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I.     INTRODUCTION 

 

‘Cognitive architectures’ are computer algorithms designed to model human 

behavior and to function in a way similar to the workings of the human mind. The 

breadth of cognitive architectures is one of their primary strengths. Rather than serving as 

special-purpose models engineered specifically for individual tasks, cognitive 

architectures provide general computational mechanisms and constraints that are 

applicable to the development of models for all kinds of tasks. 

ACT-R is a widely researched cognitive architecture that accounts for hundreds of 

empirical results obtained in the field of experimental psychology (Anderson and 

Lebiere, 1998). ACT-R is a hybrid architecture of cognition that combines a production 

system (to capture the sequential, symbolic structure of cognition) with a subsymbolic, 

statistical layer (to capture the adaptive nature of cognition). A goal of ACT-R 

researchers is to investigate the overall integration of cognition by building models 

designed to explain how all the components of the mind work together (Anderson, 2002). 

Although cognitive architectures like ACT-R can offer flexibility and precision in 

human-like behavior representation, they have rarely been used to study economic 

decision making. A reason for this state of affairs is that ACT-R has mistakenly been 
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conceptualized as a rule-based static theory that does not provide the flexibility necessary 

for uncertain decision situations, like economic settings. This chapter will demonstrate 

the potential of ACT-R to model economic decision making. 

Economic decision making should be modeled as a learning process, involving 

more than calculation of expected values, accounting for human cognitive limitations and 

abilities, and allowing for flexibility in transfer of knowledge. This chapter summarizes 

evidence of successful ACT-R modeling of decision making processes of this kind. 

Several examples of ACT-R decision making models show that the same architecture can 

be used in a variety of tasks including dynamic control tasks, backgammon players and 

simple 2 x 2 gamers like in the Prisoner’s Dilemma. We argue that for economic decision 

making settings as well as for many other tasks in which learning and decision making 

occur in unison, instance-based decision making is the most plausible learning 

mechanism (Gonzalez, Lerch and Lebiere, 2003). Other researchers have also theorized 

that instance-based decision making is a general mechanism used for all types of decision 

making under uncertainty (Gilboa and Schmeidler, 1995). All the models reported in this 

chapter have successfully used this instance-based approach in ACT-R, concluding that 

ACT-R can provide an integrated account of the psychology of decision making. 

The rest of this chapter is organized as follows: Section 2 presents an introduction 

to the ACT-R cognitive architecture, its knowledge representation structures and memory 

and learning mechanisms. Section 3 summarizes the instance-based decision making 

approach from the psychology and economics perspectives. Section 4 presents a 

compilation of results from instance-based ACT-R models in individual decision making 

tasks and in 2 x 2 economic games. Section 5 further demonstrates the use of ACT-R 

instance-based decision making models in complex and more real-world tasks. Section 6 

concludes. 
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II.     ACT-R COGNITIVE ARCHITECTURE 

 

ACT-R 5.0 (Figure 1) is a modular, neurally plausible architecture structured as a 

set of localized modules (e.g., long-term memory, visual, motor) that interact through 

limited-capacity buffers connected to a central production, pattern-matching module.1 
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FIGURE 1. ACT-R 5.0 ARCHITECTURE 

 

Although the perceptual/motor modules effectively constrain performance in a 

number of tasks and provide a principled model of interaction with the environment, they 

are not our focus in this chapter. Rather, we chose to explore high-level decision making, 

                                                 

1Current hypotheses regarding the neural location of the various modules and buffers are indicated 

in parentheses. 
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for which declarative memory and the central production system are the modules of 

foremost importance. 

ACT-R incorporates a symbolic system in which declarative knowledge and 

procedural knowledge interact in discrete cycles. Declarative structures called ‘chunks’ 

are used to store factual knowledge in the declarative memory. Chunks encode 

knowledge as structured, schema-like configurations of labeled slots. ‘Productions’ are 

modular, condition-action rules that encode procedural memory by representing potential 

actions to be taken when certain conditions are met. ACT-R also incorporates a 

subsymbolic system in which continuously varying quantities are processed 

simultaneously to produce many of the graded characteristics of human cognition. These 

subsymbolic quantities participate in neural-like activation processes that determine the 

speed and success with which decision makers access chunks in the declarative memory 

and resolve conflicts among productions. Finally, ACT-R also incorporates a set of 

learning processes that can lead to the creation of new symbolic knowledge structures 

and the modification of the subsymbolic quantities associated with those structures.  

