
INTRODUCTION

Dynamic decisions are real-time decisions
that are interdependent and highly constrained
by the decision-making environment (Edwards,
1962). For example, many large manufacturing
and distribution systems store and disseminate
information in real time about the status of the
objects within the system. Decision makers then
can use this information to alter the system as
events unfold. Despite significant advances in
information technology, the high information
load generated by such dynamic environments
continues to pose problems. For example, plane
and automobile accidents are more likely to
occur when the involved decision makers (i.e.,
pilots and drivers, respectively) are under heavy
workloads.

Excessive cognitive workload is generated
when the satisfactory performance of a task de-
mands more resources from the operator than
are available at any given time. Although a
wealth of research has been performed to eval-
uate the effects of task demands on human per-
formance, little attention has been paid to the
cognitive resources available or to the relation-
ship between task demands and cognitive abili-

ties as individuals acquire experience in a task.
The focus of the present study was the rela-
tionship between human cognitive abilities and
workload in a complex, dynamic decision-making
(DDM) task. The experiments reported here en-
abled the manipulation of task workload expe-
rienced by participants and the assessment of
participants’ general intellectual ability in order
to test the hypothesis that the effect of task work-
load on DDM depends on cognitive ability.

A brief summary of research pertaining to
the effects of cognitive workload on DDM ap-
pears in the following section, followed by the
methods that describe the experiment and mea-
sures of cognitive abilities. Next, the results from
collected data are reported. Finally, the results are
discussed and their implications are presented.

COGNITIVE WORKLOAD AND DYNAMIC
DECISION MAKING

Researchers can manipulate task complexity
in many ways, such as by altering the number of
elements that demand a participant’s attention,
the number of intermediate decisions required
to arrive at a solution, or the display duration
(Ackerman, 1988). In general, the manipulation
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of task complexity affects attention, accuracy,
and the time needed to complete a trial (Acker-
man, 1988; Ackerman, Beier, & Boyle, 2002;
Verwey & Veltman, 1996).

One of the most common workload manip-
ulations involves the assignment of additional
tasks to an individual already performing a com-
plex task. Research suggests that the successful
performance of multiple concurrent tasks re-
quires the activation of executive control process-
es (Borkowski & Burke, 1996; Gopher, 1993;
Meyer & Kieras, 1997). Damos and Wickens
(1980) demonstrated that the mental demands
that executive processes and time-sharing skills
place on decision makers are distinct from re-
source demands of the individual tasks and, thus,
produce some interference during dual-task
training. This dual-task interference usually re-
sults in poorer performance of both tasks (often
called dual-task decrement) when compared
with the completion of each task alone. In an
attempt to explain why increased workload has
detrimental effects on dual-task skill acquisition,
researchers have suggested that cognitive re-
sources are shared during the performance of the
competing tasks and, therefore, that individuals
must possess executive abilities to successfully
complete complex tasks (Damos & Wickens,
1980; Gopher & Donchin,1986; Wickens,1980,
1987, 1991).

The use of time constraints is another com-
mon method of workload manipulation. Some
studies have investigated the effects of time con-
straints on DDM. For example, Kerstholt (1994)
observed accelerated information processing
with increasing time constraints (i.e., as the
speed of the system increased). Other studies
have indicated poorer decision-making perfor-
mance by individuals performing dynamic tasks
while under time constraints than by those per-
forming static tasks while under time constraints
(Kerstholt, 1995; Payne, Bettman, & Johnson,
1993).

Despite numerous attempts to assess the ef-
fects of task demands on human performance,
little is known about the role that cognitive abil-
ities play in learning DDM. By studying static
tasks, researchers have demonstrated that gen-
eral cognitive abilities have an increasing effect
on task performance as task complexity increas-
es (Carpenter, Just, & Shell, 1990; Kyllonen &

Christal, 1990). Thus one might speculate that
cognitive abilities also play a key role in complex
dynamic systems, especially in individuals’ abili-
ty to improve DDM performance with practice.

