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Situation Awareness (SA) is a complex construct that cannot be fully understood 
from a single perspective. Rather, SA entails a multifaceted process in which 
individual and team factors, at both the micro and macro levels, need to be 
integrated. For example, research on team SA needs to take into account the 
factors that contribute to a given person’s individual SA while integrating the 
factors that contribute to any two team members’ shared SA, as well as team or 
organizational SA. Also, the complexity of SA arises from multiple individual 
cognitive abilities including learning, working memory, different levels of 
perception, understanding, projection, etc. These individual factors interact with 
multiple team and organizational factors such as geographical distribution, 
collaborative tool usage, network proximity, similarity of the individuals' 
background experiences, and familiarity with each others' skills, among others.

In this chapter we bring together different levels and factors of SA complexity 
into an integrated framework. Throughout the duration of the Army Research 
Laboratories Advanced Decisions Architectures (ARL-ADA) research program, 
we have addressed the complexity of SA by advancing the development and 
validity of measures at the individual and team levels. We have also created 
computational models of SA that have moved forward the descriptive nature of 
SA into more concrete and formal representations. This chapter summarizes all 
the past work we have done within this program and attempts to integrate all the 
previous findings into a research framework. The details of each of these 
research pieces can be found in the previous original publications. The 
integrated framework presented here came from a combination of scientific 
research methods at the micro and macro levels that included computational 
models, and laboratory and field studies. The framework integrates our past 
findings from experimental laboratory studies and ACT-R cognitive 
computational models on individual SA to field experiments and social network 
analysis of team and shared SA.

COMPUTATIONAL MODELS OF SA

Computational models have been developed to address individual cognitive 
aspects of SA, such as recognition, perception, and learning; to address design 
aspects of SA, such as visual interfaces and goal directed task analysis; and to 
address organizational and team aspects of shared SA, such as communication 
network distance, physical proximity, and knowledge and background similarity. 
The existence of these different models illustrates the challenge that one faces in 
the study of SA generally. Efforts demonstrate a positive approach to advance 
our scientific understanding of SA because they address aspects of the problem 
that are salient from different perspectives. This research demonstrates that 
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individual and organizational levels of SA are not incompatible, but rather they 
complement each other. As suggested recently (Lebiere, Gonzalez, & Warwick, 
2009), because much of the history of computational cognitive modeling has 
been microcognitive, these psychological architectures are a good starting point 
to develop macrocognitive or organizational models of SA. 

Computational Models of Individual Aspects of SA

Many computational models have been developed to address some important 
aspects of SA at the individual level, such as perception, attention, memory, and 
learning among others (Gonzalez, Juarez, & Graham, 2004; Juarez & Gonzalez, 
2003, 2004; McCarley, Wickens, Goh, & Horrey, 2002). Some of these models 
have been framed in the context of military applications such as perceiving and 
understanding a situation in the battlefield, and many of these models involve 
leading cognitive architectures such as ACT-R (Anderson & Lebiere, 1998) and 
SOAR (Newell, 1990). Here we summarize our own development of cognitive 
models of situation awareness (CMSA) at the individual level by using the 
ACT-R architecture (Anderson & Lebiere, 1998). 

A SA meta-architecture was developed to propose a conceptual design for 
CMSA (Gonzalez et al., 2004; Juarez & Gonzalez, 2003). The meta-architecture 
presented a set of modules that encapsulate the most essential cognitive aspects 
of SA. A demonstration of the architecture was developed in a commanding 
decision making mission in the OneSAF Test Bed (OTB), which interacts in 
real-time with the ACT-R cognitive model. This architecture consists of a 
recognition, assessment, prediction, and control modules. The recognition 
module gathers and encodes visual sensory information from the environment 
(in OTB) and encodes the information into ACT-R representations. The 
assessment module represents and manipulates information and updates, and 
maintains information on the environment (e.g., updates information about 
location, status, and types of entities in the battlefield). The prediction module 
constructs and evaluates hypotheses about the function of an entity in a plan to 
determine the probability and possible success of a course of action. The control 
module then provides the capability to select actions that will change the state of 
the world. 