The subsymbolic activation processes believed to be implicated in instance-based 

decision making make a memory chunk available for retrieval to the degree that the 

similarity between a past experience and a current context (as defined by a current goal) 

indicates the usefulness of the chunk at that particular moment. Retrieving a chunk results 

in its immediate reinforcement (due to its frequency of use) through ACT-R’s base-level 

activation learning mechanism. Activation (1) reflects, in Bayesian terms, the log 

posterior odds that a chunk is relevant in a particular situation. The activation Ai of a 

chunk i is computed as the sum of its ‘base-level activation’ Bi plus its ‘context 

activation’: 
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Ai = Bi + Wj
j
∑ Sji         (1) 

In determining the context activation, Wj designates the attentional weight given 

the context element j. An element j is in context if it is part of the current goal chunk (i.e., 

the value of one of the goal slots). Sji stands for the strength of association between an 

element j and a chunk i. ACT-R assumes that there is a limited source activation capacity 

shared equally by each goal element. Source activation capacity is typically assigned a 

value of 1. Thus if there are n source elements for the current goal, each element receives 

a source activation of 1/n (Anderson, Reder, and Lebiere, 1996). The ‘associative 

strength’ Sji between an activation source j and a chunk i is a measure of how often chunk 

i was needed (i.e., was retrieved in a production) when source j was in the context. 

Associative strengths provide an estimate of the log likelihood ratio, which measures how 

much the presence of a cue j in a goal slot increases the probability that a particular 

chunk i must be retrieved to instantiate a production. 

The base-level activation of a chunk (2) is determined by using an architectural 

mechanism incorporating the past history of use of a chunk i: 

Bi = ln tj
−d ≈ ln

nL−d

1− dj=1

n

∑
                  (2)

 

In the above formula, tj stands for the time elapsed since the jth reference to chunk 

i, d represents the memory decay rate, and L denotes the lifetime of a chunk (i.e., the time 

since its creation). 

Researchers in psychology have demonstrated that both, forgetting and learning 

are characterized mathematically by a power function (Rubin and Wenzel, 1996; Newell 

and Rosenbloom, 1981). For example, plotting the logarithm of the time to perform a task 

against the logarithm of the trial number always yields a straight line (Newell and 

Rosenbloom, 1981). Anderson and Schooler (Anderson and Schooler, 1991) have shown 
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that the base-level learning equation produces both the Power Law of Forgetting  and the 

Power Law of Learning. Strengths of association are determined by using a similar 

mechanism that records the statistics of co-occurrence between sources and retrieved 

chunks (see Anderson and Lebiere, 1998 for more detail). 

When retrieving a chunk (3) to instantiate a production, ACT-R selects the chunk 

with the highest activation Ai. However, some stochasticity is introduced within the 

system by adding Gaussian noise of mean 0 and standard deviation σ to the activation Ai 

of each chunk. To be retrieved, the activation of a chunk needs to reach a fixed retrieval 

threshold τ that limits the accessibility of declarative elements. If the Gaussian noise is 

approximated with a sigmoid distribution, the probability P of chunk i being retrieved by 

a production is determined as follows: 

s
iAP τ−

−
+

=

exp1

1
                     (3)  

where s=√3σ/π. The activation of a chunk i is directly related to the latency of its 

retrieval by a production p. Formally, retrieval time Tip is an exponentially decreasing 

function of the chunk’s activation Ai: 

Tip = Fe−Ai

                 (4) 

where F is a time scaling factor. In addition to determining the latencies for chunk 

retrieval (provided by equation (4), the total time required for selecting and applying a 

production is determined by executing the actions of a production’s action part, with a 

value of 50 ms typically assumed for elementary internal actions. External actions, such 

as pressing a key, usually have a longer latency that is determined by the ACT-R/Pm 

perceptual-motor module (Byrne and Anderson, 1998). 

Instead of only retrieving chunks that perfectly match the production conditions, 

ACT-R’s ‘partial-matching’ mechanism (5) can retrieve whichever chunk matches the 
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condition to the greatest degree, according to a similarity function. Specifically, the 

chunk with the highest match score is retrieved, where match score Mip is a function of 

the activation of chunk i in production p and its degree of mismatch to the desired values: 

Mip = Ai − MP 1 − Sim(v,d)( )
v,d
∑         (5)  

In the above formula MP is a mismatch penalty constant, while Sim(v,d) stands 

for the similarity between the desired value v held in the goal and the actual value d held 

in the retrieved chunk, and permits the representation of continuous quantities. Thus even 

if no chunk in memory perfectly matches a current context, a common occurrence given 

an infinite number of continuous values, the chunk holding the closest value can be 

retrieved if its match score, after subtracting the mismatch between values from its 

activation, remains higher than the retrieval threshold (and the match scores of competing 

chunks). 