Intriguingly, current research seems to con-
tradict this expectation. Rigas and Brehmer
(1999) observed only a low correlation between
psychometric intelligence, as measured by the
Raven Standard Progressive Matrices Test (Ra-
ven, Court, & Raven, 1977), and performance
on two dynamic decision tasks. They explained
these findings by hypothesizing that the cogni-
tive processes required to complete the Raven
test involve simple combinations of basic opera-
tions whereas the cognitive processes needed to
complete the dynamic tasks in the study were
more complex. This rationale calls into question
both the ability of psychometric tests to predict
real-world performance and the notion that cog-
nitive abilities directly influence DDM. More re-
cently, however, the same researchers reported
significant correlations between cognitive abili-
ties, as measured by the Raven Standard Pro-
gressive Matrices Test, and DDM performance
(Rigas, Carling, & Brehmer, 2002), results that
conflict with their earlier findings.

The study reported in this paper is based on
the hypothesis that cognitive abilities play a key
role in the adequate management of workload
by individuals performing complex tasks. Using
two common forms of workload manipulation
(dual tasks and time constraints), this study test-
ed whether a higher task workload has a greater
effect on individuals with low cognitive ability
than on those with high cognitive ability.

METHOD

Because control of a dynamic system is ac-
quired only with extended practice (Kerstholt
& Raaijmakers, 1997), the experiment was de-
signed to place participants under different kinds
of task workload with lengthy and equal practice
in a DDM simulation.

Fifty-one students (31 women and 20 men)
were recruited from local universities and paid
$50 to participate in the study. Participants were
assigned to one of three workload conditions:
slow, fast, or load. The slow condition was de-
signed to give participants the lowest task
workload possible in a DDM simulation. While
performing each simulation trial, individuals in

Gonzalez,r1.qxd  3/3/05  11:04 AM  Page 2



TASK WORKLOAD AND COGNITIVE ABILITIES 3

the slow condition were presented with a set of
events that had to be resolved in 24 min (real
time). Participants assigned to the fast and load
condition were placed under heavier task work-
loads than were participants in the slow condi-
tion. Individuals in the fast condition had to
accomplish the same number of events as those
in the slow condition but had to do so in one
third of the time (i.e., in 8-min rather than 24-
min trials). The load condition participants had
to complete the same DDM simulation at the
same pace as slow condition participants, but
they also had to simultaneously perform two
additional, independent tasks. Under each of
the three conditions, participants performed the
same DDM simulation comprising the same
number of events.

Participants ran the DDM simulation on 3
consecutive days. The first 2 days, during which
participants worked under one of the three work-
load conditions, constituted the practice phase.
On the 3rd day, during the test phase, all par-
ticipants performed the same DDM simulation
at a fast pace for 48 min. During the practice
phase, participants in the slow and load condi-
tion groups completed two 24-min trials per day
(48 min/day) and participants in the fast condi-
tion group completed six 8-min trials per day (48
min/day). During the test phase, participants
in all groups completed the same number of
trials (six) at the same pace (8 min/trial, 48 to-
tal min on task). Thus all participants spent the
same total amount of time on the task over the
3-day period: 48 min per day for a total of 144
min. This design facilitated an investigation
into the relationship between cognitive ability
and workload as individuals transferred from
one workload condition to another. Before the
practice phase, all participants also completed
the Raven Standard Progressive Matrices Test
(described later) as a measure of their cognitive
abilities.

Dynamic Decision-Making Task

All experimental conditions were based on a
DDM task called the Water Purification Plant
(WPP; Gonzalez, Lerch, & Lebiere, 2003). The
WPP simulates a water purification system con-
structed of a series of tanks joined by pipes. A
maximum of five pumps can be active at any
given time, and the participant needs to select

which pumps to open or close to distribute all
the water in a series of tanks as various dead-
lines approach and expire. A screen shot of the
WPP simulation is provided in Figure 1. The WPP
simulation constitutes a dynamic task for several
reasons: Decisions are interconnected because
some actions may delay or preclude other deci-
sions; the amount of water in any of the tanks
may increase at any time (in response to a pre-
set scenario of water arrival times and locations
that is unknown to the users and beyond their
control); the level of water in each tank depends
on prior decisions (i.e., the user’s earlier activa-
tion or deactivation of the pumps); and a time
delay occurs after the activation or deactivation
of any pump (i.e., pump clean-up time). The
WPP is a real-time simulation in that the pumps
are activated or deactivated by the users while
a simulation clock is running.