The SA meta-architecture is used as an experimental platform to study the 
relationships among the model parameters and SA performance (Juarez & 
Gonzalez, 2004). The architecture allows one to manipulate a number of 
parameters and evaluate their impact in SA, including parameters of the task 
such as scenario complexity and the 'human' (ACT-R model) parameters like 
experience.
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A major question arising from these developments was which method to select 
for evaluating the SA of the model. One widely tested and validated approach to 
assessing SA in human subjects is the Situation Awareness Global Assessment 
Technique (SAGAT) (Endsley, 1995a). SAGAT allows for immediate 
assessment of SA by querying operators on their current perceptions, 
assessments, and projections of the situation (SA levels 1, 2, and 3 respectively). 
SAGAT has been empirically validated with regard to its utility to provide valid 
and reliable assessment of SA across a variety of domains (Endsley, 1990; 
Endsley, Sollenberger, & Stein, 1999; Hogg, Torralba, & Volden, 1993; 
Matthews, Pleban, Endsley, & Strater, 2000; Riley & Kaber, 2001). As with 
human SA measurement, we used SAGAT to measure SA for our computational 
models. The validation with SAGAT was implemented successfully (Juarez & 
Gonzalez, 2004); however, the cognitive aspects of the model still need to be 
validated with human data. A validation of the model’s predictions requires the 
comparison of SAGAT data from human participants to the model’s SAGAT 
data. Obtaining realistic human data in this context continues to be a challenge 
for SA modeling research. However, cognitive models have many other 
practical applications. One of them, presented next, is the use of computational 
models in conjunction with simulation tools in the evaluation of graphical 
interfaces. 

Computational Models of Design Aspects of SA

Because of the relevance of SA in Army operations, methods and tools that help 
us predict and mitigate low levels of SA are valuable for researchers and 
interface designers alike. In fact, accurately and reliably assessing how well an 
interface design concept supports user SA is essential to any design process. 
Given the limited time and funding available for developing multiple high 
fidelity prototypes, designers need a tool that will allow them to evaluate 
multiple design concepts early in the design cycle to minimize expense while 
maximizing the ultimate utility of the user interface. 

The ability to quickly predict the SA afforded by a particular display design is 
essential for the success of the computer systems researchers develop. Our 
research described in Gonzalez, Juarez, Endsley, and Jones (2006) presents how 
the computational architecture and ACT-R model of SA were used in a new 
application for the prediction of the SA elicited through a graphical user 
interface (GUI), and how the CMSA could be used in a new tool for prototyping 
and evaluating the user’s SA through simple GUIs. This work is summarized 
next. 
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The SA-oriented design process (Endsley, 2003; Endsley, Bolte, & Jones, 2003), 
provides a key methodology for developing user-centered displays by focusing 
on optimizing situation awareness. By creating designs that enhance an 
operator’s awareness of what is happening in a given situation, SA can improve 
dramatically. The design process starts with the gathering of SA requirements. 
These are determined through a cognitive task analysis technique called Goal-
Directed Cognitive Task Analysis (GDTA). A GDTA identifies the major goals 
and sub-goals for each job; the critical decisions the individual must make to 
achieve each goal and sub-goal; and the situation awareness requirements 
needed for making these decisions and carrying out each goal.

These SA requirements focus not only on what data an individual needs, but also 
on how that information is integrated or combined to address each decision. This 
process forms the basis for determining the exact information (at all three levels 
of SA: perception, comprehension, and projection) that needs to be included in 
the display visualizations. A final step of the SA-oriented design process 
emphasizes the objective measurement of SA during man-in-the-loop simulation 
testing using SAGAT. SAGAT provides a sensitive and diagnostic measure of 
SA that can be used to evaluate new interface technologies, display concepts, 
sensor suites, and training programs (Endsley, 1995; Endsley & Garland, 2000). 