One shortcoming of partial matching is that, although it generalizes the matching 

process to handle continuous quantities, it can only return a value already present in some 

chunk. Lebiere (1999) proposed ‘blending’, which is a generalization of the retrieval 

mechanism and allows the retrieval and averaging of values from multiple chunks rather 

than a single one, thereby enabling the generation of continuous values. This powerful 

type of interpolation has proved useful for a range of paradigms of implicit learning 

(Gonzalez et al., 2003; Wallach and Lebiere, 2003). Specifically, the value obtained by a 

blended retrieval is determined as follows: 

V = Min Pi 1 − Sim(V,Vi )( )2
i
∑            (6) 

where Pi is the probability of retrieving chunk i and Vi is the value held by that chunk. 

Thus blending can be viewed as the process of returning the value that best satisfies 

conflicting pieces of knowledge stored in memory. 
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Blending also represents a generalization of well-known AI techniques. Neural 

networks have a similar ability to learn in their connection weights a number of training 

patterns and produce an output that reflects the constraints of the entire training set rather 

than any specific pattern. The Bayes Optimal Classifier produces the most likely outcome 

weighted over all hypotheses (ACT-R chunks), rather than simply the most likely 

hypothesis (most active chunk). Linear weighted regression is an instance-based machine 

learning algorithm that produces the answer that minimizes the squared error between a 

fitted function and a set of data points, with each data point being weighted by its 

distance to the query point. The blending mechanism combines attributes of all these 

techniques. 

In summary, the ACT-R cognitive architecture incorporates a set of mechanisms 

that can be used to develop models of learning and performance. The assumptions 

described in this section are not arbitrary; they are supported by years of work resulting 

in the accurate modeling of a broad range of results in experimental psychology. 

 

III.     INSTANCE-BASED DECISION MAKING 

 

Making decisions based on instances basically means that courses of action are 

chosen through the use of accumulated experience. Observations in real-world, complex 

situations (e.g., military battle executions and firefighting) support the notion that under 

conditions involving stress, uncertainty, or task overload, people’s decision making is 

mostly experience-based (Klein, Orasanu, Calderwood and Zsambok, 1993; Pew and 

Mavor, 1998; Zsambok and Klein, 1997). Two theories, one from economics and the 

other from psychology, crystallize this form of decision making. 
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The economists Gilboa and Schmeidler (1995) proposed a theory called ‘case-

based decision theory’ (CBDT) (Gilboa and Schmeidler, 1995) designed to explain 

decision making under conditions of uncertainty. Like expected-utility theory, CBDT 

derives a functional representation of preferences from a set of axioms about individual 

behavior. But, in contrast to expected-utility theory, CBDT posits that decision makers 

rely on their experience by choosing alternatives that have worked best in the past. 

Central to the theory is the concept that memory consists of a finite set of past instances 

or cases and that similarity to past cases is the only guide to decision making. Cases in 

CBDT are triplets (q, a, r) where q is the problem situation, a is the act (decision), and r 

is the consequence resulting from that act in the situation q. CBDT assumes that decision 

makers judge both the similarity of the problems they encounter and the desirability of 

the outcomes (i.e., the utility) as they are experiencing them. Gilboa and Schmeidler 

(1996) also emphasize that the similarity function is only a matter of subjective judgment 

and is not “objectively known” by the decision maker. Although CBDT can provide an 

axiomatic derivation of a similarity function, it does not explain how individuals select 

similar past cases for comparative purposes (Gilboa and Schmeidler, 1996). A similarity 

function and an accumulation of cases in the memory would not necessarily help a 

decision maker select the “right choice”—i.e., basing a decision solely on which case in 

the memory is most similar to a current situation may yield a poor outcome. Thus, when 

using past cases to make decisions individuals presumably take both the similarity of the 

problem to past cases and the past cases’ utility (i.e., a measure of the desirability of 

outcomes) into account. 

Working in the field of psychology, Gonzalez, Lerch and Lebiere (2003) 

proposed a theory called ‘instance-based learning theory’ (IBLT) in an effort to help 

explain decision making in complex, dynamic situations. This theory builds on memory 

theories of learning developed in psychology and on theories of decision-making under 
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conditions of uncertainty (e.g., CBDT). Like CBDT, IBLT proposes that instances (or 

cases) accumulate in the memory as individuals make decisions, and incorporates the 

concepts of similarity and utility. But, in contrast to CBDT, IBLT describes a cognitively 

plausible decision-making process through which individuals acquire and update 

instances and through which learning occurs. 