The WPP simulation requires participants to
pump a total of 1080 gallons (4088 L) of water
through the series of tanks. Performance in this
task is measured by the total number of gallons
of water remaining in the system at the end of
the simulation. Thus the best performance is
zero, and the performance if no action is taken
in the system is 1080 gallons. A running counter
in the upper left corner of the screen indicates
the number of gallons of water left in the sys-
tem after the expiration of each deadline. For
data analysis, the number of missed gallons was
converted to the percentage of the total gallons
pumped out of the system; therefore perfor-
mance could range from 0% to 100%. In order
to establish a reasonable lower limit for the per-
formance measure, a program called the ran-
dom scheduler was created to run the simulation
and make random assignments with no idle time
(i.e., never leaving pumps idle). Thirty replica-
tions of these random assignments generated a
mean performance of 83% with a standard de-
viation of 2.6%. Accordingly, the lowest reason-
able human performance should score in the
range of 80%.

The WPP task for individuals in the load con-
dition group was exactly the same as described,
except that these participants were also asked
to simultaneously and independently perform
two additional tasks, labeled system monitor-
ing and communications. Figure 2 shows the
layout of the WPP with these additional tasks.
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Figure 1. Layout of the WPP task. Water enters from outside the system and moves continuously through the
activated pumps from left to right toward the deadlines. The operator decides when to activate and deactivate
pumps while the simulation time is running.

Figure 2. Layout of the WPP task with additional tasks under the load condition. Besides performing the
WPP task, operators must simultaneously monitor the gauges on the right of the screen and attend to auditory
messages to update the communications settings.
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These two tasks are components of the Multi-
Attribute Task Battery developed at the National
Aeronautics and Space Administration by Com-
stock and Arnegard (1992). These two tasks
are not integrated with the WPP but, rather, run
in parallel with and independently of the WPP.
The tasks stop concurrently with the WPP sim-
ulation. The system monitoring task requires
users to monitor two warning lights (a green light
and a red light) and four vertical gauges that
report system abnormalities. The communica-
tions task requires users to discriminate audio
signals and respond to their own call sign (e.g.,
NGT504) by making frequency changes on the
proper navigation or communication radio. The
performance measures in these two additional
tasks were the percentage of correct responses
and the response time. Training for the two ad-
ditional tasks was separate from the training in
the WPP. Before the start of the experiment, par-
ticipants were asked to pay equal attention to the
WPP and the loading tasks during their simulta-
neous performance.

Cognitive Abilities Measure

The Raven Standard Progressive Matrices Test
was used to evaluate the participants’ cognitive
abilities (Raven et al., 1977). The Raven test is
nonverbal and relatively free of cultural bias. Al-
though the use of this measure to evaluate peo-
ple’s ability to perform DDM tasks is unproven
(Rigas & Brehmer,1999), research in psychology
suggests that the Raven test is a good indicator
of an individual’s ability to dynamically man-
age a large set of goals in working memory and
adapt to new situations (Carpenter et al., 1990).
Based on the description and analysis of the
Raven test that appear in the psychological lit-
erature, the decision to use this test to predict
DDM performance seems strongly justified.

The Raven test comprises sets of visual anal-
ogy problems, each of which presents a pattern
in which a figure is missing at the top of the
page. Test takers must select the option that best
completes the figure by choosing from among
eight alternatives arranged at the bottom of the
page. The test includes five sets of problems with
12 questions per set, for a total of 60 questions
arranged according to degree of difficulty (with
more difficult questions presented at the end).
The participant’s score is the total number of

correct answers (possible range: 0–60). This test
requires approximately 40 min to complete.

Statistics

The average performance during the practice
phase (average performance on the first 2 days
of the experiment) and the average perfor-
mance during the test phase (the average per-
formance on the 3rd day) were calculated by
analyzing the WPP data. Statistical analyses were
conducted by repeated measures analyses of
variance (ANOVAs), and two phases (practice
and test) were used as the within-subjects factor.
Workload condition was used as a between-
subjects factor, and Raven score was used as a
covariate.

Results

During the practice phase, the average per-
formance across all three condition groups was
84% with a standard deviation of 5.3% (mini-
mum = 69%, maximum = 94%, standard error =
0.73%) – a reasonable performance level ac-
cording to the results generated by the random
scheduler. During the test phase, the average
performance across all three condition groups
was 88%, with a 5.1% standard deviation (min-
imum=69%, maximum=95%, standard error=
0.71%). The average Raven score across the
three condition groups was 53.6, with a standard
deviation of 4.2 (minimum = 45, maximum =
60, standard error = 0.73). While performing
the WPP task, participants made an average of
43.6 decisions per trial (minimum = 20, maxi-
mum = 76). Linear regression over the total aver-
age performance (across all three days) revealed
that Raven score was a good covariate (adjusted
R2 = .283), F(1, 50) = 4.26, p < .05.