The Designer’s Situation Awareness Toolbox (DeSAT) was created to assist 
designers in carrying out the SA-oriented design process (Endsley, 2005). It 
includes (1) a software tool for easily creating, editing, and storing effective 
GDTAs, (2) A GDTA checklist tool, to aid designers in evaluating the degree to 
which a display design meets the SA requirements of the user, (3) A SA-
oriented design guidelines tool, which guides designers in determining how well 
a given design will support user SA, and (4) A SAGAT tool, which allows 
designers to rapidly customize SAGAT queries to the relevant user domain and 
to administer SAGAT during user testing to empirically evaluate display 
designs.

The concept of DeSAT was used as a starting point to develop a new CMSA 
tool for predicting and evaluating how different GUI designs elicit SA. The 
CMSA tool (described in detail in Gonzalez et al., 2006) integrates the GDTA 
process through the DeSAT to generate a CMSA in a semi-automated way. The 
process of generating the CMSA from the GDTA is presented in Figure 14.1. 
The GDTA, which is the DeSAT output (an .xml file), and the image files that 
define a GUI are the two starting points of the process. The GDTA description 
consists of a list of goals, decisions, and information requirements to support 
situation awareness in a very specific domain (Endsley, 2005). The GUI is 
described in terms of its graphical components including widgets (e.g., buttons, 
graphical sections, icons) and their behaviors, as well as their organization in the 
graphical interface. The tool also allows one to define the domain knowledge 
and to identify the background knowledge needed to perform a task. 
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Figure 14.1
 A process for the automatic evaluation of the SA elicited by a Graphical 
User Interface, according to a predefined GDTA, from Gonzalez et al. 

(2006)

As a next step, the tool defines correspondence mappings between the GDTA 
components and specific widgets or graphical elements defined in the GUI. The 
mapping process helps produce a high-level definition language for SA from 
which an ACT-R model of SA is then generated and executed through the ACT-
R architecture (Anderson & Lebiere, 1998). 
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The functioning of this CMSA tool was demonstrated with a realistic example of 
a GUI prototype design (Gonzalez et al., 2006). The example used a selected set 
of GUIs to perform the logistics tasks of a company unit (see example in Figure 
14.2). The user of this system was expected to plan supplies, project the demand 
for a specific time period, and obtain the consumer trends for some items during 
specific time periods. The task involves high-level cognitive processes that 
sometimes are not necessarily expressed by a click of a button in a GUI. This 
logistics task consists of four sub-goals, each of which is represented in one of 
five screens in the application. 

Figure 14.2
 Example of a GUI used in the demonstration of the evaluation of the SA 

in Gonzalez et al. (2006)

In this example, the GDTA defines information requirements, decisions, and 
goals. Although the GDTA can be interpreted by a human, the computer model 
needs domain knowledge to understand the GDTA components. This CMSA 
tool defines domain objects and constraints to support the model on making 
decisions. Knowledge about domain objects in our example consists of: roads, 
road condition and road type; terrain type, elevation, type of soil; type of 
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vehicle, strength, capabilities, location; enemy threats; fuel requirements; 
mission, supply and shipping schedule; history of consumption, requirements, 
and usage rate. In addition, the system requires the knowledge about the criteria 
to select alternatives. For example, the system must contain definitions for best 
path which is mapped to shortest distance, minimal threats, and road conditions.

The CMSA tool produced a set of commands to generate a memory chunk for 
every element in the GDTA, for every element in the graphic interface, and for 
every domain object and domain constraint. Finally, the system generated ACT-
SA code with the procedural description of every task. The system then can be 
executed to collect the performance times and the number of operations needed 
to perform a task.