A large part of the difficulty associated with developing accurate models of 

human decision making stems from the fact that much of the knowledge gained and 

deployed by experts (and even minimally skilled novices) in decision-making situations 

seems to be implicit. Berry and Broadbent (1984) were the first researchers to explore the 

concept of implicit learning in process control, and they reported negative correlations 

between task performance and the ability to answer specific questions about a system’s 

behavior (Berry and Broadbent, 1984; Broadbent, 1977). ACT-R provides a 

straightforward theory of the difference between knowledge and performance based on 

the acquisition and retrieval of instances. Each instance in the form of a declarative chunk 

is a piece of conscious knowledge; however, both the process of retrieving and applying 

that knowledge and the subsymbolic parameters that control that process (e.g., base-level 

activations, strengths of associations, and similarities between chunks) are consciously 

inaccessible and constitute the implicit knowledge of the system. 

IBLT claims that every execution of a dynamic decision-making task results in 

the creation of instances. These instances are represented as chunks with slots containing 

the situation (a set of cues), the decision made, and the expected utility of that decision in 

that situation. IBLT proposes that initially (i.e., in the absence of accumulated knowledge 

relevant to a task) decision makers evaluate alternatives by using simple heuristics (e.g., 

random choice). However, as individuals acquire knowledge in the form of instances, 

they use these instances in subsequent executions of the task. The feedback process, 

another key characteristic of IBLT, updates the utility slot according to the outcome of 
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decisions. Thus, decision makers confronted with similar situations while performing a 

task gradually abandon general heuristics in favor of improved instance-based decision-

making processes. 

The different mechanisms used to retrieve instances, evaluate alternatives, and 

apply feedback are central to IBLT. A similarity mechanism plays an integral role in 

individuals’ recognition of decision-making situations. If the situation is relatively 

common, then the use of past experience might enable individuals to make accurate, 

relatively fast decisions. But if the similarity between a current situation and existent 

memory instances is low, then the use of a more general heuristic might be the most 

efficient method by which to select a course of action. IBLT also posits that, in addition 

to the analysis of situation similarity, a sequential evaluation of alternatives influences 

individuals’ decisions. Thus the order in which alternatives are evaluated by decision 

makers acting in a complex environment while under time constraints is very important. 

This component of IBLT, called ‘the necessity mechanism’, is very important when 

individuals encounter environmental or cognitive constraints that limit information 

seeking. Finally, a feedback mechanism determines the amount of credit afforded to 

individual decisions given a particular outcome. This mechanism is particularly important 

in dynamic situations, in which multiple and interdependent decisions typically occur 

before the final outcome is known. 

Despite the differences between CBDT and IBLT, they share some common 

principles, including the conceptualization of memory as a set of past instances or cases 

and of retrieval as a process based on some sort of similarity and utility metrics. 

However, IBLT is particularly well-suited for modeling decision making that is 

constrained by dynamics and environmental factors such as uncertainty, time constraints, 

and high workload. The next section reviews multiple examples of instance-based 

decision-making models developed in ACT-R research. 
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IV.     ACT-R INSTANCE-BASED MODELS OF DECISION MAKING 

 

This section summarizes a set of ACT-R models of decision-making tasks 

performed by either individuals or small teams. Researchers have developed these models 

in accordance with the instance-based approach and have validated them by using human 

data. We briefly summarize how accurately data generated through the use of each of 

these models describe actual human behavior. 

The sugar factory task (Berry and Broadbent, 1984) is an instance-based ACT-R 

model. Sugar factory is a computer-simulated task in which participants are told to 

imagine that they are factory managers and can control the production of sugar sp by 

determining the number of workers w employed on each of a number of trials. 

Unbeknownst to the participants, the following equation governs the behavior of the 

system: 

122 −−×= tt spxwsp        (7) 

Sugar production is proportional to the number of workers employed, a concept 

that is intuitive enough, but is inversely related to the sugar production at the previous 

step, a relationship that is difficult and counterintuitive to infer. The value entered for the 

workers hired (wt) can be varied in 12 discrete steps (1 ≤ wt ≤ 12), while the sugar 

production spt changes discretely within the range 1 ≤ spt ≤ 12. To allow for a more 

realistic interpretation of w as the number of workers and sp as tons of sugar, the actual 

computer simulation multiplies these values by 100 and 1000, respectively. If the result 

according to the equation is less than 1000, sp is simply set to 1000. Similarly, a result 

greater than 12000 always leads to an output of 12000 tons of sugar. Finally, in two-
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thirds of all trials a random value of ±1000 is added to the result derived from the 

equation above. 