Two separate analyses using condition as a
between-subjects factor and Raven score as a co-
variate showed that both condition, F(2, 48) =
4.19, p < .05, and Raven score, F(1, 49) = 4.17,
p < .05, had independent significant effects on
performance. A full factorial model based on
both the condition and Raven score indicated
main effects of both condition, F(2, 47) = 7.69,
p < .01, and Raven score, F(2, 47) = 10.07, p <
.01. To investigate the interaction between these
two factors, I performed statistical analyses with
a repeated measures model that included the
Condition × Raven interaction. Table1 shows the
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results, which indicate a main effect of Raven
score, F(1, 45) = 7.79, p < .01, and two signifi-
cant interactions: Phase × Condition, F(2, 45) =
4.12, p < .05, and Phase × Condition × Raven
Score, F(2, 45) = 3.93, p < .05.

These findings indicate that performance in
the practice and test phases varied with condi-
tion and with Raven score. Figure 3 shows the
average performance in the practice and test
phases by condition. Repeated measures analy-
ses by condition were performed to evaluate
the effect of the phase and the Raven score.
The results revealed that only those individuals
who practiced under the slow condition (i.e.,

low workload) improved their performance
significantly when subsequently placed under
high time constraints during the test phase,
F(1, 17) = 5.72, p < .05. The performance of
individuals who practiced under the fast condi-
tion did not improve significantly on the 3rd day
as compared with their performance on the first
2 days, F(1, 12) = 1.16, ns; similar results were
observed in the load condition group, F(1, 16) =
1.35, ns. Finally, in the slow condition there was
a significant effect of Raven score, F(1, 17) =
13.51, p < .01, and a significant interaction be-
tween phase and Raven score, F(1, 17) = 3.79,
p < .05.

Three models involving every possible paired
combination of conditions (i.e., slow and fast,
slow and load, and fast and load) were tested to
further investigate the interactions described
previously. Table 2 shows the results, which in-
dicate a significant main effect of Raven score,
a Phase × Condition interaction, and a Phase ×
Condition × Raven Score interaction only for the
models that included the slow condition. That
is, in the two phases of the experiment, partici-
pants’ performance in the two groups with high
workload (fast and load) differed from that of the
group with low workload (slow), but there was
no difference in performance between the two
high-workload groups.

Participants were classified according to their
mean Raven scores as low- or high-Raven indi-
viduals. This classification was done only for
the purposes of illustrating the Raven Score ×
Phase interaction and the main effect of Raven
score. The sample was not divided, and no analy-
ses were conducted with a split sample; rather,

6 Spring 2005 – Human Factors 

TABLE 1: Overall Effect of Workload Condition and Cognitive Abilities

Performance

DF F p Partial Eta2

Within Subjects
Phase (practice, test) 1, 45 0.02 .89 .00
Phase × Workload Condition 2, 45 4.12 *.02* .16
Phase × Raven 1, 45 0.47 .50 .01
Phase × Workload Condition × Raven 2, 45 3.93 *.03* .15

Between Subjects
Workload condition 2, 45 0.08 .92 .00
Raven 1, 45 7.79 *.01* .15
Workload Condition × Raven 2, 45 0.15 .86 .01

*p < .05.

Figure 3. Average performance in the practice and
test phases per condition. Error bars represent 95%
confidence intervals based on the pooled MSE.
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statistics were calculated on the whole sample,
using the continuous variable of the Raven test
score. Referring back to the interactions de-
scribed previously, in the slow condition improve-
ment in performance was greater for low-Raven
individuals than for high-Raven individuals. The
left panel in Figure 4 shows that low-Raven par-
ticipants in the slow condition group greatly
benefited from practicing the simulation at the
slower pace (i.e., many of them performed sig-
nificantly better during the test phase than dur-
ing the practice phase). In contrast, low-Raven
individuals under the other two forms of high
workload (fast and load) did not improve their
performance between the practice and the test
phases. The right panel of Figure 4 shows that

high-Raven participants in the slow condition
group performed the best of all participants dur-
ing both the practice and test phases.