This work, described in Gonzalez et al. (2006), demonstrates the practical 
applications of CMSA. Most of the tools currently known to automatically 
generate cognitive models from graphical user interfaces have been created to 
evaluate the interface itself. That is, most of the work done on this area 
generates a model to evaluate the usability or the human-computer interaction of 
the interface. In addition, most of the tools developed up to date deal with very 
simple interface actions, such as point, click, and move. Our tool focuses not on 
the evaluation of the interface elements, but rather on the evaluation of the SA 
afforded by an interface. As SA involves high level actions, such as prediction 
of future status, it is important to include high level operators in our models, 
beyond simple interface actions. 

Computational Models of Team and Organizational Aspects of SA

Computational models of SA at the team and organizational levels have also 
been developed to represent organizational aspects of SA, such as 
communication, shared understanding, shared workload, etc. Successful models 
have been based on Social Network Analysis (SNA) theory developed under this 
ARL-ADA program (Graham, Gonzalez, & Schneider, 2007). This work is 
summarized here.

SNA is a technique that seeks to quantify the relationships among people in an 
organization. People and organizations are represented as nodes in a network, 
and the relationships (e.g., information flows) between people are represented as 
lines drawn between these nodes. Thus, a social network is a graph consisting of 
individuals and connections among them, where each connection is associated 
with some form of communication or relationship between the nodes (Borgatti, 
1994). 

http://www.satechnologies.com/html/products.html
http://www.satechnologies.com/html/products.html
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Communication data among an organization’s members can be gathered from 
shared e-mail headers, chat room traffic, instant messaging, and phone calls, or 
by surveying the individuals (Wasserman & Faust, 1994). While each of these 
communication media has different qualities, measure relevance is determined 
by the organizational context and collaborative tool characteristics. 

Graham, Gonzalez, and Schneider (2007) gathered communication data in a 
field experiment conducted at the Fort Leavenworth Battle Command Battle 
Laboratory. The US Army was in the opening phase of a ten-year organizational 
design process for a knowledge-centric command and control element. In 
support of this initial effort, the Fort Leavenworth Battle Command Battle 
Laboratory (BCBL) was conducting the first high fidelity experiment to 
determine organizational constructs that would support command and control in 
the Transformation Force. The experiment assumed a network-centric staff cell 
structure supported by a higher level of automation. 

Figure 14.3 from Graham et al. (2007) demonstrates a SNA representation of 90 
minutes of communication relationships in a 10-person command-and-control 
cell of the network organization. The 10 nodes are members of a Command 
Integration Cell (CIC) designed to coordinate the activities of other functionally 
oriented cells, and constitute a subset of the 56-member prototype network 
organization that was the focus of this research. 

Figure 14.3
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Command Integration Cell of a prototype network organization (from 
Graham, Gonzalez, & Schneider, 2007)

We used traditional SNA measures such as network density, network distance, 
physical distance, and self-forming teams to draw conclusions about the shared 
SA of this team, and to ultimately provide feedback to the Battle Lab on unit 
configuration.

Conclusions on Computational Models of SA

As summarized above, our past research has produced computational 
representations of different aspects of SA including cognitive, design, and 
organizational levels. These research efforts demonstrate the complexity in 
representing and reproducing human SA at different levels of specificity. These 
efforts also suggested that the development of SA measures, at both the 
individual and organizational levels, is essential to make progress in assessing 
SA, both behaviorally and computationally. 

While the SA literature base is large, many of the metrics currently used to 
measure SA focus only on component aspects of SA and don’t necessarily 
measure SA as an identifiable, integrated construct. This is partly due to the fact 
that the definitions of SA and shared SA are still under some debate. The need 
for better measures is particularly clear with respect to Shared SA. In order to 
improve the computational representations of SA, researchers need to develop 
valid approaches to assess both individual and shared SA. 