Dienes and Fahey (1995, 1998) developed two models of the sugar factory task 

using either rules or instances and found that the former model reproduced human 

behavior more closely than the latter. In addition, they found that subjects that displayed 

the best control performance of the system also exhibited the lowest amount of system 

knowledge, as determined by a post-task test.  

Wallach and Lebiere developed an ACT-R instance-based learning model of the 

sugar factory and compared it to a models proposed by Dienes and Fahey (Dienes and 

Fahey, 1995, 1998; Wallach and Lebiere, 2003). The ACT-R model is quite simple, 

consisting of a single heuristic rule (taken from the Dienes and Fahey model) to bootstrap 

the system and another rule to retrieve past instances. Nonetheless, in comparison with 

the models of Dienes and Fahey it provides at least as good of a fit to human data without 

making any unwarranted assumptions. The ACT-R model also explains lowest amount of 

system knowledge in best performers: the model’s knowledge of the system consists only 

of instances rather than any general, abstract understanding of the system’s dynamics. 

Because the sugar factory task has only a few discrete states (a single input 

control variable and a single output variable), Wallach and Lebiere (2003) tested the 

generality of the ACT-R modeling approach by applying it to Broadbent’s transportation 

task (Broadbent, 1977; Broadbent and Aston, 1978). Participants performing that task can 

adjust two continuous input variables to try to achieve target values on two continuously-

varying output variables. Like the sugar factory equation, the equations underlying the 

dynamics of the transportation task system contain not only straightforward relationships 

between input and output variables but also a counterintuitive negative cross-relationship. 

The proposed ACT-R model challenges the views of Berry and others by substantiating 

the ability of an instance-based learning model—representing pairs of encountered input-
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output values without explicitly encoding structural knowledge about causal relationships 

between variables—to successfully control the task (Berry and Broadbent, 1987). The 

model makes use of the ACT-R blending mechanism that retrieves the value or values 

that best satisfy the constraints expressed by an entire set of chunks, with each chunk 

weighted by its probability of retrieval.  

Figure 2 shows that the model’s ability to control the system is quite comparable 

to that of the test subjects’, with r2 of .73. Control performance was measured by the 

number of trials necessary to achieve the respective target value pairs. The average 

number of errors, defined as an increase in the distance to the required target values from 

trial n to trial n+1, was within the empirically observed range. 
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FIGURE 2: AVERAGE NUMBER OF ERRORS AS A FUNCTION OF PROBLEMS 

 

The ACT-R model of the transportation task has an intriguing characteristic: A set 

of instances representing each subject’s exploration phase is used instead of a general 

heuristic rule to initialize the instance-based model. Thus each model run constitutes an 
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individualized version of the general instance-based model, adjusted to the knowledge of 

each individual subject.   

Researchers also have applied the instance-based models of learning by individual 

decision makers to decision making by two-person teams. The mechanisms used to 

model decision making in multi-player game settings are the same as those used to model 

individual decision making. Instead of using theories specially developed for the task, 

such as game theory, we have built models based on the same general-purpose 

mechanisms of the ACT-R cognitive architecture (e.g., learning and memory). 

Researchers use game-like tasks to evaluate team decision making because the 

competitive aspect of game playing is a good tool by which to ensure maximal effort by 

subjects and to test the limits of the subjects’ cognitive abilities. Because these multi-

person adversarial games involve a finite, often small number of choices that are repeated 

for a certain number of iterations, they allow for instance-based learning to occur.  

Instance-based decision making is largely dependent on an individual’s ability to 

match current situational patterns with past situations and the associated decisions stored 

in memory. In team decision-making situations, memory consists of one’s own instances 

and those of the opponent. Thus, the quality of one player’s decisions often depends 

strongly upon her awareness of the opponent’s instances and upon her ability to analyze 

them to infer her opponent’s plans.  

