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Instance-Based Learning:
Integrating Sampling and Repeated Decisions From Experience

Cleotilde Gonzalez and Varun Dutt
Carnegie Mellon University

In decisions from experience, there are 2 experimental paradigms: sampling and repeated-choice. In the
sampling paradigm, participants sample between 2 options as many times as they want (i.e., the stopping
point is variable), observe the outcome with no real consequences each time, and finally select 1 of the
2 options that cause them to earn or lose money. In the repeated-choice paradigm, participants select 1
of the 2 options for a fixed number of times and receive immediate outcome feedback that affects their
earnings. These 2 experimental paradigms have been studied independently, and different cognitive
processes have often been assumed to take place in each, as represented in widely diverse computational
models. We demonstrate that behavior in these 2 paradigms relies upon common cognitive processes
proposed by the instance-based learning theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003) and that the
stopping point is the only difference between the 2 paradigms. A single cognitive model based on IBLT
(with an added stopping point rule in the sampling paradigm) captures human choices and predicts the
sequence of choice selections across both paradigms. We integrate the paradigms through quantitative
model comparison, where IBLT outperforms the best models created for each paradigm separately. We
discuss the implications for the psychology of decision making.

Keywords: instance-based learning, decisions from experience, sampling, repeated-choice, quantitative
model comparison

In many real-world situations, we have an opportunity to sample
options before making decisions for real: Dressing rooms allow
people to try on different garments before purchasing; ice cream
stores often give samples; and wine tasting is a good way to
evaluate wine, especially when bottles sell for high prices. Simi-
larly, it is wise to see a good number of houses before deciding to
purchase one. In fact, a recent TV show made it possible for a
buyer to “sleep on it,” live in the house for 24 hr, and “experience”
the good and bad of the house before making a purchase (HGTV
show, Sleep on It).

Unfortunately, we do not always have such luxuries of sam-
pling. In many situations, decision makers may need to “take it or
leave it” and be forced to make consequential decisions without
exploring the options. While driving in a new city for example,
approaching intersections involves choices that need to be made in

real-time and the consequences observed afterwards. Traders in the
stock market need to be able to make sense of a large amount of
data, interpreting rapid fluctuations of stocks and reacting without
delays, which could cost thousands of dollars. Firefighting com-
manders often need to make difficult decisions in the face of
rapidly growing fire. In all these situations, decision makers would
not have a chance to sample before making a consequential choice.
The Sleep on It TV show might be good fun, but it is not practical
and is not a common practice in the real-estate business. That is,
many times one needs to make consequential decisions and learn
from the outcomes.

Although different, the two types of real-world decision-making
situations described above have something in common: They all
require decision makers to act based on their own experience
(decisions from experience; DFE). These real-world situations
represent two main types of decision making paradigms used to
study DFE (Hertwig & Erev, 2009): sampling and repeated-choice.
These two paradigms have been studied independently, and dif-
ferent cognitive processes are often assumed to take place in each.
The main goal of this research is to demonstrate that the two
paradigms have common cognitive processes explained by
instance-based learning theory (IBLT; Gonzalez, Lerch, & Leb-
iere, 2003), a theory of DFE in dynamic tasks.

Common Behavioral Patterns of DFE in Contrast to
Decisions From Description

DFE represents a major recent breakthrough in behavioral de-
cision research and a shift of attention away from the study of
“decisions from description,” where choices are made from ex-
plicitly stated payoffs and associated probabilities (Barron & Erev,
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2003; Hertwig, Barron, Weber, & Erev, 2004). Prospect theory
(Kahneman & Tversky, 1979) has been a prominent model to
explain the deviations from expected utility theory in decisions
from description. Most research on DFE to this date has focused on
finding and explaining a behavioral “gap” between decisions made
from description and experience called the description–experience
gap (Barron & Erev, 2003; Hertwig et al., 2004; Hertwig & Erev,
2009). Researchers have demonstrated that in the presence of rare
outcomes, decisions from description and DFE lead to dramati-
cally different choice behavior. In description, people behave as if
rare outcomes receive more impact than they deserve according to
their objective probability, whereas in experience, people behave
as if rare outcomes receive less impact than they deserve (Hertwig
& Erev, 2009). For example, consider a situation where partici-
pants select between two options, one high and the other low:

�a� $32 �p � 0.1� or $0 �1 � p � 0.9�

�b� $3 �p � 1�

The high option (a) has a higher expected value ($3.2) than the
low option (b) ($3), but the high outcome ($32) occurs with low
probability (0.1). In this situation, when making decisions from the
description, participants behave as if the low probability outcome
($32) has more impact than it deserves (the proportion of maxi-
mization is about 48%; Hertwig et al., 2004). In contrast, partici-
pants behave as if the low probability outcome ($32) has less
impact than it deserves in DFE (the proportion of maximization is
only about 20% in the sampling paradigm and about 24% in the
repeated-choice paradigm; Hertwig et al., 2004).

The behavioral pattern described above is consistent in both
DFE paradigms. Behavior in sampling and repeated-choice para-
digms is highly correlated (r � .93, p � .01; Hertwig et al., 2004),
and there is a consistent description–experience gap in the sam-
pling paradigm (Hertwig et al., 2004) and in the repeated-choice
paradigm (Barron & Erev, 2003). Even more broadly, the data
collected for the Technion Prediction Tournament (TPT), a mod-
eling competition that focused on three experimental paradigms
(decisions from description, decisions by sampling, and repeated-
choice) and two large data sets (estimation and competition),
demonstrated the robustness of the description–experience gap
and the similarity of behavior in the DFE paradigms (Erev, Ert,
Roth, et al., 2010). A correlation analysis of the estimation set
reported in Erev, Ert, Roth, et al. (2010) indicated similar negative
correlations between choices made in the description and sampling
paradigms (r � –.53, p � .0004) and between choices made in the
description and repeated-choice paradigms (r � –.37, p � .004),
whereas the correlation between choices made in the sampling and
repeated-choice paradigms was positive and highly significant
(r � .83, p � .0001). Regardless of the behavioral similarities in
sampling and repeated-choice, very different models won the
competition in the DFE paradigms (Erev, Ert, Roth, et al., 2010),
and, thus, widely different cognitive assumptions have prevailed
across the two paradigms.

Integrating DFE Paradigms Through Quantitative
Model Comparison

In contrast to decisions from description where prospect theory
(Kahneman & Tversky, 1979) has been a prominent model to

explain human-choice behavior, a model that can explain DFE
across paradigms and tasks has not yet been found. In fact, a
challenge in understanding the cognitive processes involved in
DFE is the proliferation of highly task-specific cognitive models
that often predict behavior in a particular task but fail to explain
behavior even in other closely related tasks (Lejarraga, Dutt, &
Gonzalez, 2010). Our main argument in this article is that common
behavioral patterns in the sampling and repeated-choice paradigms
are well represented, explained, and generalized by a single com-
putational model based on IBLT (hereafter, IBL model; Gonzalez
et al., 2003). We demonstrate how one IBL model captures human
behavior in both DFE paradigms better than individual models that
have been created to account for choices in each paradigm sepa-
rately.

To integrate the DFE paradigms, we follow a quantitative model
comparison approach. We compare the more prominent models
that have been created exclusively under each paradigm to the IBL
model on how well they account and predict human behavior.
Because there are several diverse models with distinctive com-
plexities within each paradigm, we follow goodness of fit and
generalizability procedures to compare them (Pitt & Myung, 2002;
Pitt, Myung, & Zhang, 2002). We also use available human data
sets that share the same choice problems across both paradigms.
We bring together six choice (SC) problems used in two separate
studies, the repeated-choice paradigm (Barron & Erev, 2003) and
the sampling paradigm (Hertwig et al., 2004); and we use the
sampling and repeated-choice data sets from the TPT (Erev, Ert,
Roth, et al., 2010). Following calibration and generalizations pro-
cedures, we show that the IBL model predicts general choice
behavior across both paradigms—better than the winning models
in the TPT and other models developed exclusively to account for
behavior in each paradigm separately.

Furthermore, we go beyond predicting a general proportion of
risky choices (R-rate). We demonstrate that, in addition to predict-
ing the R-rate, the IBL model explains and predicts the sequence
of selections of the two options (i.e., the rate of alternations from
one option to the other, or the A-rate) made in the sampling and
repeated-choice paradigms. Thus, the A-rate is predicted by the
same cognitive mechanisms proposed by IBLT. The only addi-
tional mechanism needed in the IBL model to account for the
sampling sequence is a variable stopping point rule, which de-
marks when the sampling process ends before a final decision is
made and is fixed in the repeated-choice paradigm.

Together with existent evidence of the wide-ranging applica-
tions of IBLT to DFE in different contexts (Gonzalez & Dutt,
2010; Gonzalez & Lebiere, 2005; Gonzalez et al., 2003; Lejarraga
et al., 2010), the current research demonstrates the generality of
IBLT to explain and predict DFE in the DFE paradigms. More-
over, the general learning mechanisms of IBLT are a variant of
some of the proposed mechanisms in the Adaptive Control of
Thought—Rational (ACT–R) theory of cognition (Anderson &
Lebiere, 1998), which were originally developed to capture deci-
sions in dynamic settings (Gonzalez et al., 2003).

In what follows, we first present a discussion of the cognitive
explanations for the common effects and the differences found in
the sampling and repeated-choice paradigms. Next, we summarize
IBLT and present a concrete IBL model used in this research. We
then summarize existent models that account for behavior dis-
tinctly in each paradigm. Following this section, the IBL model is
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compared to the best models known to account for human behavior
in each paradigm by using a set of calibration and generalization
procedures. Finally, we discuss the psychological interpretations
of our findings, the implications and limitations of the IBL model,
and the broader implications of this work to the psychology of
decision making.

Common Behavioral Patterns of Sampling and
Repeated-Choice Paradigms Beyond the Description–

Experience Gap

Behavioral decision researchers have used a simple experimen-
tal tool where respondents are presented with two buttons on a
computer screen (Barron & Erev, 2003; Hertwig & Erev, 2009).
Each button represents a payoff distribution unknown to partici-
pants. Clicking a button results in a random draw from the distri-
bution, and an outcome is presented. In the sampling paradigm
(Hertwig et al., 2004), participants are asked to choose between the
two buttons as many times as they want (i.e., the stopping point is
variable) and observe the outcomes with no real consequences,
before they make a single choice between the two options that
causes them to actually earn or lose money. In the repeated-choice
paradigm (Barron & Erev, 2003), participants are asked to make a
fixed number of choices between the two options (i.e., the stopping
point is fixed); each choice affects their earnings, and they receive
immediate feedback on obtained outcomes (the total number of
choices is not told to participants).

As explained above, there are common behavioral patterns
found in the DFE paradigms in contrast to decisions from descrip-
tion, and only recently have possible differences been discussed
(Camilleri & Newell, 2011; Hertwig & Erev, 2009; Rakow &
Newell, 2010). In these reviews, the cognitive explanations for the
DFE paradigms’ common behavioral effects are often different,
and in some cases the paradigms are considered to be different
without explaining the common behavioral effects (Camilleri &
Newell, 2011). In the sampling paradigm, the leading cognitive
explanation of the description–experience gap has been “reliance
on small samples,” and “reliance on recent experiences of out-
comes” in the repeated-choice paradigm. Across a number of
studies, it was found that people sample relatively few times
(median number of samples often vary between 11 and 19; Hau,
Pleskac, Kiefer, & Hertwig, 2008; Hertwig & Erev, 2009), reduc-
ing the chances of experiencing the rare outcome. Because there is
no sampling and each choice affects a participant’s earnings in
repeated-choice, the favored explanation of reliance on recent
experiences of outcomes implies giving more weight to more
recent events. According to this recency argument, rare outcomes
are underweighted because people remember more recent events
better than less recent events, and rare outcomes are less likely to
have occurred recently (Erev & Barron, 2005; Fiedler, 2000;
Kareev, 2000).