MEASURES OF SA

Over the duration of this research program, we have investigated SA at both the 
individual and team levels. At the individual level we focused on the learning of 
SA and the influence of individual aspects of SA using laboratory dynamic 
decision-making tasks. At the team level, we focused on the organizational 
measures of SA through the data collected in several field experiments in the 
Army Laboratories such as Ft. Leavenworth and the Joint Personnel Recovery 
Agency (JPRA). These efforts are summarized next.
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Measures of Individual SA

Task practice may allow people to develop “the mental models, schemas, and 
goal-directed processing that are critical for SA in most domains” (Endsley et 
al., 2003). An important first step in designing more effective displays and 
cognitive models of SA is to understand how individuals naturally improve their 
SA through practice. Similarly, cognitive mechanisms, such as working memory 
and learning or experience, are commonly assumed to influence SA (Endsley, 
1995; Endsley & Robertson, 2000). Although there is some clear evidence 
regarding the influence of working memory on SA (Durso, Bleckley, & Dattel, 
2006), we only have a weak understanding of the relationship between working 
memory and experience.

A common method to measure SA described earlier in this chapter is SAGAT. 
In this method a task simulation is stopped at random points and a participant 
answers a set of queries about the situation. Queries may be answered while the 
simulation display is not visible or covered (Endsley, 1995) or while the display 
is visible and uncovered (Durso et al., 1995). Gonzalez and Wimisberg (2007) 
conducted a laboratory experiment in which these two individual SA 
measurement conditions were used while participants played a computer 
simulation over several days. SA was measured using two different query 
conditions methods, a covered condition in which queries were asked while the 
display was blanked out and an uncovered condition in which queries were 
asked while the display was shown. A working memory measure was collected 
from participants as well.

Results, reported in detail in Gonzalez and Wimisberg (2007), showed that SA 
improves with practice when measured in a covered display condition, but not 
when measured in the uncovered condition. Furthermore, the effect of 
experience appears only in the covered condition for perception and 
comprehension queries, not for projection queries. Another main conclusion 
from this empirical study was that the moderating effect of working memory on 
SA changes with task practice, and depends on the conditions in which SA is 
measured. The participant’s level of working memory predicted SA scores only 
in the covered condition, such that, when the SAGAT requirement of blanking 
out the screen while an operator answers queries was implemented, working 
memory became a significant factor for SA. We also found that the effect of 
working memory was more relevant for SA at the perception level than for SA 
at the projection level. Because of the nature of perception-level queries, correct 
answers fully depend on the visibility of the elements on the display. In contrast, 
accurate answers to projection-level queries depend on a deeper understanding 
of the task.
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Finally, we found a significant decrease in the correlation between SA and 
working memory with practice in the task. This result suggests that as 
experience accumulates, there is a decreasing need to use working memory to 
maintain SA, although working memory may still be necessary to task 
performance. Please refer to the original publication (Gonzalez and Wimisberg, 
2007) for the details of the design and results.

Measures of Shared SA

Our work has extended from the individual aspects of SA to SA in teams and 
organizations (Graham, Gonzalez, & Doyle, 2003; Graham, Gonzalez, & 
Schneider, 2007; Saner, Bolstad, Gonzalez, & Cuevas, In Press). In order to 
function effectively as a team, operators need to develop an accurate 
understanding of the situation, that is, possess a high level of situation awareness 
(SA). If people are working in teams and any one of the team members has poor 
SA, it can undermine the success of the entire team. However, it is often the case 
that not all team members need to know all of the same information in a given 
situation (Endsley, 1995). In many situations, individuals in a team possess 
specialized knowledge and they rely on each other to perform particular tasks. 
As such, although each team member needs to have good individual SA on the 
information that is relevant to his/her job, the similarity of the individual SA 
among team members is only important with respect to their shared task 
requirements (Saner et al., In Press). 

Our approach, explained and validated in Saner, et al. (In Press), is based on 
assessing shared SA from objective measures of individual SA. We used the 
SAGAT methodology and compared participant responses to ground truth 
(reality) to evaluate the accuracy of their SA at a given moment in time. Despite 
the general validity of most existing methods for calculating SA scores, one 
limitation that they still possess is they often fail to account for errors in SA, in 
terms of both the amount of information that is thought to be relevant and in the 
accuracy of a person’s knowledge of it. As such, assessments of SA derived 
from these methods may be inflated. In order to address both accuracy and 
similarity of SA, we developed a method for calculating shared SA that first 
derives true SA scores and then assesses the similarity between the scores of two 
individuals. Our preliminary analysis suggests that failure to compensate for 
error in SA might lead to overestimation of performance in a situation. 