To identify the essence of team tasks, Lebiere and West (1999) studied human 

decision making in the classic game of paper-rock-scissors. This game embodies the 

essence of adversarial decision-making: It offers each player a finite set of options, has 

simple, well-defined zero-sum2 rules that define the outcome of those options, and allows 

                                                 

2A zero-sum game is one in which every gain by one of the players has to be offset by an 

equivalent loss by another. It has been recently argued that many real-world situations can in fact be 
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the most direct expression of the dynamic character of move and countermove, as each 

player tries to anticipate the other’s moves and preempt them. Rather than attempting to 

create a model specifically tailored for this particular task, in accordance with the 

architectural approach we re-used a model previously developed for the basic human skill 

of learning sequences of events. The ACT-R Sequence Learning Model learned 

sequences of stimuli by building instances encoding short pieces of sequences (Lebiere, 

Wallach and Taatgen, 1998). Although the model accumulates instances 

straightforwardly through experience, the procedural knowledge is quite trivial and 

consists basically of a pair of production rules that match the most recent move against 

instances in memory, retrieve the most active instance with its prediction of the next 

move, then lead to selection of the move that counters the predicted one. 

Figure 3 presents a time course of model and subject performance for a number of 

sample runs. The model stored the opponent’s moves as sequences of different lengths 

(called ‘lags’). For instance, if the model stored the opponent’s most recent 2 moves, 

together with the current move, it had a sequence of length 2 and was termed a ‘lag2’ 

model. Figure 3 shows the mean score differential between the lag2 model and the lag1 

model. Although the differential in score between the lag2 and lag1 models fluctuates, 

the long-term trend is clearly in favor of the more powerful lag2 model. Figure 3 also 

shows the mean score differential between human subjects and the lag1 model, and 

indicates that the lag2 model generally provides data very similar to that generated by 

human subjects. West and Lebiere (2001) present a more extensive analysis of the model 

and its sensitivity to a number of parameters, including length of stored sequence, impact 

of feedback, and various system parameters. Although paper-rock-scissors is a simple 

                                                                                                                                                 

characterized as non-zero-sum (Wright, 2001), but our approach is not dependent upon the zero-sum 

characteristic of situations and generalizes to non-zero-sum situations, as illustrated later in the chapter. 
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game, playing it well is by no means trivial. This generalized ACT-R model was entered 

in an international competition3 and placed in the top tier, holding its own against 

specialized AI programs designed specifically for the game.  

 

-6

-4

-2

0

2

4

6

8

10

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

plays

sc
or

e 
di

ff
er

en
tia

ls
 

(h
um

an
-la

g1
; l

ag
2-

la
g1

human-lag1

lag2-lag1

 
FIGURE 3: MEAN OF HUMAN AGAINST LAG1 MODEL AND MEAN OF LAG2 

AGAINST LAG1 MODEL 

 

The generality of the two-person game-playing model was validated in other two-

person game situations. Rapoport et al. (1976) provide a wealth of data for a variety of 

2x2 games. Among those games are some classic conundrums, such as the Prisoner’s 

Dilemma (PD). PD brings the factors of cooperation and coordination into play, in that 

the players can achieve a better combined outcome by cooperating with each other rather 
                                                 

3Details of the competition are available at http://www.cs.ualberta.ca/~darse/rsbpc.html. 
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than by trying to maximize their own separate outcomes. Lebiere, Wallach and West 

(2000) present a model of the PD directly based upon the paper-rock-scissors model. 

They argue (as detailed above) that the chunks stored from experience in declarative 

memory contain the record of each trial, including one’s own move, the other player’s 

move, and the associated payoff. The PD decision is made in accordance with a pair of 

production rules that, given each possible action (i.e., cooperation or defection), retrieve 

the most likely outcome from memory and then select the one with the highest payoff. 

Aside from a slight variation in the model to reflect the new situation of varying payoffs 

in non-zero sum games, all parameters in the model remained unchanged. Again, the 

declarative knowledge simply represents a direct encoding of the player’s experience, and 

the decision rule is a straightforward encoding of the rules of the situation. The model 

predictions again originate from the architectural learning occurring automatically at the 

subsymbolic level of the architecture. 

Table 1A presents both the frequencies of the four possible outcomes for each 

pair of PD human subjects and the frequency average over the 10 pairs. The results are 

strongly bimodal. Six of the 10 pairs exhibited what can be described as cooperating 

behavior, choosing the cooperative outcome (B1B2) for two-thirds of the plays or more. 

Three of the 10 pairs exhibited non-cooperating behavior, choosing the defecting 

outcome (A1A2) more than half of the time. The percentage of choice of the non-

symmetrical outcomes (i.e., A1B2 and A2B1) is fairly low, averaging 7% and 8%, 

respectively, except in pair #8, in which the B1A2 outcome was chosen more than half of 

the time. Overall, subjects selected the cooperative outcome more than half of the time 

(55%) and the mutually defecting outcome less than one-third of the time (30%). 