Another, perhaps less well-understood, cognitive explanation
that is claimed to be different between the sampling and repeated-
choice paradigms is the exploration–exploitation tradeoff: Select-
ing new options may provide the possibility of greater rewards and
learning at the risk of low outcomes (exploration), whereas repeat-
ing previous choices is likely to yield known outcomes at the risk
of lacking the opportunity for improvement (exploitation). Many
researchers assume that the exploration–exploitation tradeoff does

not exist in the sampling paradigm because these two stages occur
separately: Exploration occurs during sampling, whereas exploita-
tion occurs when the choice is made for real (Camilleri & Newell,
2011; Rakow & Newell, 2010). Further, researchers often assume
a random choice and high exploration rate during sampling (Ra-
kow & Newell, 2010).

In contrast, researchers assume that the exploration-exploitation
tradeoff exists in repeated-choice because these two phases are
difficult to disentangle. Because the choices are consequential,
people exhibit a “hot-stove” effect, where high outcomes increase
the probability of repeating a choice (exploitation), and low out-
comes decrease the probability (exploration; Biele, Erev, & Ert,
2009; Denrell & March, 2001). Recent empirical evidence sug-
gests that consequential choices in the repeated-choice paradigm
may produce stronger underweighting of low probability outcomes
and a tendency to be biased away from risky options due to the
hot-stove effect, whereas this effect may be absent in the sampling
paradigm because sampling does not have a cost (Camilleri &
Newell, 2011). More recent studies have demonstrated that posi-
tively surprising obtained payoffs and negatively surprising for-
gone payoffs reduce inertia (the rate of repeating the previous
choice) in the repeated-choice paradigm (Nevo & Erev, 2011).

Similar Exploration–Exploitation Transition Between
the Two DFE Paradigms

Because the similarities between the DFE paradigms have only
been investigated through the general proportion of risky choices
(R-rate), the commonality in exploration and exploitation between
the paradigms has been overlooked up to now. A measure of
exploration in the DFE paradigms is the proportion of alternations
(A-rate): switches from one option to the other (Erev, Ert, & Roth,
2010). When we analyzed the A-rate in the human data collected
in the TPT (Erev, Ert, Roth, et al., 2010), we observed that overall
the average A-rate in the sampling paradigm is nearly double (0.34
in the estimation set and 0.29 in the competition set) of that in the
repeated-choice paradigm (0.14 in the estimation set and 0.13 in
the competition set). The proportion of risky choices (R-rate),
however, is about the same in both paradigms (0.49 in sampling
and 0.40 in repeated-choice for the estimation set; and 0.44 in
sampling and 0.38 in repeated-choice for the competition set).
Thus, although the paradigms are similar at general choice level (in
the R-rate), they appear to be very different at the average process
(A-rate) level. A possible explanation for the higher A-rate in the
sampling paradigm is that sampling does not cost, whereas choices
in repeated-choice are costly. However, it has been recently found
that the A-rate varies widely in the sampling paradigm, where
some participants are frequent and others are infrequent alternators
(Hills & Hertwig, 2010). Thus, the fact that sampling is costless
does not explain the diversity of sampling strategies and the
reliance on small samples.

If the same cognitive mechanisms of IBLT are to explain not
only the R-rate but also the A-rate across both paradigms, we
expect a high correlation of the A-rate between sampling and
repeated-choice paradigms across trials (samples). Furthermore,
given the reliance on small samples in the sampling paradigm, we
expect this correlation to be higher for smaller sample sizes and
lower for larger sample sizes (because fewer participants engage in
large samples). We calculated these correlations in the TPT data
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sets (Erev, Ert, Roth, et al., 2010). The correlations of the A-rate
between the sampling and repeated-choice paradigms for the first
nine samples (median) are high and highly significant: r � .93,
p � .01, for the estimation set, and r � .89, p � .01, for the
competition set. Furthermore, as expected, these correlations de-
crease as the number of trials used in the calculation increase.
Thus, for the first 99 samples, r � .35, p � .05, for the estimation
set, and r � .70, p � .01, for the competition set. These results
demonstrate the highly similar sequence of alternations between
the two options in both paradigms and a source of differences
between the two paradigms: the stopping point in the sampling
paradigm.

IBLT

IBLT was developed to explain and predict learning and deci-
sion making in real-time dynamic tasks (Gonzalez et al., 2003).
Dynamic tasks are characterized by decision conditions that
change spontaneously and as a result of previous decisions while
attempting to maximize gains over the long run (Edwards, 1962;
Rapoport, 1975). Dynamic tasks range in their levels of dynamic
characteristics (Edwards, 1962). The least dynamic tasks involve
sequential decisions in an environment where neither the environ-
ment nor the participants’ information about it is affected by their
previous decisions. The most dynamic tasks involve sequential
decisions in situations where the environment and the participants’
information about it changes over time and as a function of
participants’ previous decisions (Edwards, 1962). IBLT represents
the process by which decisions are made through experience in a
range of dynamic tasks, from the least dynamic to the most
dynamic ones. Both the sampling and repeated-choice paradigms
are examples of less dynamic tasks.

IBLT proposes a key representation of cognitive information: an
instance. An instance is a representation of each decision option,
often consisting of three parts: a situation (a set of attributes that
define the option), a decision for one of the many options, and an
outcome resulting from making that decision. The theory also
proposes a generic decision-making process that starts by recog-
nizing decision situations, generating instances through the inter-
action with the decision task, and finishes with the reinforcement
of instances that led to good decision outcomes through feedback.
The general decision-making process is explained in detail in
Gonzalez et al. (2003), and it involves the following steps: the
recognition of a situation from a task and the creation of decision
options; the retrieval of instances from memory that are similar to
the current task’s situation, or the use of decision heuristics in the
absence of similar instances in memory; the selection of the best
decision option; and the process of reinforcing instances corre-
sponding to observed outcomes through a process of feedback.

IBL models are particular representations of IBLT for specific
tasks. Many IBL models have been developed in a wide variety of
tasks, including dynamically complex tasks (Gonzalez & Lebiere,
2005; Martin, Gonzalez, & Lebiere, 2004), training paradigms of
simple and complex tasks (Gonzalez, Best, Healy, Kole, &
Bourne, 2011; Gonzalez & Dutt, 2010), simple stimulus–response
practice and skill acquisition tasks (Dutt, Yamaguchi, Gonzalez, &
Proctor, 2009, 2010), and repeated binary-choice tasks (Lebiere,
Gonzalez, & Martin, 2007; Lejarraga et al., 2010), among others.
The different applications of IBLT illustrate its generality and its

ability to explain learning from exploration and DFE in multiple
tasks and contexts. Most of the current IBL models, however, are
task-specific.

A recent IBL model has shown that generalization of the theory
is possible across multiple tasks that share the same task structure.
The model reported in Lejarraga et al. (2010) was built to predict
performance in individual repeated binary-choice tasks,
probability-learning tasks, and repeated-choice tasks with chang-
ing probability of outcomes as a function of trials. In this article,
we use an extension of the IBL model reported in Lejarraga et al.
to explain and predict performance across the two DFE paradigms.

The IBL Model of Sampling and Repeated-Choice

Instances in the DFE’s two-button task have a much simpler
representation compared to other IBL models. The instance struc-
ture is simple, because the task structure in the two paradigms is
also simple. Each instance consists of a label that identifies a
decision option in the task and the outcome obtained. For example,
(Right, $4) is an instance where the decision was to click the
button on the right side, and the outcome obtained was $4. The
instances in the sampling and repeated-choice paradigms are
treated exactly in the same way.

The model we report here builds on the one reported in Lejar-
raga et al. (2010) by adding an inertia rule (Equation 1 below; built
on the work of Biele et al., 2009). This rule determines whether the
previous choice in the task is repeated according to a random draw
from a uniform distribution. If the previous choice is not repeated,
then the option with the highest utility (blended value; Equation 2
below) is selected. An option’s blended value depends on its
associated outcomes and the probability of retrieving correspond-
ing instances from memory (Equation 3 below). Furthermore, the
probability of retrieving instances from memory is a function of
their activation (Equation 4 below). Activation in the model is a
function of the recency and frequency of retrieving instances from
memory (a simplification of the full activation mechanism devel-
oped in the ACT–R cognitive architecture; Anderson & Lebiere,
1998, 2003).

Inertia mechanism. We build on the work of Biele et al.
(2009) and use a free parameter in the IBL model, the probability
of inertia (pInertia), to determine whether the choice made in the
previous trial is repeated or not. A choice is made in the model in
trial t � 1 as follows:

If the draw of a random value in the uniform distribution
U (0, 1) � pInertia,
Then
Repeat the choice as made in the previous trial
Else
Select an option with the highest blended value as per
Equation 2 (below). (1)

pInertia could vary between 0 and 1, and it does not change across
trials or participants. Naturally, the higher the value of pInertia, the
more frequently the IBL model will repeat the last choice in
repeated trials or samples.

Blending and activation mechanisms. If the most recent
decision is not repeated according to Equation 1, then the model
selects an option with the highest blended value V (Gonzalez et al.,
2003; Lejarraga et al., 2010) from all instances with outcomes that
belong to that option. The blended value of option j is defined as
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Vj � �
i�1

n

pi xi (2)

Where xi is the value of the observed outcome in the outcome
slot of an instance i corresponding to the option j, and pi is the
probability of that instance’s retrieval from memory (for the case
of a binary-choice task, the value of j in Equation 2 could be either
safe or risky, or maximizing or minimizing). The blended value of
an option is the sum of all observed outcomes xi in the outcome
slot of corresponding instances, weighted by the instances’ prob-
ability of retrieval. Thus, the blended value in this model is a form
of cognitive representation of experienced utility, given the use of
only observed outcomes and the reliance on human memory mech-
anisms.

In any trial t, the probability of retrieving instance i from
memory is a function of that instance’s activation relative to the
activation of all other instances corresponding to that option,
given by

Pi,t �
eAi,t/�

�je
Aj,t/� (3)

Where � is random noise defined as � � �2, and � is a free noise
parameter. Noise parameter � captures the imprecision of retrieving
instances from memory. The noise parameter has no default value
in the ACT–R architecture from which it was borrowed (Anderson
& Lebiere, 1998); however, the parameter has been found to have
a mean of 0.45 in many ACT–R studies (Wong, Cokely, &
Schooler, 2010). Higher � values imply a greater variability in the
retrieving instances from memory.

The activation of each instance in memory depends upon the
activation mechanism originally proposed in ACT–R (Anderson &
Lebiere, 1998, 2003). A simplified version of the activation mech-
anism that relied on recency and frequency of instances use was
sufficient in capturing human choice behavior in several repeated
binary-choice and probability-learning tasks (Lejarraga et al.,
2010). According to this simplified mechanism, for each trial t,
activation Ai,t of instance i is:

A i,t � ln� �
tiε	1,. . .,t
1�

�t 
 ti�

d� � � � ln�1 
 �i,t

�i,t � (4)

Where d is a free decay parameter, and ti is a previous trial
when the instance i was created or its activation was reinforced
due to an outcome observed in the task (the instance i is the one
that has the observed outcome as the value in its outcome slot).
The summation will include a number of terms that coincides
with the number of times an outcome has been observed in
previous trials and the corresponding instance i’s activation that
has been reinforced in memory (by encoding a timestamp of the
trial ti). Therefore, the activation of an instance corresponding
to an observed outcome increases with the frequency of obser-
vation and with the recency of those observations. The decay
parameter d affects the activation of an instance directly, as it
captures the rate of forgetting. In ACT–R, the d parameter has
a default value of 0.5 (Anderson & Lebiere, 1998, 2003). The
higher the value of the d parameter, the faster the decay in
memory, and the harder it is for the model to retrieve instances
with outcomes that occurred many trials ago.

The �i,t term is a random draw from a uniform distribution U (0, 1),

and the � � ln�1 � �i,t

�i,t
� term represents Gaussian noise impor-

tant for capturing the variability of human behavior. Again, � is a
free noise parameter that was defined above and that introduces
noise in the retrieval of instances from memory.