In addition to developing this new measure of shared SA, Saner et al. (In Press) 
evaluated whether it was related to cognitive and social factors that often 
influence performance in team contexts. We investigated SA in two 
interdisciplinary, multi-team military training exercises. The first data set was 
obtained by measuring SA among 17 participants engaged in a joint rescue 
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operation training exercise at the Joint Personnel Recovery Agency (JPRA). 
Participants were divided into four physically distributed team cells (Army, 
Navy, Special Forces, and Joint Operations), and had to coordinate rescue 
maneuvers in response to critical events. In the exercise, participants completed 
several distinct scenarios over several days, and were rotated into different cells 
for each scenario. The second data set was derived from a battalion command 
training exercise at Ft. Leavenworth. In this exercise, 24 participants were 
divided among four battalion level command positions and five core operational 
groups (Command Integration, Fires and Effect, Information Superiority, 
Maneuver and Support, and Build and Sustain), which were physically 
distributed. Participants remained in the same assigned positions throughout the 
duration of this exercise. In addition, there were clearly defined roles within 
each group, including officers in charge. The latter exercise was much more 
complex and there were more groups coordinating and more levels of rank, the 
situation was much more complex in this exercise.

The initial expectation was that the more distance there is between an operator 
and the operational center of the organization, the less SA that operator will 
have. Results from the rescue operation data set revealed a significant 
relationship between shared SA and participants’ distance from the joint service 
cell, which was expected to act as the organizational hub of the C3 structure in 
that context. In contrast to what was expected, shared SA was significantly 
better the further away participants were from the hub., This finding, though 
counterintuitive, did provide evidence that an individual’s role and position 
within an organization affect the level of shared SA that can be achieved with 
other individuals in the network. One possible explanation is that participants in 
the peripheral teams were doing more direct processing of information and did 
not need the help of the joint service cell to utilize information effectively, but 
this and other possibilities are still under investigation.

The analysis of battalion command data is still in progress, and is focused more 
specifically on the social network factors. Cognitive load data was again 
collected, but detailed data on years of experience and communication were 
unavailable. However, the role of individuals within cells is being added as a 
predictor. The Command Integration cell was also an organizational hub in this 
exercise, so participants’ distance from this cell and physical distance from each 
other are factors in this analysis as well. The goals of this analysis are to 
replicate the relationships between the predictors and shared SA that are 
common to both samples, and also to extend our assessment of the social 
dynamic influences that were observed in the recovery operation context.

Main Conclusions from Measures of Individual and Shared SA
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The success of the CMSA depends on finding appropriate and robust measures 
of individual and shared SA. The work described in this chapter extends the 
current state of the art on SA modeling and measurement. In addition, our shared 
SA measure builds upon work conducted with individual SA measures in an 
effort to develop new ways to account for error in SA that might otherwise 
misrepresent performance in a situation. 

We validated and extended the current understanding of individual measures of 
SA, developed procedures to measure the degree of shared SA between two 
team members and to improve the accuracy of shared SA scores, and created 
computational models that expand individual and team SA. In future work on 
the measurement of shared SA, we intend to address more of the dynamic 
factors involved in team work (e.g., information flow, communication flow, 
physical location, etc.), particularly the specific roles adopted by individuals and 
the distribution of task experts within the larger team. If a team is ultimately 
successful in completing their task, there must be a way to describe why 
particular knowledge, actions, or coordination patterns led to success. Without a 
measure of what particular beliefs the participants were operating on, and 
whether participants were operating on similar or different beliefs when they 
took similar actions, there is no sure way to reproduce success in later, similar 
situations. The effect of SA on performance is a question that is still unanswered 
in Shared SA research, and we plan to pursue this in future work. 
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