 

TABLE 1: FREQUENCIES OF THE FOUR OUTCOMES IN THE PRISONER’S 

DILEMMA 
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(A) HUMAN      (B) MODEL 

Subject Pair A1A2 A1B2 B1A2 B1B2 Model Run A1A2 A1B2 B1A2 B1B2 

1 1 1 1 97 1 10 13 12 65 

2 7 1 1 92 2 1 0 2 97 

3 14 1 2 83 3 4 19 12 65 

4 04 5 5 86 4 92 4 3 1 

5 21 4 3 72 5 93 3 3 1 

6 24 5 5 66 6 1 1 2 96 

7 54 12 7 27 7 95 3 2 0 

8 34 2 52 11 8 13 21 18 48 

9 58 25 5 12 9 2 9 2 87 

10 83 9 4 3 10 5 4 10 81 

Mean 30 7 8 55 Mean 32 8 6 54 

 

Two ACT-R models were run in pairs, interacting with each other for the same 

number of trials completed by the human subject pairs (10). Table 1B shows the 

corresponding frequencies for the model. Remarkably, the model matched not only the 

mean percentage of outcomes over the 10 pairs, but also the distribution of outcomes 

across pairs, with approximately the same number of pairs cooperating and defecting 

(and even a mixed outcome pair). Figure 4 indicates that the model also reproduced the 

time course of the human subjects’ gradual shift in decisions from the original 

preponderance of defection toward more cooperation. 
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FIGURE 4: FREQUENCIES OF OUTCOMES OVER TIME IN THE PRISONER’S 

DILEMMA: HUMAN AND MODEL DATA 

 

To further test the generality of the model, Lebiere et al. (2000) applied it to 10 

other 2x2 games described by Rapoport et al. (1976). Despite the broad range of games, 

the only alteration made to the model when applied to the different games was to change 

the payoff matrix implemented in the task. The correlation between outcome percentages 

was 0.825, which supports the model’s ability to predict the outcome of the decision-

making process when applied to new situations that involve very different types of 

behaviors. 
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V.     SCALING UP TO COMPLEXITY, UNCERTAINTY, AND DELAYED 

FEEDBACK 

Although most of the situations confronted by the previously described models 

were not trivial and clearly captured some fundamental aspects of human decision-

making, they shared a certain simplicity that is not reflective of real-world complexity. At 

each decision point, subjects (or the model) had a small number of discrete options 

(typically 2 or 3). The decision makers also received immediate feedback from their 

actions, which greatly aided in the learning process. Finally, although the decision-

making process itself may have added a measure of uncertainty, the actual tasks were 

entirely deterministic. When studying human cognition it is essential to ascertain if the 

instance-based decision-making approach can indeed deal with more complex situations. 

Researchers have documented the use of this approach in complex tasks at the individual 

level (Gonzalez et al., 2003). 

The IBLT process has been implemented in the ACT-R architecture in the context 

of a dynamic task requiring resource allocation and scheduling (Gonzalez et al., 2003). 

This dynamic decision-making task, known as the ‘Water Purification Plant’ (WPP), 

involves uncertainty and feedback loops generated by the interrelationship of a user’s 

decisions. WPP requires individuals to “purify” water via different treatment processes 

while acting under a deadline. They make these decisions while a simulation clock runs 

and must react as water arrives in different tanks and in unknown patterns. 

This ACT-R model of IBLT relies heavily on the symbolic representations of 

ACT-R, but also reflects the subsymbolic processes described by the activation equation 

(and thus, the base-level learning equation), partial matching, and blending. Each 

instance has an activation value that depends on attention, base-level activation and 

learning, and other probabilities. Thus, rather than relying solely on past instances to 



Instance-based decision making  22 

 

guide decision making, IBLT incorporates many cognitive phenomena and mechanisms 

for decision making.  

Researchers have used human data to validate this ACT-R model of IBLT. 