Special treatment of the first trial. In the first trial, the
model has no instances in its memory from which to calculate
blended values. Therefore, the model makes a selection between
instances that are pre-populated in its memory. Each of these
instances corresponds to one of the decision options in a task with
an outcome value pre-assigned to the instance. We used a value of
�30 in the outcome slot of the two options’ instances (Lejarraga
et al., 2010). The �30 value is arbitrary, but importantly, it is
greater than any possible outcomes in the task’s problems and will
trigger an initial exploration of the two options. In practice, the
model makes a random selection for one of the two in the first trial.
Because the �30 outcome in the two pre-populated instances is
never actually observed in the task, they are never reinforced and
their activation decays rapidly in memory. In the first trial, a
decision is also based solely upon the blended values, and the
inertia mechanism (Equation 1) is used from the second trial
onwards.

The Stopping Point Rule: Accounting for Sample Size
in the Sampling Paradigm

Although the IBL model above is the same across the two
paradigms, the sampling paradigm involves a decision of when to
stop sampling that is not necessary in the repeated-choice para-
digm. To determine when the model stops sampling, a simple
stopping rule is defined as a random draw from a distribution
function.

The sampling paradigm’s data from Hertwig et al. (2004)
revealed that a negative-binomial distribution best fitted partic-
ipants’ sample-size: Negative-Binomial (2, 0.09) with 2(9) �
23.95, p � .01. The distribution’s plot is heavily right-tailed,
which means most samples are small. The mean of the distri-
bution is 21 samples of both options (SD � 15), and the median
is 17. Similarly, the TPT’s sampling paradigm’s data gave the
sample sizes for both options for 1,200 participants across the
60 problems in the estimation set (with 20 participants per
problem; Erev, Ert, Roth, et al., 2010). A chi-square test re-
vealed that a geometric distribution best fitted the participants’
sample-size in TPT’s estimation set: Geometric (p � .082) with
2(17) � 446.43, p � .001. The distribution’s plot is again
heavily right-tailed in Erev, Ert, Roth, et al.’s (2010) data. The
mean of the distribution is 11 samples of both options (SD �
12), and the median is 9 samples.

A random draw from these distribution functions only provides
the number of samples, but the order in which the options are
sampled in sampling and repeated-choice is determined by the
same IBL model’s mechanisms (Equations 1, 2, 3, and 4 above).

Quantitative Model Comparison: Sampling and
Repeated-Choice

The comparison of models that make quantitative predictions
regarding choices and cognitive processes in the different para-
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digms is expected to help form a comprehensive framework of
DFE that is robust across tasks and paradigms. Using the same
reasoning as task-specific models (Lejarraga et al., 2010), we
attempt to demonstrate that our IBL model is not specific to one
DFE paradigm.

The TPT (Erev, Ert, Roth, et al., 2010) was a commendable
effort to advance current knowledge toward obtaining quantitative
predictions to explain different observations in decisions from
description and experience through model comparison. The goal of
this model comparison effort, however, was to predict the results
of specific experiments within each of three separate paradigms:
decisions from description, sampling, and repeated-choice. Thus,
models were submitted independently for each of the paradigms
and were assessed by their ability to account for behavior in one of
the two paradigms separately. Regardless of the behavioral simi-
larities in the sampling and repeated-choice paradigms, very dif-
ferent models won the competition for each paradigms (Erev, Ert,
Roth, et al., 2010). Furthermore, although the TPT followed a
generalization procedure where models were calibrated in an es-
timation data set and then tested in a generalization (competition)
data set, the TPT did not evaluate these models by their complex-
ity. A model’s ability to generalize and its complexity are two key
properties of quantitative model comparisons and selection meth-
ods (Pitt et al., 2002). Finally, models in the TPT were evaluated
for their accurate predictions in general choice behavior (i.e.,
R-rate) and not by process behavior (i.e., A-rate). Thus, none of the
models submitted in the sampling paradigm were able to generate
the sequence of samples that preceded choice. Similarly, none of
the models submitted in the repeated-choice paradigm were eval-
uated by the accuracy of their prediction in sequential-choice
behavior.

In the current research, we address all of the issues discussed
above. We demonstrate that the same IBL model accounts for the
choice and process behavior in both DFE paradigms. We compare
the IBL model with the best models in both paradigms from the
TPT (top five models in the sampling paradigm and top six models
in the repeated-choice paradigm, a total of 11 models; Erev, Ert,
Roth, et al., 2010). We account for model complexity by using the
Akaike information criterion (AIC) that takes into account both a
model’s ability to predict human data and its complexity in terms
of number of parameters contained (Pitt et al., 2002). We also
expose all the competing models to multiple data sets for calibra-
tion and challenging generalizations, and we test the model’s
ability to predict both the general choice and sequential choice
behavior at the same time.

Next, we summarize the top models in the sampling and the
repeated-choice paradigms. We provide more detail for the winner
models in the TPT, as they are the main comparison benchmarks
to our IBL model.

Models in the Sampling Paradigm

1. The baseline model, called primed sampler, is a simplified
version of the model by Erev, Glozman, and Hertwig (2008). The
model assumes a simple rule: to take a random sample of k draws
from each option (a free parameter with the best calibrated value
in TPT’s estimation set: k � 5) and to accumulate evidence
(outcomes) based on its sampling of each option. The model
selects the option with the highest accumulated evidence. In this

model, all k samples drawn have equal weights in the accumulated
value.

2. Another baseline model, called the primed sampler with
variability, is a variation of the primed sampler model where the
sample-size parameter k is varied between participants run on each
problem. The sample size is uniformly drawn using one of the
integers between 1 and k. Best calibrated value of the parameter
was obtained with k � 9 in the TPT’s estimation data set (Erev,
Ert, Roth, et al., 2010). The model makes a choice between options
exactly like the primed sampler model.

3. The runner-up model, called sample by cumulative prospect
theory and aspiration levels, was submitted by Ahn and Picard
(Erev, Ert, Roth, et al., 2010) and is based on prospect theory but
is extended by reinforcement-learning algorithms. First, the pros-
pect theory’s weight and value functions are found based upon the
current value of parameters. These weight and value functions are
multiplied to derive an expected value for each option. These
expected values are then used to compute a probability for each
option using a Boltzmann distribution (Ahn, 2010). The model
selects the option with the highest probability.

4. The second runner-up model, called natural mean heuristic,
was submitted by Hau and Hertwig (Erev, Ert, Roth, et al., 2010)
and is a variant of the original natural-mean heuristic model
(Hertwig & Pleskac, 2008). This model selects the option with the
larger average outcome during a sequential sampling process. The
model takes between 1 and 20 samples from each option for each
simulated participant. The probability of selecting the risky option
is determined for each simulated participant based upon the num-
ber of samples (between 1 and 20) and a binomial distribution.
Then, a weighted average of the probability of selecting the risky
option over all 20 participants determines the final probability of
selecting the risky option. To determine the weighted average, the
model uses 20 weight parameters.

5. The winning model, called Ensemble, is discussed in Hau et
al. (2008) and Erev, Ert, Roth, et al. (2010). This model assumes
that each choice is made based on one of four equally likely rules:
(1) a rule that is similar to the primed sampler model with vari-
ability, (2) another variant of the primed sampler model where the
number of samples is drawn from a distribution of observed
sample sizes in the TPT’s estimation set, (3) a stochastic variant of
the cumulative prospect theory, and (4) a stochastic version of the
lexicographic priority heuristic adapted from the priority model
proposed by Rieskamp (2008). The probability of selecting the
risky option is determined by applying each of the four rules, and
then the mean probability is derived and reported as the proportion
of risky choices (Erev, Ert, Roth, et al., 2010). Although this model
was the most successful in predicting behavior in the TPT’s
sampling paradigm, the accuracy of the Ensemble model came at
a very high cost of its complexity (the model is made of four
sub-models, one for each rule, and 40 different free parameters).
As concluded by Erev, Ert, Roth, et al. (2010, p. 40): “the model
is not easy to handle.”

There are many other models in the sampling paradigm that did
not participate or did not rank highly in the TPT. Different models
in the sampling paradigm are explained and compared in Hau et al.
(2008). For example, models based on heuristics include either
some probability information (probability-based) or depend solely
upon sampled outcomes (outcome-based). The popular outcome-
based heuristic model include maximax and minimax (Luce &
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Raiffa, 1957), which were originally proposed as models for
decisions under ignorance; the natural-mean heuristic, which se-
lects the option with the larger average outcomes during sampling
(Hertwig & Pleskac, 2008); and the probability-based heuristic is
the Lexicographic heuristic (Dawes, 1979), which selects the op-
tion with the highest and most frequently observed outcomes.
Models of associative learning include the value-updating model
(Hertwig, Barron, Weber, & Erev, 2006) and the fractional-
adjustment model (March, 1996; Weber, Shafir, & Blais, 2004). In
both models, learning involves changing the propensity to select an
option based on the experienced outcomes (good experiences
boost the propensity of selecting the associated choice, and bad
experiences diminish it). In the value-updating model, participants
update their estimates of the gamble’s value after each new draw.
Specifically, the model computes the weighted average of the
previously estimated value and the value of the most recently
experienced outcome for each option. The choice is made for the
option with the higher of the two weighted-average values
(Hertwig et al., 2006). Finally, a model based on cumulative
prospect theory (called the two-stage model [TSM]) assumes that
people first form subjective beliefs of the probability of outcomes,
and then they enter these beliefs into cumulative prospect theory’s
weighting function, as suggested by Fox and Tversky (1998;
Tversky & Fox, 1995). The TSM model first assesses the observed
probability of non-zero outcomes in each option, calculates the
expected value of each option, and chooses the option with the
highest expected value (Hau et al., 2008).

An important conclusion from all the models described above is
that none of the models in the sampling paradigm were designed to
predict the sequence of sampling selections that humans make. All
these models assumed some sampling procedure and then focus on
predicting only the final consequential choice. The IBL model
predicts not only the final consequential choice but also the se-
quence of sampling selections.

Models in the Repeated-Choice Paradigm

1. A baseline model, called basic reinforcement learning (Erev,
Ert, Roth, et al., 2010), assumes a stochastic choice rule that
resembles the Boltzmann distribution, where the temperature in the
distribution is replaced by a weight. The weight value in trial
t � 1 is a weighted average of the value and the obtained payoff
in trial t (Erev & Barron, 2005; Erev, Bereby-Meyer, & Roth,
1999). The Boltzmann distribution provides a probability of se-
lecting an option, and the model selects the option with the highest
probability.

2. Another baseline model is the normalized reinforcement
learning (NRL; Erev, Ert, Roth, et al., 2010). This model is an
extension of the basic reinforcement learning model above with an
additional assumption that the weight in the Boltzmann distribu-
tion is normalized by a payoff variability value. The payoff vari-
ability term is the weighted average of the difference between the
obtained payoff at trial t and t 
 1 (Erev & Barron, 2005; Erev et
al., 1999). Again, the Boltzmann distribution provides a probabil-
ity of selecting an option, and the model selects the option with the
highest probability.

3. The best baseline model is the explorative sampler (ES) with
recency. This model is a variation of the ES model (Erev, Ert,
Roth, et al., 2010; Erev et al., 2008), which has been shown to

outperform the reinforcement learning models and its variants
(Erev, Ert, Roth, et al., 2010). The model can be summarized with
the following assumptions (Erev et al., 2008):

(a) The agents are assumed to consider two cognitive strategies:
exploration and exploitation. Exploration implies a random choice.
The probability of exploration is 1 in the very first trial, and it
reduces toward an asymptote with experience when information
concerning the forgone payoffs is not available. The effect of
experience on exploration depends on the expected length of the
experiment (T). Exploration diminishes quickly when T is small
and slowly when T is large.

(b) The experiences with each option include the set of observed
outcomes yielded by this option in previous trials. When the
payoffs are additionally limited to the obtained payoff, the sub-
jective value of the very first outcome is recalled as an experience
with all the options.

(c) Under exploitation, the agent draws (with replacement) a
sample of mt past experiences with each option. The first draw is
the most recent experience with each option. All previous experi-
ences are equally likely to be sampled in the remaining mt 
 1
draws. This assumption implies a hot stove effect: an increase in
risk-aversion with experience.

(d) The value of mt at trial t is assumed to be randomly selected
from the set {1, 2, ., k} where k is a free parameter.