Performance scores for the two additional
tasks assigned to participants in the load con-
dition group were quite high (>80% correct
responses). An ANOVA using Raven score as
the covariate showed no significant effect of
Raven score on performance of the additional
tasks: communications task, F(1, 16) = 2.966,
p = .10; monitoring task, F(1, 16) = 3.017, p =
.10. Statistical analysis revealed no significant
correlations between participants’ performance
on the two additional tasks and their perfor-
mance on the WPP task. Similarly, no significant
correlation was found between their performance

TABLE 2: Performance Differences Among Cognitive Load Groups

Slow vs. Fast Slow vs. Load Fast vs. Load

Partial Partial Partial
F(1, 29) p Eta2 F(1, 33) p Eta2 F(1, 28) p Eta2

Within Subjects
Phase 1.66 .21 .05 0.06 .81 .00 2.41 .13 .08
Phase × Condition 5.96 .02* .17 5.10 .03* .13 0.48 .50 .02
Phase × Raven 0.48 .49 .02 0.03 .87 .00 3.88 .06 .12
Phase × Condition × Raven 5.50 .03* .16 5.04 .03* .13 0.51 .48 .02

Between Subjects
Condition 0.27 .61 .01 0.05 .83 .00 0.01 .94 .00
Raven 14.330 .00** .33 4.74 .04* .13 2.54 .12 .08
Condition × Raven 0.37 .55 .01 0.19 .67 .01 0.00 .95 .00

*p < .05, **p < .01.

Figure 4. Average performance in the task per condition, separated into two groups (low and high Raven
scores). Error bars represent 95% confidence intervals based on the pooled MSE.
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on the WPP task and the percentage of correct
responses while performing each additional
task, the average response time, or the between-
day response time (WPP performance on Day 1
and monitoring performance: r = –.241, p = .33;
WPP performance on Day 2 and monitoring
performance, r = –.053, p = .83; and WPP per-
formance on Day 3 and communications perfor-
mance, r = –.223, p = .37). Moreover, differences
remained insignificant even when Raven score
was partialled out.

DISCUSSION AND IMPLICATIONS

The findings from this study indicate that
both high task workload (in the form of time
constraints and loading tasks) and low cogni-
tive abilities (as measured by Raven score) hin-
dered performance and transfer in DDM tasks.
Moreover, these experiments demonstrate that
high workload had a greater effect on individu-
als with low cognitive ability than on individuals
with high cognitive ability.

While interpreting these results, one must
remember that the study groups differed only in
regard to the training phase conditions, not the
testing phase conditions. Although participants
ran the DDM simulation under different types
of workload during the training phase, all par-
ticipants completed the same number of trials
(six) while under the same high workload (fast:
8 min/trial) during the testing phase.

The results suggest that low workload during
training enabled participants to improve their
performance more markedly after transfer to high
workload than in the case of individuals who
trained under high-workload conditions (either
time constraints or loading tasks). Furthermore,
participants in the low-workload (slow) condition
completed a total of 4 trials during the training
phase, whereas participants in one of the fast
conditions ran the simulation12 times during the
training phase. As indicated by the higher num-
ber of trials in the fast condition and the non-
significant difference between this and the load
condition, this detrimental effect of high work-
load occurred independently of the number of
practice trials. It is also possible, however, that a
higher number of practice trials in the fast con-
dition produced slightly better (but nonsignifi-
cant) performance as compared with the load

condition. This particular hypothesis about the
effect of time constraints and amount of prac-
tice has been tested in a different but related
study (Gonzalez, 2004).

The study also demonstrates that the effect
of task workload depended on the available cog-
nitive resources of the decision maker. Regres-
sion analysis revealed that Raven score was a
good covariate in this study and a significant
predictor of performance. The analyses by con-
dition showed a significant effect of Raven score
under all conditions and an interaction between
Raven score and study phase in slow condition
participants only. Comparisons between the
slow condition group and each of the other two
high-workload groups also indicated a signifi-
cant effect of Raven score and an interaction
between Raven score and phase, but a compari-
son between the fast and load condition groups
revealed no difference. These results indicate
that both forms of high workload were similarly
detrimental to performance improvements and
were dependent on the decision makers’ cogni-
tive abilities. Only low task workload during
practice helped individuals with different cog-
nitive abilities learn to deal with high workload
during testing. The analysis of individuals with
different levels of cognitive abilities suggests
that individuals with high cognitive abilities per-
formed well during both the training and test
phases, whereas individuals with low cognitive
abilities improved their performance during the
practice phase and improved even more during
the test phase.