Gonzalez et al. (2003) articulate the step-by-step process by which WPP actuates the 

cognitive mechanisms proposed by IBLT. Figure 5 shows only the best fit of the model to 

human performance, with an r2 of .90. This fit resulted from a process in which the ACT-

R model evaluates alternatives one by one, selecting them randomly when first exposed 

to the task and according to their expected utility after acquiring knowledge in the form 

of instances. The model uses a large number of instances, even if these instances are only 

slightly similar to the current situation, rather than one instance that is exactly the same as 

the current situation. Eventually, the model learns to react at the right speed to the 

changes in the environment and not to use much of the feedback, but rather to learn from 

the interaction with the environment. 
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FIGURE 5. MODEL AND HUMAN DATA COMPARISON OF PERFORMANCE 

OVER THE COURSE OF 18 TRIALS 
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Although the ACT-R model of WPP addresses issues of decision making in 

complex environment, many decision making tasks in the real world are performed in a 

team. The instance-based approach also suits team decision making. The well-known 

game of backgammon presents a slightly complex team situation characterized by 

delayed feedback and a large degree of uncertainty in the task itself. Backgammon is a 

two-person board game involving substantial complexity. Because players can use up to 

30 pieces, and place each piece in 1 of 24 possible positions, there exist an exponentially 

large number of combinations and up to hundreds of possible moves at each step. 

Furthermore, players receive no definite feedback until the game is won or lost after as 

many as over a hundred moves. Finally, the use of dice in backgammon introduces an 

element of uncertainty that greatly dilutes the effectiveness of the players’ look-ahead 

searches. 

Researchers have developed an ACT-R backgammon model that uses the same 

instance-based decision-making principles described above (Sanner, Anderson, Lebiere 

and Lovett, 2000). Essentially, the model represents each possible move by breaking it 

down into its fundamental features, such as capturing a piece or forming a block, and 

thereby keeps each memory chunk manageably small, resulting in a fundamental 

cognitive constraint. Each feature in memory accumulates its history of contributing to 

wins and losses, and the model yields an evaluation of a particular move by combining 

and analyzing the various features constituting that move. The model selects the most 

promising move available at each step. Because high performance requires high 

sensitivity to subtle positional changes, the representation includes the exact position of 

each piece on the board. However, since some specific feature positions are unlikely to be 

seen often enough to build accurate representations, the model generalizes across similar 

positions when necessary by employing the partial matching (and blending) component 
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of the activation equation, which allows retrieval of closely matching chunks. This sort of 

similarity-based generalization essentially captures the effect of distributed 

representations in connectionist networks. 

Starting with this general representation, the model gradually builds its 

declarative knowledge based on the experience gained by playing against a relatively 

strong opponent. A publicly available evaluation function (Tesauro, 1992) was used to 

play with the ACT-R backgammon model. The model was trained for 1000 games 

against the ‘expert’ opponent. Figure 6 displays the percentage of games won over the 

1000 games for the ACT-R model and the opponent’s model. The results indicate the 

model requires approximately 100 games to learn to play relatively well and almost 

matches the performance of its strong opponent by 1000 games (See Sanner et al., for 

further analyses). 

 
FIGURE 6: (A) PERCENTAGE OF WINS (O) AGAINST OPPONENT (X) 
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VI.     CONCLUSION 

 

This chapter describes ACT-R as a cognitive architecture that facilitates the 

development of decision-making models. In particular, we have summarized the instance-

based approach to modeling decision making. 

The models of decision making summarized in this chapter are based on two basic 

principles: a) the storage of instances in declarative memory and b) production rules that 

generate decisions by comparing the current situation to previous instances and selecting 

the most promising course of action by reviewing past experiences. Most importantly, the 

presented models are psychologically plausible—i.e., they are based upon a validated 

cognitive architecture and they can learn on a human-like scale of experience without 

requiring the excessive engineering of representational features. In general, results from 

multiple studies indicate the instance-based models that use the ACT-R learning 

mechanisms show sensitivity to strategic factors not built into the models but instead 

learned from experience. 

Despite the success stories, cognitive modeling has often used to merely 

incorporate data fitting exercises that tweak the model post hoc to reproduce the subject 

data. Roberts and Pashler (2001) have raised this point forcefully, and researchers in the 

cognitive modeling community take this constraint seriously (Pew and Gluck, 2001; 

Roberts and Pashler, 2000). Cognitive modeling can provide a more useful insight into 

decision-making processes if the models make a priori predictions when applied to new 

situations. As more models are built for an increasing range of tasks, both the power and 

predictiveness of the cognitive architectures will increase. 
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Models of economic decision-making settings can benefit from a cognitive 

architecture like ACT-R. Not only is ACT-R a powerful computational architecture that 

combines most of the mechanisms required for economic settings, but compared to other 

computational approaches, ACT-R also provides a more realistic characterization of the 

flexibility and adaptability of human behavior. ACT-R’s learning mechanisms supported 

by psychological research can effectively explain and represent transfer of knowledge. 
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