(e) The recalled subjective values of the outcome x (from
selecting option j) at trial t is assumed to be affected by two
factors: regression to the mean of all the experiences with the
relevant option (in the first t 
 1 trials) and diminishing sensitivity.
The estimated subjective value of each option is the mean of the
subjective value of that option’s sample in that trial. The model
selects the option with the highest estimated subjective value.

4. The runner-up model, called two-stage sampler, is an im-
provement of the ES model (Ayal & Hochman, 2009). In addition
to ES model’s other assumptions, a two-stage sampler chooses an
option based upon the difference between the average sampled
value from history of observed outcomes and the low outcome.
The average sampled value is computed just like in the ES model
by repeated sampling for both options from history during exploi-
tation. Like the ES model, the model selects the option with the
highest average sampled value.

5. The second runner-up, the NRL with inertia (Erev, Ert, Roth,
et al., 2010), is an extension of the NRL model. However, to
determine the probability of each option, a stochastic choice rule is
used. This rule resembles the Boltzmann distribution considering
68% contribution of the model’s previous choice (i.e., inertia).

6. The winning model, ACT–R with sequential dependencies
and blending memory (hereafter “ACT–R model”), was submitted
by Stewart, West, and Lebiere (2009). This model is a variant of
the IBL model presented in this article.

The ACT–R model assumes similarity-based inference, blend-
ing, and sequential dependencies. As an IBL model, experience in
the ACT–R model is coded into an instance that includes the
context, choice, and obtained outcome. The context in this model
includes the two previous consecutive choices explicitly as part of
the instance (Erev et al., 2008; Stewart et al., 2009). The retrieval
of instances from memory considers all instances that are relevant
for the current context and retrieves the one where the activation
exceeds a threshold (captured by a free parameter, retrieval thresh-
old [RT]). In addition to the RT parameter, this model includes the
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decay rate parameter and a noise parameter (d and � in Equation
4). The choice is performed through the blending of instances in a
way that the activation of each option is weighted by the proba-
bility of retrieving a corresponding instance from memory. The
ACT–R model chooses an option with the highest blended value.

The ACT–R model and the IBL model reported here differ in
several ways. These differences are already explained in Lejarraga
et al. (2010) but are summarized here. The first difference is the
context used in the ACT–R model and its absence in the IBL
model. The IBL model only saves the previous choice and not the
previous two choices. The second difference is in the constituting
parts of the activation mechanism. In the IBL model, only the
“base level” (frequency and recency) and noise are used (see
Equation 4), whereas in the ACT–R model, a similarity mecha-
nism was also used to match the current context with the context
stored in memory. Also, the IBL model does not use the RT
parameter (which limits the number of instances considered in the
blending mechanism), whereas the ACT–R model uses the RT
parameter as a free parameter. In the IBL model, all experiences
have a probability (Pi) of being retrieved from memory and par-
ticipate in blending, whereas only those instances with an activa-
tion greater than the RT are considered in blending for the ACT–R
model. This distinction results in different types of instances that
participate in the blending mechanism between the IBL and
ACT–R models. Finally, the ACT–R model uses a different blend-
ing equation than the one used by our IBL model. The ACT–R
model weighs the activation of each instance by the probability of
retrieving an instance from memory (Lebiere, 1999), whereas the
IBL model weighs the outcome of each instance by the same
probability (Equation 2).

Again, there are other models in the repeated-choice paradigm
that did not participate or did not rank at the top in the TPT.
Reinforcement learning models are common in the repeated-
choice literature. Many of these models assume that individuals are
equipped with a set of strategies (Busemeyer & Myung, 1992;
Erev & Barron, 2005). For example, Erev and Barron (2005)
proposed a model to capture learning in DFE with partial-feedback
and full-feedback that is based on reinforcement learning among
cognitive strategies (RELACS). RELACS is a model that evolved
from the proposed learning effects by Roth and Erev (1995; Erev

& Roth, 1998). It assumes that the decision maker follows one of
three cognitive strategies or decision rules in each decision en-
countered. The probability that any given strategy is used is
determined by reinforcements derived from previous experiences
using the strategy (Erev & Barron, 2005).

As summarized above, many models have attempted to capture
the recent findings of DFE under each of the two experiential
paradigms. These models were developed to account for particular
characteristics in each, and they often carry different cognitive
assumptions even within the same paradigm. To demonstrate the
generality of the cognitive mechanisms proposed by IBLT,
we compared the performance of the TPT’s winners (the Ensemble
model and the ACT–R model), the best baseline models, and the
runner-up models in each of the two paradigms to the performance
of one single IBL model in both paradigms.

SC Problems

Table 1 shows the SC problems that have been popularly used
in DFE’s repeated-choice (Barron & Erev, 2003) and sampling
paradigms (Hertwig et al., 2004). Each problem has a High (H) and
a Low (L) option based upon their expected values. For example,
problem 1 shows that a “4” can occur with an 80% chance and a
“0” with a 20% chance under the H option (with an expected value
of 3.2); and for the L option, a “3” will occur with a 100% chance
(with an expected value of 3). The last three columns in Table 1
present the proportion of H choices over all participants in the
sampling (Pmax), repeated-choice (Pmax2), and description para-
digms (Pmax) as reported in Hertwig et al. (2004) and in Barron
and Erev (2003).

Hertwig et al. (2004) presented 100 participants with the SC
problems of Table 1 in the sampling and description paradigms.
Participants in the sampling paradigm (N � 50) saw two buttons
on the computer screen and were told to sample freely before
making a final choice. In each group, 25 participants were pre-
sented with three of the six problems, and the remaining 25
participants were presented with the other three problems. Barron
and Erev (2003) used the same six problems in the repeated-choice
paradigm. One hundred and forty-four students served as paid
participants per problem. The experiment was run for four blocks

Table 1
The Proportion of Maximization (Pmax or Pmax2) in Humans Across Six Problems in Sampling, Repeated-Choice,
and Description Paradigms

Number

Problem Decisions from experience Decisions from description

High (H) option Low (L) option

Sampling paradigm
(from Hertwig et al., 2004)

Pmax %a

Repeated paradigm
(from Barron & Erev, 2003)

Pmax2 %b
(from Hertwig et al., 2004)

Pmax %a

1 4, 0.8; 0, 0.2 3, 1.0 88 62 36
2 4, 0.2; 0, 0.8 3, 0.25; 0, 0.75 44 48 64
3 
3, 1.0 
32, 0.1; 0, 0.9 28 41 64
4 
3, 1.0 
4, 0.8; 0, 0.2 56 61 28
5 32, 0.1; 0, 0.9 3, 1.0 20 24 48
6 32, 0.025; 0, 0.975 3, 0.25; 0, 0.75 12 30 64

a Derived based on data available from Hertwig et al. (2004). b Derived based on data provided by Ido Erev and reported in experiments in Barron and
Erev (2003). The Pmax2 is the proportion of maximization in the second block of 100 trials (the problems were run for 4 blocks of 100 trials each, and
Barron & Erev, 2003, reported proportion of maximization in the second block of 100 trials).
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of 100 trials each, and groups of 24 participants were assigned to
each of the six problems (1 through 6).

Calibration to the Proportion of Maximization
(Pmax/Pmax2)

To evaluate the IBL model against the other models, the three
models were calibrated to human data in the SC problems using
the exact same procedures. The Ensemble model was calibrated to
the sampling participants’ data (Hertwig et al., 2004), the ACT–R
model was calibrated to the repeated-choice participants’ data
(Barron & Erev, 2003), and the IBL model was calibrated to
participant’s data in both paradigms separately. Calibrating a
model to participants’ data means running the model in the same
problems experienced by human participants to find the model’s
parameters values that minimize the squared distance between the
model’s Pmax (or Pmax2) and human’s Pmax (or Pmax2). Ap-
pendix A explains the calculation of the mean squared deviation
(MSD), correlation coefficient (r), and AIC, as well as the cali-
bration procedure followed and the range in which different mod-
els’ parameters were varied for calibration. Because we minimized
the squared deviations, better AIC values are those that are more
negative (see Appendix A for details).

Table 2 presents a summary of the calibrated parameters and the
models’ performance (in terms of AIC, MSD, and correlation
coefficient r) in the two paradigms. The IBL model performs better
than the Ensemble model (on Pmax) and the ACT–R model (on
Pmax2). Figure 1A shows the Pmax for the final choice for human,
IBL model, and Ensemble model in each of the six problems.
Figure 1B shows the Pmax2 for the human, IBL model, and the
ACT–R model across 100 trials in Block 2 (i.e., Trials 101–200).
Both the IBL and ACT–R models explain the Pmax2 in human
data very well; however, the Pmax2 predictions from the ACT–R
model slightly overestimate the observed Pmax2 in human data.

The IBL model uses the same mechanisms to predict both the
A-rate in the sampling and in the repeated-choice paradigm. For
the sampling paradigm, we calculated the model’s A-rate for the
first 15 samples (the median number of samples in human data
from Hertwig et al., 2004), and we also calculated the A-rate for
the first 93 samples—which is the maximum number of samples in
which there is least one participant in each of the IBL model and
human data. For the repeated-choice paradigm, we calculated the
A-rate for the first 200 trials (Blocks 1 and 2).

The results of the comparisons shown in Table 2 demonstrate
that the IBL model’s predictions worsen with a larger number of
samples or trials used. Also, the model’s A-rate predictions are
slightly better in the repeated-choice than in the sampling para-
digm. This result agrees with our expectations, because most
participants rely on small samples and the number of participants
decreases with greater number of samples in the sampling para-
digm. Also, the predictions of the A-rate are better for the IBL
model compared to the ACT–R model in the repeated-choice
paradigm.

Figure 2A presents the A-rate for the IBL model and humans
over the first 93 samples when averaged over all problems and
participants in the sampling paradigm. The IBL model produces
very good A-rate predictions for close to the median number of
samples (� 15 samples). As the number of participants used to
calculate the A-rate falls rapidly over increasing number of sam-

ples, the model’s A-rate is more accurate for a smaller number of
samples. Again, this is expected, given the variability that is
introduced by a decreasing the number of participants in both the
model and human data sets as the number of samples increases (the
stopping point rule in the sampling paradigm).

Figure 2B presents the A-rate for the IBL model, ACT–R
model, and human data over 199 trials in the repeated-choice
paradigm. The IBL model predicts the A-rate in the human data
very well; the ACT–R model overestimates the A-rate.

Overall, these results in the SC problems demonstrate that a
single IBL model, and thus the same cognitive processes that it
represents, can explain human behavior in two different DFE
paradigms better than the TPT’s winning models that were created
for each paradigm separately. Furthermore, we demonstrate that
the same model can capture the A-rate in both paradigms, where
the only source of poor fit is the increased number of samples
in the sampling paradigm, given that a variable and decreasing
number of participants sample more.

However, these results are limited in several ways. First, the SC
problems only provide a partial demonstration of what the IBL
model can explain and predict. Given the limited number of
problems and the similarities among them, there is a risk of
over-fitting the human data. For example, the SC problems have
no mixed outcomes (gains and losses together), and they have only
low and high probability values and no medium probability values.
Second, the results are only calibration to human data in these six
problems. Because of this, it is possible that the IBL, the Ensem-
ble, and the ACT–R models address the particular characteristics
of the narrow set of problems but are unable to predict behavior in
novel sets of problems. Third, although the models selected for
comparison were the winners of the TPT in each of the two
paradigms, it would be informative to compare the IBL model
against other models to determine the characteristics that might be
relevant to their performance in the DFE paradigms. These limi-
tations are addressed in the next section.

The TPT

The same IBL model above was calibrated to the TPT’s esti-
mation set in the sampling and repeated-choice paradigms and then
tested in the competition set. During both calibration and testing,
the IBL model is compared to the winner, runner-up, and second
runner-up models submitted in the TPT, as well as the baseline
models (Erev, Ert, Roth, et al., 2010).