The results also support a possible link be-
tween general intelligence and learning in real-
time DDM tasks (Rigas et al., 2002). This is an
important result because the majority of DDM
research indicates no significant associations
between performance in microworlds and scores
on intelligence tests, and this has led many re-
searchers to question the validity of using fluid
intelligence, also known as Gf, to predict perfor-
mance in real-world pursuits (Dorner, Kreuzig,
Reither, & Staudel, 1983; Omodei & Wearing,
1995; Putz-Osterloh & Luer, 1981; Rigas &
Brehmer, 1999; Staudel, 1987; Strohschneider,
1986, 1991). Further, the findings suggest that
context-free, simple tests such as the Raven
Standard Progressive Matrices Test can serve
as predictors of performance in complex DDM
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tasks. Successful performance on this type of
test must require that test takers tap into ab-
stract cognitive demands similar to those need-
ed to resolve complex DDM problems (Joslyn &
Hunt, 1998).

Limitations

There are several limitations of this study.
First, this research addressed two forms of task
workload exclusively. In general, it is expected
that any kind of workload would limit the
amount of time to process information and
hinder information processing, especially in
complex dynamic tasks. Thus the interaction
with cognitive abilities found in this study should
apply to other forms of task workload, although
more research using other forms of workload
is necessary.

Second, this study used one measure of cog-
nitive abilities, the Raven Standard Progressive
Matrices Test. It is possible that different tasks
demand different cognitive abilities and that
some of them are not captured by the Raven
test. In terms of DDM, however, the Raven test
might be an adequate measure, as research re-
ported by Carpenter et al. (1990) suggests. The
Raven test requires participants to identify how
different figural attributes of a problem corre-
spond with one another. This process is difficult
because it frequently forces users to abandon
hypotheses because of the ambiguous correspon-
dence of cues. Thus the Raven test measures
individuals’ abilities to deal with novelty and to
adapt to new cognitive problems (Carpenter et
al.), an essential characteristic in DDM. Thus, al-
though such skills seem integral to individuals’
ability to perform DDM tasks well, other abili-
ties (e.g., perceptual speed and psychomotor
ability) also may influence individuals’ skill ac-
quisition in complex tasks (Ackerman, 1988),
and their interactions with workload need to be
explored.

Finally, this study used one DDM task. Be-
cause DDM tasks have very specific abstract
characteristics that are generalizable across
many domains (Gonzalez, Vanyukov, & Martin,
2005), it is expected that results from this
study could be reproduced with other DDM
tasks; again, however, more empirical support
is needed here.

Practical Implications

The findings generated by this study could
help to improve understanding of both the
learning process during DDM and the design
of training protocols. First, during this study
decision makers’ performance under high task
workloads during the test phase was directly
determined by the workload under which the
individuals learned the task during the practice
phase. Intuitively, one might think that training
under conditions as close as possible to the
final task conditions would be ideal – that is,
that the more closely the training task mirrors
the final task, the better the decision makers
will perform under realistic conditions. How-
ever, the findings from this study suggest that
intuition is misleading in this case. Training
individuals under low-workload conditions re-
sulted in better performance under high work-
load. Although some might question the validity
of comparing learning and performance during
the WPP simulation to the learning and perfor-
mance of dynamic real-world tasks, years of
research in psychology have demonstrated that
the effects of real-world situations can be evalu-
ated in controlled laboratory experiments. DDM
tasks, such as the WPP simulation, often are
complex and incorporate many abstract and
essential characteristics of real-world situations
that can be tested in the laboratory (Omodei &
Wearing, 1995).

This study also suggests that it is possible to
predict individuals’ performance under high
task workload by measuring their cognitive
abilities. Researchers conducting human factors
research seldom gather data on the cognitive
abilities of study participants. Workload has
often been considered an exogenous variable
that is determined by task demands and is in-
dependent of human abilities. This study, how-
ever, showed that the effect of task demands on
both performance and learning depends highly
on individuals’ cognitive abilities. Individuals
with low cognitive abilities seem to be more
sensitive to workload during learning than do
individuals with high cognitive abilities. The
former trainees may perform better if training
begins with a cognitively less demanding ver-
sion of the final tasks.
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