r[398]¼ .401, p< .01) and therefore we do

not report on CSM further. One reason why CSM under-

performed in Rakow and Miler’s (2010) problems is that

CSM’s contingent sampling is relevant in problems with a

Markov structure, as those in Biele et al., (2009). In Rakow

and Miler (2009), problems have less of a structure, as

previous outcomes have no influence over future outcomes,

and therefore contingent sampling impairs fast adaptation.

To make the ESR better suited for non-stationary

problems, we modified the model by assuming that sampling

in ESR is contingent on the last observed outcome.While the

original ESR model assesses the value of each option by

drawing a random sample of past experiences from memory

(where the last outcome is always sampled), our variant

assumes that this sample of experiences is only drawn from

the last outcome. Therefore, our implementation of the ESR

Figure 4. Mean observed choices for the non-stationary option (NS) and predictions by the IBL and ESR (with contingency on the last
outcome) models across trials. The title of each individual graph shows the structure of the choice problem. For example, the upper left graph
is problem 1, and involves a choice between a stationary option that offers 10 with a .7 probability or �20 otherwise, and a non-stationary
option that offers 10 with a .9 probability or �20 otherwise. From trials 21 to 60, the probability of 10 in the non-stationary option is reduced
by .1 in each trial, such that the probability of 10 in trial 60 and onwards is .5. The change in the probability is, for the four problems, of .1 per
trial and for the 40 trials indicated between parentheses. After the 40 changing trials, the probability remains unchanged at .5, also for the

four problems
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implies a magnified recency effect. The new version of the

ESR, with sampling contingent on the last outcome, fits the

data better than the original ESR model, but still worse than

IBL (See Figure 4). The MSD between observed and

predicted NS choices in the four problems improved to .0077

and to .021 when MSD is measured across trials and

problems. The new correlation between observed and

predicted NS choices for the ESR contingent on the last

outcome is r(398)¼ .674 (p< .01).

The relatively accurate predictions by the IBL model

support the assertion that instance-based learning is an

accurate representation of decisions from experience in

choice tasks with non-stationary environments. Because the

choice problems change gradually across trials, recent

experiences are more informative than distant past experi-

ences. In this environment, recency is an adaptive behavior.

As Figure 4 shows, participants in Rakow and Miler’s (2009)

experiment adapted to changing conditions: Each of the

observed learning curves shows a marked change in the trend

of choices. This adaptation was captured by the IBL model

quite well, and driven by the high decay parameter. Heavy

reliance on recent outcomes is supported by the observation

that the ESR model produces better predictions when

contingent sampling is focused on the last observed outcome

rather than on a subset of previous outcomes.

GENERAL DISCUSSION

Taken together, these studies show that IBLT presents an

accurate and robust representation of decisions from

experience in repeated binary choice. We assert that, as

the three tasks provide similar types of information for

learning, the cognitive process should not differ among them.

We showed that good approximations to choice behavior

were obtained by using the same model (with the same

parameters) across three types of tasks, precluding the use of

specific models in each task and promoting the reuse of

existing models.

The results generalize the application domain of IBLT,

and show that IBLT is a robust theory, well-suited for

repeated choice tasks. This ability is illustrated by the

precision of the model’s predictions. Moreover, these results

portray IBLT as a good candidate to reproduce human

learning in other non-stationary environments; for example,

in tasks where outcomes or probabilities vary as a function of

previous choices, previous outcomes, or time. The study of

decision making in such scenarios would help us understand

the cognitive processes that allow individuals to adapt to

changing environments, and would allow us to test existing

models further. Given that IBLT was initially proposed for

complex, real-time dynamic tasks, we can predict the

roadmap needed to bridge the gap between simple choice

tasks and more realistic tasks, by gradually increasing

the dynamic characteristics of the repeated choice task as

suggested by the taxonomy of dynamics proposed by

Edwards (1962).

The model presented in this paper is a simplified version

of the more complex IBLTused for dynamic decisionmaking

tasks. Therefore, the model excludes mechanisms that are

irrelevant in a binary choice task but that can be critical in

more complex dynamic tasks. For example, more complex

tasks with changing situations across decisions would

require that the IBL model includes similarity-based

inference, which would allow the model to retrieve instances

from memory on the basis of its similarity with newly

encountered situations. Situational cues can be stored as part

of instances and coupled with a similarity rule, would allow

an IBL model to evaluate previous instances that share

similar situational cues with the current choice situation: The

model would base its current decision upon experiences

that occurred in similar environmental conditions. These

and other more sophisticated mechanisms make IBLT highly

suitable for predicting behavior in more complex dynamic

environments.

Everyday life presents a variety of decision conditions

that differ in multiple ways, and we are often uncertain about

the characteristics of the environment we encounter, whether

we are in a simple relatively static situation or in a complex

dynamic environment. A commuter who chooses between

driving to work and taking the train learns from experience

the most appropriate means to arrive to work on time. This

choice scenario is simple and its conditions are not likely to

change much from one day to the next. When the commuter

arrives to work, however, she encounters a highly dynamic

environment, where her decisions are made within a

changing marketplace, often influenced by random shocks

and even her own actions (for research on the dynamic aspect

of managerial decision making, see Nelson and Winter,

1982; and Teece and Pisano, 1994). It is optimistic, therefore,

to learn that instance-based learning, a relatively simple

psychological mechanism, can cope with a wide range of

situations in a robust manner, from the simple repeated tasks

to the more dynamically complex tasks.
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