In recent research, the current IBL model (but without the inertia
mechanism) was better than all other submitted models in the
TPT’s repeated-choice paradigm (Lejarraga et al., 2010). Here,
there are three main extensions to that demonstration. First, we
extend the demonstration across the DFE paradigms and compare
the IBL model’s performance to a larger number of models in each
of the paradigms. Second, because the winning models and the
IBL model differ in their number of parameters, we use more
sophisticated model comparison techniques. In addition to the
MSD and correlation coefficient r, we report the AIC measure
from all models. Because we are interested in capturing the learn-
ing performance from different models, we report the MSD and r
for a single trial in the sampling paradigm and across 100 trials in
the repeated-choice paradigm. Our procedure is thus different from
that used in Erev, Ert, Roth, et al. (2010) and Lejarraga et al.
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(2010), which report the MSD and r across the individual prob-
lems, not over trials. Third, in addition to demonstrating that the
IBL model predicts the R-rate in both paradigms, we also present
the predictions on the A-rate as an extension to the results reported
in Erev, Ert, Roth, et al. (2010).

The TPT Data Sets

The TPT involved two data sets: an estimation set (60 problems)
and a competition set (60 new problems derived using the same
algorithm as the estimation set) in each of the DFE paradigms. The
different models submitted to the TPT were calibrated to partici-
pants’ choice in the estimation set. Later, these calibrated models
were tested in the competition set with the parameters obtained in
the estimation set, following the generalization method of model
comparison (Busemeyer & Wang, 2000). Detailed information on
methods and data collected in the TPT is explained in Erev, Ert,
Roth, et al. (2010). In this article, we briefly summarize this
information.

Different participants were tested in the sampling and repeated-
choice paradigms. Each paradigm involved the same 60 problems
in the estimation set and the same 60 problems in the competition
set. All problems involved a choice between two unlabeled but-
tons, one associated with a safe option that offered a medium (M)

outcome with certainty and the other associated with a risky option
that offered a high (H) outcome with some probability (pH) and a
low (L) outcome with the complementary probability (1-pH).
Participants were not told which option was risky or safe and were
simply asked to maximize their outcomes in each problem. The
problem parameters M, H, pH, and L were generated randomly,
and a selection algorithm ensured that the problems in each set
were different in domain (positive, negative, and mixed outcomes)
and probability values (high, medium, and low pH). The positive
domain was such that each of the M, H, and L outcomes in a
problem were positive numbers (�0). The mixed domain was such
that one or two of the problem’s outcomes were negative (�0).
The negative domain was such that each of the problem’s out-
comes were negative numbers (�0). The low, medium, and high
probability values corresponded to values of pH between .01 and
.09, .1 and .9, and .91 and .99, respectively. The selection algo-
rithm ensured that in both the estimation and competition sets there
were 20 problems for each of the three domains and about 20
problems each for the three probability values. The resulting set of
problems was thus large and representative of a broad diversity of
problems.

In the repeated-choice paradigm’s estimation and competition
sets, 100 participants were randomly divided into five groups of 20

Figure 1. (A) Comparison of the proportion of maximization (Pmax) from the single computational model
based on instance-based learning theory (IBL), Ensemble models, and human data in the six choice problems in
the sampling paradigm. (B) The proportion of maximization in the second block (Pmax2) from the IBL model
(left panel) and the Adaptive Control of Thought—Rational (ACT–R) model (right panel) compared to human
data in the repeated-choice paradigm.
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participants each, and each group completed 12 out the 60 prob-
lems. The repeated-choice paradigm involved a block of 100
consequential trials per problem. For the sampling paradigm’s
estimation and competition sets, 40 participants were randomly
assigned into two groups of 20 participants each, and each group
completed 30 of the 60 problems.

Appendix B presents the experimental results in each paradigm
and for each set. In this article, models submitted in the TPT are
evaluated according to their ability to predict the proportion of
risky choices (R-rate) in the competition set over 100 trials. The
R-rate is averaged over 20 participants per problem and 60 prob-
lems in the repeated-choice paradigm, and it is averaged over 20
participants per problem and 60 problems for a final consequential
choice in the sampling paradigm. In addition to the R-rate, we
calculate the proportion of alternations (A-rate) in both paradigms
over 100 trials (the A-rate in Trial 1 was assumed to be 0).

IBL Model’s Performance in the Estimation Sets

We calibrated the IBL model in the estimation set separately for
each paradigm, following the same procedures described in Ap-
pendix A.

Table 3 presents the summary of results from calibrating the
IBL model in the estimation set, and the results from the best and
baseline models (Erev, Ert, Roth, et al., 2010). In the sampling

paradigm, the IBL model performed better than the Ensemble
(winner), runner-up, and second runner-up models on the AIC
measure. Interestingly, the IBL model performed better than the
Ensemble model, even without accounting for the model complex-
ity. The IBL model’s AIC was slightly higher than the correspond-
ing values in the baseline primed sampler and the primed sampler
with variability models. This observation is due to the higher
number of parameters in the IBL model, as its MSD value is
clearly lower than both the baseline models. An advantage of the
IBL model over all the other models is that it provides reasonably
good predictions for the A-rate, whereas none of the competing
models can produce those predictions in the sampling paradigm.
The IBL model’s predictions for the A-rate are derived using the
first 86 samples, which is the maximum number of samples where
there is at least one participant sampling in both the IBL model and
human data.

In the repeated-choice paradigm, the IBL model performed
better than the ACT–R model (winner) and the NRL with inertia
(second runner-up) for both the R-rate and A-rate; however, the
AIC value of IBL is slightly higher than the remaining models.

IBL Model’s Generalization to the Competition Sets

The IBL model was evaluated against human data in the com-
petition set in each of the two paradigms, using the parameters

Figure 2. (A) The proportion of alternations (A-rate) for the single computational model based on instance-
based learning theory (IBL) and humans in the sampling paradigm from the 2nd sample to the 93rd sample. (B)
The A-rate for the IBL model (left panel) and the Adaptive Control of Thought—Rational (ACT–R) model (right
panel) compared to human data between the 2nd and 200th trial in the repeated-choice paradigm.
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obtained in the corresponding paradigms’ estimation set. Table 4
presents the summary of the generalization results and the AIC
values for the best and baseline models reported in Erev, Ert, Roth,
et al. (2010).

In the sampling paradigm, the IBL model performed better than
all other competing models, but it also performed slightly below
the two baseline models on AIC. The baseline models have an
advantage over the IBL model in the number of parameters, but the
IBL model has an advantage over all the existent models in the
sampling paradigm as it is able to generate sampling sequences
and predict an A-rate with good accuracy.

In the repeated-choice paradigm, the IBL model performs as
well as the ACT–R model on the R-rate, better than all the other
competing models, and slightly below the NRL baseline model on
AIC and MSD.

Figure 3A shows the A-rate from the IBL model and human data
over the first 98 samples (from 2nd sample to 99th sample) in the
sampling paradigm. The 99th sample is the maximum number of
samples for which there is at least a single participant sampling in
both model and human data. The IBL model shows more accurate
predictions of the A-rate for about the first 9 samples (median).
With larger number of samples, the number of participants in both
data sets drops, and the predictions deviate from the human data.
Figure 3B show the A-rate predictions from the IBL and the
ACT–R model compared to the A-rate in human data in the
competition set. Both models seem to overestimate the A-rate in
human data. However, the A-rate predictions from IBL model
seem to converge over trials toward the human A-rate curve,
whereas the predictions from the ACT–R model seem to diverge
away over trials.

IBL Model’s Generalization Across the Sampling and
Repeated-Choice Paradigms

For each of the estimation and competition sets, the IBL model
calibrated to the human data was evaluated against human data in
each paradigm, using the parameters obtained during calibration.
The only difference between the models used in the sampling and
repeated-choice paradigms was the stopping rule: When we gen-
eralized the repeated-choice parameters to the sampling data set,
we used the stopping rule of the sampling paradigm; and when we
generalized the sampling parameters to the repeated-choice data
set, we removed the stopping rule, as the number of trials in this
case is fixed to 100.

The results, summarized in Table 5, demonstrate that the sole
difference between the two is the stopping rule. The same model
with the same parameters calibrated to one of the paradigms is able
to generalize very accurately to the data in the other paradigm.

A Challenging Generalization: From the TPT’s
Estimation Set to SC Problems

This section extends the generalization procedure and evaluates
the IBL model against other TPT models in SC problems using the
parameters derived from calibration in the TPT’s estimation set.
Because the TPT problems and the SC problems are not identical
in their structure and they belong to different experiments with
different populations, we expect this to be a more challenging
generalization for all models involved. We argue that the TPT’s

generalization condition had the characteristics of traditional
cross-validation, rather than generalization (see also Gonzalez,
Dutt, & Lejarraga, 2011, for a similar argument). The problems in
the competition set were similar to the problems in the estimation
set because they had the same structure, were created with the
same algorithm, and involved a similar participant population:
There was no difference between the R-rate in the estimation set
(49%) and the R-rate in the competition set (44%) (U � 1,573.5;
Z � 
1.195, ns) for the sampling paradigm. Similarly, there was
no difference between the R-rate in the estimation set (40%) and
the R-rate in the competition set (38%) (U � 1,666.5; Z � 
0.701,
ns) for the repeated-choice paradigm.

To run all the models created for the TPT in the SC problems,
we made a simple assumption: When a SC problem has both H and
L probabilistic options (Problems 2 and 6; see Table 1), we treat
the L option as a medium option by replacing the two outcomes in
the L option with their expected value. This assumption is the
simplest change one needs to make to run all TPT models without
changing their structure or working.

Table 6 presents the generalization results of the IBL model and
other TPT models, when these models are generalized in the SC
problems using calibrated parameters derived in the TPT’s esti-
mation set. In the sampling paradigm, the IBL model’s AIC value
for Pmax was better than all other models’ except for the best
baseline model (primed sampler with variability), where the IBL
model’s AIC was slightly higher. In the repeated-choice paradigm,
the IBL model had the best AIC for Pmax2 and A-rate compared
to other models.

Figure 4A shows the IBL and Ensemble models’ Pmax predic-
tions compared to the human data’s Pmax in the SC problems.
Figure 4B shows the IBL and ACT–R models’ Pmax2 predictions
compared to the Pmax2 in human data. Although both models
provide good predictions, the IBL model’s predictions are better
than the ACT–R model’s.

Figure 5A shows the A-rate predictions from the IBL model
compared to the human data. The model’s A-rate predictions are
reasonably good for the first 15 samples (median). Figure 5B
shows the A-rates from IBL (left panel) and ACT–R (right panel)
models compared to the human data. Both models produce rea-
sonable but slightly different generalizations. The AIC for the
A-rate puts the IBL model above the winner and all other models
in the repeated-choice paradigm.

Reconciling the Sampling and Repeated-Choice
Paradigms

Human risk, maximization behavior, and sequential selection of
options in both DFE paradigms can be explained by the same
learning processes and mechanisms in IBLT. These involve the
storage and retrieval of situation-decision-outcome instances gov-
erned by inertia, blending, frequency, recency, and noisy memory
retrieval processes. The only difference between the two para-
digms is the addition of a stopping rule in the model to account for
each individual’s sampling size in the sampling paradigm.

The IBL model involved three parameters: pInertia, decay (d),
and noise (�). We observe similarity of the d and � parameter fit
values across paradigms and within each data set. In the SC
problems, the calibration of the parameters resulted in d � 0.29,
and � � 0.27 for the sampling paradigm, and d � 0.86, and � �
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0.58 for the repeated-choice paradigm. The d and � values found
are within the range of default or common values in the ACT–R
architecture (Anderson & Lebiere, 1998; Wong et al., 2010). The
parameters are also similar for the sampling and repeated-choice
paradigms within the TPT data sets. In the TPT’s estimation set,
the calibration resulted in d � 8.79, and � � 1.17 for the sampling
paradigm, and d � 5.27, and � � 1.46 for the repeated-choice
paradigm. This supports the similarity of the cognitive processes
involved in two DFE paradigms.

In contrast to the similar values of those parameters within each
data set, there is a marked difference between the SC problems and
TPT data sets. The d and � values in the TPT estimation set are
much higher than those in the SC problems. This observation
suggests that recency and noise of memory retrieval depends on
the characteristics and diversity of the problems being represented.
The problems in the SC set are less diverse than the problems
in the TPT sets. As discussed before, the TPT problems include a
larger range of probability values, domains, and outcomes. In
addition, problems in the TPT involve outcomes expressed with
decimals, whereas the SC problems only involve integer numbers.
Less recency and noise are needed to fit the human behavior in the
SC problems, as they are less diverse than the problems in the
TPT. The low values of the d parameter in the SC problems

indicate slower decay of memory and easier recall of distant
outcomes encoded in memory instances. Outcomes in the SC
problems are easier to remember and recall than in the TPT
problems. As the diversity of problems increases in the TPT,
higher values of d and � are necessary. Faster decay of memory
and more noisy retrieval processes requires greater reliance on
recent experiences of outcomes encoded in instances.

Most importantly, this observation applies equally to both par-
adigms. Thus, the leading explanation of the description–
experience gap in the repeated-choice paradigm of “reliance on
recent experiences” is common in both paradigms, and it depends
on the characteristics and diversity of the problems confronted.
Rare outcomes would be harder to recall as the diversity of the
problems confronted increases. Consequently, the contribution of a
rare outcome’s activation to the blended value will be small, and
thus the model will behave as if these rare outcomes have less
impact than they deserve according to their objective probability.

Also, the alternation effects over trials were very similar in both
paradigms. This can be observed in Figures 2, 3, and 5 and most
clearly in the generalization demonstration of Table 5. In both
paradigms, the A-rate decreases over an increased number of
samples or trials. Furthermore, the same IBL model calibrated in
one paradigm with the same parameters predicts the A-rate of the

Figure 3. (A) The proportion of alternations (A-rate) for the single computational model based on instance-
based learning theory (IBL) and human data in the sampling paradigm from the 2nd sample to the 99th sample
(the 99th sample is the maximum number of samples for which there is one participant each in the model and
human data, respectively) of the competition data set. (B) The A-rate for the IBL and the Adaptive Control of
Thought—Rational (ACT–R) model and human data between the 2nd and 100th trial in the repeated-choice
paradigm of the competition data set.
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other paradigm. The only difference is the added stopping rule
needed in the sampling paradigm. Thus, results suggest that in both
paradigms, humans move gradually from the exploration of op-
tions to their exploitation using the same cognitive mechanisms for
the sequential selection of alternatives. However, the pInertia
parameter cannot explain this similar transition. In the SC prob-
lems, the calibration of the parameters resulted in pInertia � 0.22
for the sampling paradigm and pInertia � 0.48 for the repeated-
choice paradigm, whereas the TPT’s estimation set resulted in
pInertia � 0.63 in the sampling paradigm and pInertia � 0.09 in
the repeated-choice paradigm.

There are several possible explanations for these results.
First, because the parameters of the IBL model were calibrated
to the R-rate and not the A-rate, different values of pInertia may
represent the model’s tradeoffs between handling the decreas-
ing A-rate and maintaining the similar R-rate over time. Future
work should investigate the tradeoffs existent between the R-
and A-rates in both paradigms. Second, because we used a static
inertia rule that does not change across trials and participants,
the different values of pInertia may just represent the best
compromise across trials to fit human behavior, but it cannot
explain the transition from exploration to exploitation. More
recent accounts of the exploration– exploitation tradeoffs in the
repeated-choice paradigm suggest that inertia is a function of
surprising outcomes (Nevo & Erev, 2011). The probability of
inertia is not static but rather decreases when the recent out-
comes are surprising (Erev, Ert, & Roth, 2010; Nevo & Erev,
2011). Future work should investigate inertia as a function of
surprise across DFE paradigms.

Main Lessons From Model Comparison

Finding a single model that can explain and generalize in
diverse conditions and paradigms of DFE is an important chal-
lenge (Pitt & Myung, 2002; Pitt et al., 2002). As we have
observed in this research, there are several good models that are
able to predict human choice behavior quite accurately within
each paradigm. In fact, many of the models within each para-
digm are slightly different quantifications of similar psycholog-
ical assumptions: learning from a finite number of experiences,
giving more weight to more recent experiences, and accounting
for the frequency of experiences. However, the small advantage
the IBL model has over other models within each paradigm
(according to the AIC R-rate/Pmax measures) should not ob-
scure the more important benefits. First, the IBL model dem-
onstrated that behavior in the sampling and repeated-choice
paradigms is equivalent at the general (R-rate) level and at the
sequential process (A-rate) level. It remains a challenge for
other models to predict these similarities across the two para-
digms with their own same mechanisms. Second, we now
provide an important guideline for modelers who would attempt
such challenge: The only difference between the two paradigms
is the stopping rule. Third, the IBL model is the only currently
existent model that can predict the sequence of sampling selec-
tions that humans make. Other models in the sampling para-
digm assume a sampling procedure (often a random rule) and
focus on predicting only the final consequential choice. Fourth,
the IBL model makes consistently better predictions than the
winning models of the TPT competition.T
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An important lesson from model comparison is the tradeoffs
between the accuracy of models’ explanations and the complex-
ity needed to make those predictions (Pitt et al., 2002). Figure
6 demonstrates the tradeoffs in the quality of predictions of
different models in their fitting and generalization in different
data sets, and the complexity present in these models. To
visualize these tradeoffs, we normalized values of the two parts
of the AIC measure computed for the R-rate/Pmax/Pmax2. The

y-axis plots the normalized value of the AIC’s t � ln
SSE

t
term,

which refers to the accuracy in capturing human data. Further-
more, the x-axis plots the normalized value of AIC’s 2 * k term,
which refers to a model’s complexity in terms of the number of
parameters (k is the number of parameters in a model). The
optimal point in all these graphs is the (0, 0): a model with no
parameters that fits and predicts human data perfectly. Of
course such a model does not exist: All models are wrong, and
they are only approximations of representations of human be-
havior. However, the distance from the origin represents how
close a model is to the theoretical best model. The IBL model
is not the absolute winner across all calibrations and general-
izations when one accounts for both dimensions of different
models. However, being the only model that is common across

the sampling and repeated-choice paradigms, the IBL model
ranks highly across all the calibration and generalization pro-
cesses. In fact, it ranks as the best model in the challenging
exercise of generalizing from the TPT’s estimation set to the SC
problems for both paradigms.

There are many limitations to the model comparison process
used here. A main disadvantage comparing models that differ
considerably in their assumptions and underlying mathematical
processes is that qualitative comparisons are very difficult to
make. We have been able to describe the differences between
the winning ACT–R model in the TPT and the IBL model
qualitatively (see above and Lejarraga et al., 2010) because
both are IBL models and both rely on similar ACT–R mecha-
nisms (Anderson & Lebiere, 1998). We have discussed the
differences in the instance representation, the use of inertia, and
the RT parameter. However, this comparison would be practi-
cally impossible to make between the Ensemble and IBL mod-
els. The mechanisms, the processes, and the assumptions are not
comparable between the two. Thus, relying on the quantitative
predictions that the models can make on the same tasks has
many advantages, but limits qualitative understanding of the
commonalities shared by different models.

Figure 4. (A) The proportion of maximization (Pmax) predictions from the single computational model based
on instance-based learning theory (IBL) and Ensemble models and that observed in human data in the
generalization to the six choice problems in the sampling paradigm. (B) The proportion of maximization in the
second block (Pmax2) predictions from the IBL model, Adaptive Control of Thought—Rational (ACT–R)
model, and that observed in human data in the repeated-choice paradigm.
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Boundaries and Extensions of the IBL Model to
Dynamic Decision-Making Tasks

Despite how advantageous the simple IBL model is in choice
tasks, the current model is not expected to generalize to more
complex situations. In fact, the IBL model shown here is only one
instantiation of IBLT that is robust across many DFE choice tasks.
As the complexity of the tasks increases, so will the need for
additional mechanisms proposed by the original activation equa-
tion (Anderson & Lebiere, 1998), the constraints and mechanisms
described in IBLT (Gonzalez et al., 2003), and perhaps new
unknown mechanisms.

Complexity in dynamic tasks is defined not only by an increased
number of options and more attributes in an instance but also, and
most importantly, by the complexity created by the interactions of
these elements over time, called dynamic complexity (Sterman,

2000). Researchers have found that decision makers remain sub-
optimal even in the simplest dynamic system after repeated prac-
tice, unlimited time, and performance incentives (Diehl & Ster-
man, 1995; Paich & Sterman, 1993; Sterman, 1989a, 1989b). A
common cause is the multiple feedback processes, time delays, and
nonlinearities involved in these systems and the “inability” to deal
with such complexity (Cronin & Gonzalez, 2007; Cronin, Gonza-
lez, & Sterman, 2009). However, we need to understand and
explain the underlying cognitive mechanisms leading to the learn-
ing difficulties in dynamic tasks (Gonzalez et al., 2003). Next, we
discuss some ways in which the IBL model might be extended
from the least dynamic tasks presented in this article to the most
dynamic tasks in Edward’s (1962) taxonomy.

The simple IBL model for binary-choice tasks is easy to expand to
tasks with more than two options and to tasks involving more than one

Figure 6 (opposite). The normalized value of Akaike information criterion’s (AIC’s) t � ln
SSE

t
term versus the normalized value of AIC’s 2 * k term for

different models in the different calibration and generalization tests. The point (0, 0) is theoretically the best point: a model with no parameters that fits
the human data perfectly. The AIC is calculated upon the R-rate/Pmax/Pmax2. SC � six choice; IBL � the single computational model based on
instance-based learning theory; TPT � Technion Prediction Tournament.

Figure 5. (A) The proportion of alternations (A-rate) for the single computational model based on instance-
based learning theory (IBL) and humans in the sampling paradigm from the 2nd sample to the 62nd sample. (B)
The A-rate for the IBL model, Adaptive Control of Thought—Rational (ACT–R) model, and human data
between the 2nd and 200th trial in the repeated-choice paradigm.
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Figure 6 (opposite).
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player. In fact, an example of this extended version of the IBL model
recently received second place in the Market Entry Prediction Com-
petition (Gonzalez, Dutt, & Lejarraga, 2011) organized by Erev, Ert,
and Roth. Given that the choice rule entails selecting the option with
the highest blended value and the model expands to account for any
number of blended values (Equation 2), it is able to explain choice
among more than two options. We have also developed an IBL model
for the Iowa Gambling Task, which involves four options (Dutt &
Gonzalez, 2011), and more generally are extending IBLT to account
for behavior in social interactions (Gonzalez & Martin, 2011).

A more challenging extension of the IBL model will involve
more dynamic choice tasks. For example, a complex binary-choice
task where the probability of an outcome in trial t depends upon
the nature of observed outcomes in trials t 
 1 and t 
 2, similar
to the Markov process described by Biele et al. (2009). In the
simple binary-choice task, the attributes that define the options are
simple and irrelevant: two blank buttons on the screen, and both
appear the same. As the attributes that define the options become
more relevant and conceptually and contextually rich, other mech-
anisms such as spreading activation (Anderson & Lebiere, 1998;
Gonzalez et al., 2003) will help determine the priorities and
weights of those attributes in instances. This characteristic offers
interesting opportunities to investigate the synergies between de-
cision field theory (Busemeyer & Townsend, 1993) and IBLT. The
decision field theory would help explain how the attributes of an
instance are built over time. IBLT (and, in general, the ACT–R
theory) assumes a prior definition of an instance structure.

Other mechanisms such as similarity through partial matching
(Anderson & Lebiere, 1998; Gonzalez et al., 2003) will be needed
because situation attributes can change over time. In this case, a
similarity function will need to be defined to capture the relation-
ship between the attributes in memory and those currently in the
dynamic task. As explained in IBLT (Gonzalez et al., 2003), a
defined threshold is needed to determine when an instance is
“similar enough” to a situation. This characteristic will directly
influence the retrieval and reuse of instances in memory.

Finally, there are currently many questions left to be an-
swered regarding the processing of feedback, particularly when
it is delayed. Thus, we expect that new extensions of the current
IBL model will be needed for these situations. In IBLT, feed-
back is generally associated with the outcome of an executed
decision. This is not problematic when each decision leads to
one immediate outcome, but it is problematic when multiple
decisions lead to one delayed outcome. In the model developed
by Gonzalez et al. (2003) for a dynamic task, it was assumed
that the feedback would apply equally to all the decisions made
between the last time feedback was received and the current
time. Although that appeared to be a reasonable assumption, it
is not clear whether this assumption applies more generally to
other tasks. Behavioral studies are needed to understand what
factors mediate the effects of aggregated and delayed feedback,
and how this feedback is processed in different decision con-
ditions and decision interdependencies (Gonzalez, 2005).

Summary and Implications for the Psychology of
Decision Making

Results from our quantitative model comparisons suggest that to
account for behavior in DFE more generally, models can be more

generic and still provide robust explanations of human behavior.
Human behavior in both paradigms can be explained by the
learning processes proposed by IBLT. The sampling and repeated-
choice processes, the sequential choice behavior, and the overall
risk-taking behavior can all be explained by the storage and
retrieval of instances governed by the inertia, blending, frequency,
and recency mechanisms from IBLT. The only significant differ-
ence in behavior between the two paradigms is the stopping point,
which is needed in the sampling and not in the repeated-choice
tasks.

In addition to being an encompassing model for both DFE
paradigms, the IBL model addresses many limitations of current
models that have been designed independently for the two para-
digms. The IBL model is able to account for both the general
maximization behavior and the alternation behavior at the same
time. Influential models of repeated-choice have found a very
weak relationship between the proportion of maximization and
sequential dependencies (Erev & Barron, 2005), and they have
captured the overall human choices without a good understanding
of sequential dependencies (Erev & Barron, 2005; Rapoport, Erev,
Abraham, & Olson, 1997). The IBL model generates accurate
predictions of the alternation rates in both the sampling and
repeated-choice paradigms while also producing accurate predic-
tions of the maximization rates. Thus, because the IBL model is able
to produce a sequence of choices (or samples), the blended values of
the previous t choices or samples would predict the t � 1 choice or
sample. The model’s ability to predict the A-rate in both data sets
led to the conclusion that a gradual transition from exploration of
options to their exploitation is very similar in both paradigms. The
learning curves of A-rate show a decrease that is similar in both
paradigms, and the predictions of the IBL model are very accurate
in both paradigms when we account for the number of samples (the
stopping point). Thus, we would expect that if people in the
repeated-choice paradigm were asked to stop making decisions
whenever they felt comfortable making their last choice like in the
sampling paradigm, both paradigms would become equivalent.
Similarly, we would expect that if people in the sampling paradigm
were forced to sample a fixed number of times like in the repeated-
choice paradigm, both paradigms would become equivalent.

Although simple, the two paradigms represent two major
forms in which we make DFE in the real-world. Both paradigms
are important and relevant to understanding natural learning
processes and decision making in situations where the options,
outcomes, and probabilities are unknown. Decisions can often
be made after sampling options that have no real consequences,
but there are also decisions that need to be made with no
opportunity to sample. The fact that both types of DFE can be
explained by the same cognitive mechanisms and that the only
difference between the two paradigms is the stopping rule has
significant implications for training and preparing people for
costly or consequential decisions. For example, our results
suggest that the use of simulators that allow people to sample
and learn the options without real consequences may be just as
effective as making consequential decisions. Furthermore, in
some circumstances, sampling may promote the acquisition,
durability, and transferability of decision-making skills before
confronting situations with real consequences.
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Appendix A

Estimating the Parameters for the Single Computational Model Based on Instance-Based
Learning Theory (IBL), the Ensemble Model, and the Adaptive Control of

Thought—Rational (ACT–R) Model

Definition of Mean Squared Deviation (MSD)

MSD �
� i�1

t �xmodel,i � xhuman,i�
2

n

Where xmodel,i and xhuman,i refer to the dependent measure (e.g.,
Pmax, Pmax2) in the model and human data for trial i. The
dependent measure has been averaged over all participants and
problems for each trial. The t is the total number of trials in each
of the model and human data sets. The smaller the MSD value, the
better model’s prediction about human data.

Definition of Correlation Coefficient (r)

r �

t � �i�1
t xmodel,i � xhuman,i � �i�1

t xmodel,i � �i�1
t xhuman,i

�t � �i�1
t xmodel,i

2 � ��i�1
t xmodel,i�2

� �t � �i�1
t xhuman,i

2 � ��i�1
t xhuman,i�2

Where xmodel,i and xhuman,i refer to the dependent measure (e.g.,
Pmax, Pmax2) in the model and human data for trial i. The
dependent measure has been averaged over all participants and
problems for each trial. The t is the total number of trials in each
of the model and human data sets. A value of r � 1.0 means that
the model is able to completely explain the trend in the dependent
variable of the human data, and a value of r � 0.0 means that the
model is not able to explain the trend. A negative value of r means
that the trend in human data is opposite to that in the model data.

Definition of Akaike Information Criterion (AIC)

AIC � t � ln
SSE

t
� 2 � k

SSE � �
i�1

t

�xmodel,i � xhuman,i�
2

Where xmodel,i and xhuman,i refer to the average dependent mea-
sure (e.g., average Pmax2) in the model and human data over t
trials of a task. The average in the dependent measure has been
taken over all problems and participants. The SSE is the sum of
squared errors between the human and model data set that is
calculated for the average dependent measure. The t is the number
of trials in the task, and k is the number of parameters in the model.
The AIC measure incorporates both the effect of an MSD and the
number of parameters in a model. The smaller or more negative the
value of AIC, the better the respective model is. In the sampling
paradigm where there is a single final consequential decision, the
value of t equals 1 if the dependent measure is Pmax.

The Choice of Model Calibration Procedures

There are multiple procedures for finding optimal values for
model parameters to enable calibration to human data. Two com-
mon mathematical methods classically used include the grid search
and steepest-descent search (Busemeyer & Diederich, 2009). The
basic idea in a grid search is to take a range of values of parameters
with certain increments and then calculate the MSD between the
model’s predictions and human data on a dependent measure for
all possible values of the parameters. The different parameter
combinations results in a grid where an intersection in the grid is
a set of parameter values to be run in a model. With just a few
parameters, the grid search process might become time consuming
and computationally complex. The steepest-descent search works
by first randomly assuming values of the parameters (represented
as a point in parameter space) and then calculating the MSD for all
possible movements in different directions from the initial point.
The next point to move to is the one that produced the largest
decrease in the MSD. With more and more parameters in a model,
the possible directions of movement might become very large and
almost impossible to evaluate.

A more recent approach that was used in this article is to apply
a Genetic Algorithm (GA; Holland, 1975) to find optimal param-
eters. The GA is different and better than the methods of optimi-
zation described above in several ways. The most important dif-
ference is that a GA works on a finite and limited “population of
possible parameter values,” whereas other methods only incorpo-
rate a single parameter in different iterations for evaluating the
MSD. Another difference is that GA is probabilistic (stochastic)
and not a deterministic process; thus, it has good chances of
avoiding local optimal points in the parameter space (Jakobsen,
2010).

In our calibration process, the GA tries out different combina-
tions of parameters to minimize the MSD between the model’s
proportion of maximization (Pmax or Pmax2) and the correspond-
ing human’s proportions across the six choice (SC) problems.
Different parameter combinations (N) are selected and run in a
model for a generation. Within a generation, a combination of
parameters is used, and the MSD value is determined. The param-
eter combinations are then ranked from lowest (best) to highest
(worst) based upon the calculated MSDs. After ranking, parameter
combinations from the top half ranks are kept (N/2), and others
(N/2) are discarded. The parameter combinations that are kept then
duplicate themselves, bringing the number of parameter combina-
tions back to the original amount (N). The N parameter combina-
tions are then paired off with each other at random (thus forming
N/2 pairs). Now, each parameter combination exchanges some of
its adjustable parameter values with the corresponding parameter
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value of its partner (this is called “reproduction”). For example,
suppose the following two three-parameter combinations have
been paired off: (a1, b1, c1) and (a2, b2, c2). Due to the exchange
of the adjustable parameter values a1 and a2 in the pair, the
resulting parameter combinations will be (a2, b1, c1) and (a1, b2,
c2). After the exchange, a new generation will start with a new set
of N parameter combinations being run, and the process described
above repeats. The stopping rule for the GA in different model
optimizations was set at 10,000 generations. This value is ex-
tremely large and thus ensures a very high level of confidence in
the values obtained.

Calibrating the IBL Model

The IBL model used in this article has three free parameters:
decay d, noise �, and probability of inertia pInertia. To calibrate
the IBL model in the SC problems and the Technion Prediction
Tournament’s (TPT’s) estimation set for both paradigms, we var-
ied the d and � parameters between 0.0 and 20.0 and the pInertia
parameter between 0.0 and 1.0. This range of variation is large and
ensures a high confidence in the resulting optimal parameters. The
IBL model was run using the same number of simulated partici-
pants as the number of human participants that participated in the
two paradigms for the SC problems and the TPT’s estimation set
(SC problems: 25 model participants per problem in the sampling
paradigm and 24 model participants per problem over 400 trials in
the repeated-choice paradigm; TPT’s estimation set: 20 model
participants per problem in the sampling paradigm and 20 model
participants per problem over 100 trials in the repeated-choice
paradigm).

Calibrating the ACT–R Model

The TPT’s ACT–R model uses three parameters: decay d, noise
�, and RT. The d and � parameters in this model have the same

meaning as in the IBL model; in addition, the retrieval of instances
from memory in this model is inhibited if the activation is below
the RT parameter. If the activation of the most active instance that
participates in blending is less than the RT, then the model is
unable to retrieve the corresponding blended instance, and it uses
a random decision to pick one of the two options. To calibrate the
ACT–R model in the repeated-choice paradigm for the SC choice
problems, we varied the d, � parameters between 0.0 and 20.0, and
the RT parameter between –20 and �20. This range of variation is
large and ensures high confidence in the optimal parameters found.
The model was run using the same number of simulated partici-
pants as the number of human participants that participated in the
repeated-choice paradigm (i.e., 24 model participants per problem
over 400 trials).

Calibrating the Ensemble Model

The TPT’s Ensemble model uses 40 different parameters. The
model does not explicitly sample the two options before making a
final decision; rather, the decision-weight parameters assumed in
the model allow it to incorporate the effect of sampling mathe-
matically. Because finding the optimal values of 40 parameters
becomes extremely complex and time consuming, we calibrated
the 11 main parameters whose optimal values have also been listed
in Erev et al. (2010) for the TPT’s sampling paradigm. Six of the
11 parameters were varied between 0.0 and 10.0, and these in-
cluded Alpha, Beta, Gamma, Delta, Lambda, and Mu. The other
five parameters were varied between 0.0 and 1.0, as they repre-
sented decision-weights between 0.0 and 1.0. These five parame-
ters included Wmin, Wp, Sigma, Throg, and Thrp. The Ensemble
model was run using the same number of simulated participants as
human participants that participated in the sampling paradigm (i.e.,
25 model participants per problem).
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Appendix B

One Hundred Twenty Problems in the Technion Prediction Tournament’s Estimation and
Competition Data Sets

Table B1
The 60 Problems in the Estimation Set With the Average Proportion of Alternations (A-rate) and the Average Proportion of Risky
Choices (R-rate) in the Repeated-Choice and Sampling Paradigms

Problem Domain Probability

Risky Safe Repeated-choice Sampling

H pH L M A-rate R-rate A-rate R-rate

1 Negative High 
0.3 0.96 
2.1 
0.3 0.28 0.33 0.39 0.25
2 Negative High 
0.9 0.95 
4.2 
1 0.1 0.5 0.41 0.55
3 Negative Medium 
6.3 0.3 
15.2 
12.2 0.14 0.24 0.25 0.50
4 Negative Medium 
10 0.2 
29.2 
25.6 0.13 0.32 0.34 0.30
5 Negative Medium 
1.7 0.9 
3.9 
1.9 0.19 0.45 0.37 0.80
6 Negative High 
6.3 0.99 
15.7 
6.4 0.18 0.68 0.36 0.75
7 Negative Medium 
5.6 0.7 
20.2 
11.7 0.27 0.37 0.38 0.60
8 Negative Low 
0.7 0.1 
6.5 
6 0.13 0.27 0.28 0.20
9 Negative High 
5.7 0.95 
16.3 
6.1 0.12 0.43 0.35 0.60

10 Negative Medium 
1.5 0.92 
6.4 
1.8 0.15 0.44 0.29 0.90
11 Negative Low 
1.2 0.02 
12.3 
12.1 0.11 0.26 0.48 0.15
12 Negative High 
5.4 0.94 
16.8 
6.4 0.17 0.55 0.44 0.65
13 Negative Low 
2 0.05 
10.4 
9.4 0.1 0.11 0.34 0.20
14 Negative Medium 
8.8 0.6 
19.5 
15.5 0.16 0.66 0.35 0.80
15 Negative Low 
8.9 0.08 
26.3 
25.4 0.13 0.19 0.38 0.30
16 Negative Low 
7.1 0.07 
19.6 
18.7 0.12 0.34 0.33 0.25
17 Negative Low 
9.7 0.1 
24.7 
23.8 0.19 0.37 0.39 0.55
18 Negative Medium 
4 0.2 
9.3 
8.1 0.22 0.34 0.39 0.40
19 Negative Medium 
6.5 0.9 
17.5 
8.4 0.18 0.49 0.26 0.80
20 Negative Medium 
4.3 0.6 
16.1 
4.5 0.1 0.08 0.39 0.20
21 Mixed Low 2 0.1 
5.7 
4.6 0.08 0.11 0.36 0.20
22 Mixed Medium 9.6 0.91 
6.4 8.7 0.15 0.41 0.33 0.70
23 Mixed Medium 7.3 0.8 
3.6 5.6 0.12 0.39 0.33 0.70
24 Mixed Low 9.2 0.05 
9.5 
7.5 0.07 0.08 0.26 0.05
25 Mixed Low 7.4 0.02 
6.6 
6.4 0.11 0.19 0.38 0.10
26 Mixed Low 6.4 0.05 
5.3 
4.9 0.1 0.2 0.30 0.15
27 Mixed High 1.6 0.93 
8.3 1.2 0.14 0.5 0.37 0.70
28 Mixed Medium 5.9 0.8 
0.8 4.6 0.26 0.58 0.32 0.65
29 Mixed High 7.9 0.92 
2.3 7 0.14 0.51 0.30 0.65
30 Mixed Medium 3 0.91 
7.7 1.4 0.18 0.41 0.29 0.70
31 Mixed High 6.7 0.95 
1.8 6.4 0.11 0.52 0.34 0.70
32 Mixed High 6.7 0.93 
5 5.6 0.11 0.49 0.39 0.55
33 Mixed High 7.3 0.96 
8.5 6.8 0.08 0.65 0.41 0.75
34 Mixed Low 1.3 0.05 
4.3 
4.1 0.1 0.3 0.27 0.10
35 Mixed High 3 0.93 
7.2 2.2 0.11 0.44 0.27 0.55
36 Mixed Low 5 0.08 
9.1 
7.9 0.07 0.09 0.45 0.20
37 Mixed Medium 2.1 0.8 
8.4 1.3 0.23 0.28 0.39 0.35
38 Mixed Low 6.7 0.07 
6.2 
5.1 0.14 0.29 0.36 0.20
39 Mixed Medium 7.4 0.3 
8.2 
6.9 0.2 0.58 0.35 0.70
40 Mixed High 6 0.98 
1.3 5.9 0.15 0.61 0.20 0.70
41 Positive Medium 18.8 0.8 7.6 15.5 0.11 0.52 0.42 0.60
42 Positive High 17.9 0.92 7.2 17.1 0.07 0.48 0.24 0.80
43 Positive Low 22.9 0.06 9.6 9.2 0.07 0.88 0.32 0.90
44 Positive High 10 0.96 1.7 9.9 0.11 0.56 0.34 0.70
45 Positive Medium 2.8 0.8 1 2.2 0.2 0.48 0.19 0.70
46 Positive Low 17.1 0.1 6.9 8 0.12 0.32 0.44 0.20
47 Positive Low 24.3 0.04 9.7 10.6 0.13 0.25 0.31 0.20
48 Positive High 18.2 0.98 6.9 18.1 0.14 0.59 0.33 0.75
49 Positive Medium 13.4 0.5 3.8 9.9 0.13 0.13 0.35 0.45
50 Positive Low 5.8 0.04 2.7 2.8 0.16 0.35 0.35 0.20
51 Positive High 13.1 0.94 3.8 12.8 0.09 0.52 0.41 0.65

(Appendices continue)

27INTEGRATING SAMPLING AND REPEATED DECISIONS



Table B1 (continued)

Problem Domain Probability

Risky Safe Repeated-choice Sampling

H pH L M A-rate R-rate A-rate R-rate

52 Positive Low 3.5 0.09 0.1 0.5 0.12 0.26 0.29 0.25
53 Positive Low 25.7 0.1 8.1 11.5 0.09 0.11 0.35 0.25
54 Positive Low 16.5 0.01 6.9 7 0.14 0.18 0.30 0.25
55 Positive High 11.4 0.97 1.9 11 0.1 0.66 0.33 0.70
56 Positive High 26.5 0.94 8.3 25.2 0.1 0.53 0.41 0.50
57 Positive Medium 11.5 0.6 3.7 7.9 0.27 0.45 0.30 0.45
58 Positive High 20.8 0.99 8.9 20.7 0.17 0.63 0.31 0.65
59 Positive Medium 10.1 0.3 4.2 6 0.19 0.32 0.34 0.45
60 Positive High 8 0.92 0.8 7.7 0.14 0.44 0.38 0.55

Average 0.14 0.40 0.34 0.49

Note. H � high outcome; pH � high outcome with some probability; L � low outcome; M � medium outcome.

Table B2
The 60 Problems in the Competition Set With the Average Proportion of Alternations (A-rate) and the Average Proportion of Risky
Choices (R-rate) in the Repeated-Choice and Sampling Paradigms

Problem Domain Probability

Risky Safe Repeated-choice Sampling

H pH L M A-rate R-rate A-rate R-rate

1 Negative Low 
8.7 0.06 
22.8 
21.4 0.17 0.25 0.35 0.45
2 Negative Low 
2.2 0.09 
9.6 
8.7 0.17 0.27 0.31 0.15
3 Negative Low 
2 0.1 
11.2 
9.5 0.16 0.25 0.34 0.10
4 Negative Low 
1.4 0.02 
9.1 
9 0.14 0.33 0.38 0.20
5 Negative Low 
0.9 0.07 
4.8 
4.7 0.13 0.37 0.27 0.35
6 Negative High 
4.7 0.91 
18.1 
6.8 0.21 0.63 0.26 0.75
7 Negative Low 
9.7 0.06 
24.8 
24.2 0.17 0.30 0.33 0.50
8 Negative High 
5.7 0.96 
20.6 
6.4 0.17 0.66 0.33 0.65
9 Negative Low 
5.6 0.1 
19.4 
18.1 0.09 0.31 0.29 0.20

10 Negative Medium 
2.5 0.6 
5.5 
3.6 0.12 0.34 0.36 0.50
11 Negative High 
5.8 0.97 
16.4 
6.6 0.12 0.61 0.18 0.65
12 Negative Low 
7.2 0.05 
16.1 
15.6 0.09 0.25 0.20 0.40
13 Negative High 
1.8 0.93 
6.7 
2 0.11 0.44 0.25 0.55
14 Negative Medium 
6.4 0.2 
22.4 
18 0.15 0.20 0.30 0.15
15 Negative High 
3.3 0.97 
10.5 
3.2 0.1 0.16 0.27 0.10
16 Negative Medium 
9.5 0.1 
24.5 
23.5 0.12 0.39 0.41 0.70
17 Negative High 
2.2 0.92 
11.5 
3.4 0.13 0.47 0.27 0.65
18 Negative High 
1.4 0.93 
4.7 
1.7 0.09 0.41 0.22 0.55
19 Negative Medium 
8.6 0.1 
26.5 
26.3 0.18 0.49 0.27 0.60
20 Negative Low 
6.9 0.06 
20.5 
20.3 0.14 0.25 0.21 0.60
21 Mixed Medium 1.8 0.6 
4.1 1.7 0.10 0.08 0.41 0.10
22 Mixed High 9 0.97 
6.7 9.1 0.11 0.14 0.30 0.15
23 Mixed Low 5.5 0.06 
3.4 
2.6 0.15 0.28 0.27 0.20
24 Mixed High 1 0.93 
7.1 0.6 0.16 0.46 0.40 0.65
25 Mixed Medium 3 0.2 
1.3 
0.1 0.13 0.21 0.38 0.25
26 Mixed Medium 8.9 0.1 
1.4 
0.9 0.12 0.23 0.27 0.25
27 Mixed High 9.4 0.95 
6.3 8.5 0.14 0.67 0.36 0.55
28 Mixed High 3.3 0.91 
3.5 2.7 0.17 0.58 0.34 0.65
29 Mixed Medium 5 0.4 
6.9 
3.8 0.17 0.39 0.24 0.70
30 Mixed Low 2.1 0.06 
9.4 
8.4 0.12 0.33 0.28 0.30
31 Mixed Medium 0.9 0.2 
5 
5.3 0.09 0.88 0.29 0.95
32 Mixed Low 9.9 0.05 
8.7 
7.6 0.06 0.21 0.21 0.30
33 Mixed Low 7.7 0.02 
3.1 
3 0.10 0.28 0.28 0.35
34 Mixed High 2.5 0.96 
2 2.3 0.13 0.52 0.23 0.50
35 Mixed High 9.2 0.91 
0.7 8.2 0.09 0.56 0.26 0.60
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Table B2 (continued)

Problem Domain Probability

Risky Safe Repeated-choice Sampling

H pH L M A-rate R-rate A-rate R-rate

36 Mixed High 2.9 0.98 
9.4 2.9 0.23 0.34 0.27 0.35
37 Mixed Low 2.9 0.05 
6.5 
5.7 0.17 0.30 0.19 0.35
38 Mixed High 7.8 0.99 
9.3 7.6 0.09 0.62 0.26 0.75
39 Mixed Medium 6.5 0.8 
4.8 6.2 0.08 0.32 0.25 0.35
40 Mixed High 5 0.9 
3.8 4.1 0.08 0.46 0.23 0.50
41 Positive High 20.1 0.95 6.5 19.6 0.20 0.50 0.28 0.65
42 Positive Medium 5.2 0.5 1.4 5.1 0.10 0.08 0.32 0.05
43 Positive Medium 12 0.5 2.4 9 0.16 0.17 0.37 0.25
44 Positive High 20.7 0.9 9.1 19.8 0.19 0.44 0.34 0.55
45 Positive Low 8.4 0.07 1.2 1.6 0.12 0.20 0.31 0.25
46 Positive Medium 22.6 0.4 7.2 12.4 0.20 0.41 0.27 0.30
47 Positive High 23.4 0.93 7.6 22.1 0.14 0.72 0.40 0.65
48 Positive Low 17.2 0.09 5 5.9 0.12 0.24 0.42 0.50
49 Positive Medium 18.9 0.9 6.7 17.7 0.08 0.57 0.47 0.45
50 Positive Low 12.8 0.04 4.7 4.9 0.06 0.26 0.25 0.30
51 Positive Low 19.1 0.03 4.8 5.2 0.07 0.22 0.18 0.25
52 Positive High 12.3 0.91 1.3 12.1 0.12 0.41 0.36 0.35
53 Positive Medium 6.8 0.9 3 6.7 0.11 0.41 0.28 0.40
54 Positive Medium 22.6 0.3 9.2 11 0.15 0.60 0.33 0.85
55 Positive Low 6.4 0.09 0.5 1.5 0.12 0.28 0.31 0.40
56 Positive Low 15.3 0.06 5.9 7.1 0.10 0.17 0.18 0.25
57 Positive Medium 5.3 0.9 1.5 4.7 0.12 0.66 0.29 0.65
58 Positive Medium 21.9 0.5 8.1 12.6 0.10 0.47 0.30 0.80
59 Positive Medium 27.5 0.7 9.2 21.9 0.11 0.42 0.21 0.25
60 Positive Medium 4.4 0.2 0.7 1.1 0.12 0.38 0.27 0.70

Average 0.13 0.38 0.29 0.44

Note. H � high outcome; pH � high outcome with some probability; L � low outcome; M � medium outcome.
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