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Abstract 

We developed a system dynamics model for a simple, but 
important stock and flows task where the objective was to 
control the water level in a tank within an acceptable range of the 
goal, over a number of time periods, in the presence of an 
unknown environmental inflow and outflow. We also report how 
this model accounts for human behavior, using behavioral data 
we collected from human subjects in the task. This exercise 
helped us understand the strategy and mechanisms our 
participants used in the simple stock and flows task and develop 
a model on the task. The model provides an integrated 
explanation on how the variation in the parameters of the model 
affects the performance and learning for the participant’s task. 
Finally, we present the model’s validity and predictions derived 
by looking into how the human data fits different learning 
conditions.  

Keywords: Learning; Dynamic decision making; System 
dynamics model; Stock; Flows. 

Introduction 
An understanding of the building blocks of dynamic 

systems, such as stocks (accumulation), flows (rates of 
incomes and outcomes) and feedback (cause-effect 
relationships), is essential for dealing with realistic dynamic 
problems. For example, firms must manage their cash flows to 
maintain adequate stocks of working capital, and production 
must be adjusted as sales vary to maintain sufficient inventory. 
Other examples of these dynamic decision making problems 
include global warming (Sterman & Sweeney, 2002), factory 
production, demands and prices of goods (Forrester, 1961), 
and extinction of natural resources (Moxnes, 2003). 

At the individual level, each of us also faces similar stock 
management challenges: we manage our bank accounts (stock 
of funds) to maintain a reasonable balance as our incomes 
(inflows) and expenses (outflows) vary, and we struggle to 
maintain a healthy weight by managing the inflow and outflow 
of calories through diet and exercise. 

Accumulation is a pervasive process in everyday life, and 
arises at every temporal, spatial and organizational scale 
(Cronin, Gonzalez, & Sterman, under review). All stock-flow 
problems share the same underlying structure: a resource level 
(stock) accumulates its inflows less its outflows over time.  

Unfortunately, there is strong and increasing evidence of 
poor human understanding of these basic concepts of dynamic 
systems. For example, Sweeney and Sterman (2000) presented 
MIT graduate students with a paper problem concerning 
accumulation of water in a bathtub and asked them to sketch 
the path for the quantity of water in the bathtub over time, 

given the patterns for inflow and outflow of water. Despite the 
apparent simplicity of this task (due to the presence of linearity 
in the inflow and outflow), they found that only 36% of the 
students answered correctly. More recently, researchers have 
found that this misunderstanding of the concepts of flow and 
accumulation is more fundamental, a phenomenon that has 
been termed stock-flow failure (Cronin & Gonzalez, 2007; 
Cronin et al., under review). Poor performance in the 
interpretation of very simple stock and flow problems cannot 
be attributed to an inability to interpret graphs, contextual 
knowledge, motivation, or cognitive capacity (Cronin et al., 
under review). Rather, stock-flow failure is a robust 
phenomenon that appears to be difficult to overcome. 

In past research the stock-flow failure has been investigated 
through the perception and judgment of static graphs 
representing flows (Cronin et al., under review; Sterman, 
2000). Guided by the tradition of research in dynamic decision 
making (DDM), we believe that an understanding of the causes 
and cure for the stock-flow failure will arise through the 
research on human learning, where individuals can actually 
experience the flows, influence the stock with their decisions, 
and have an extended opportunity to control the dynamic 
system. 

With this goal in mind, we constructed a tool, “Dynamic 
Stock and Flows” (DSF) (Gonzalez & Dutt, submitted), that 
represents the simplest possible dynamic system containing its 
most essential elements: a single stock that represents 
accumulation (i.e., water) over time; inflows, which increase 
the level of the stock; and outflows, which decrease the level of 
the stock.  We have conducted several human experiments 
using DSF, including the investigation of environmental 
functions, the effects of feedback delays, and the timing of 
decisions, among others. 

In this paper we present the results from an initial empirical 
study aimed at determining the effects of the slope of an inflow 
on dynamic control of DSF (Dutt & Gonzalez, 2007). Then, 
we present a system dynamics model that we created to study 
the cognitive processes involved in dynamic decision making 
with DSF.  We validate the model’s results against human 
data, and present some interesting predictions that emerged 
from this model. The implications and use of system dynamics 
modeling of cognitive phenomena are discussed. 

The Dynamic Stock and Flows Task 
DSF is a generic dynamic control task that we designed to 

help understand human dynamic decision making, and more 
concretely for this paper to understand the stock-flow failure. 
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The full capabilities of DSF are described elsewhere (Gonzalez 
& Dutt, submitted), and .here we will only give a brief 
overview of the DSF capabilities relevant for the empirical 
data and modeling reported in this paper. 

The goal in DSF is to reach and maintain the level of water 
in a tank at a target level over a number of time periods. The 
level of water in the tank is the stock that increases with the 
inflows and decreases with the outflows. There are two types 
of inflows and outflows in this task: those that are exogenous 
(outside of the decision maker’s control) and those endogenous 
(under the decision maker’s control). The exogenous flows are 
called Environmental Inflow (that increases the level of the 
stock without the user’s control) and the Environmental 
Outflow (that decreases the level of stock without user’s 
control). The endogenous flows are User’s Inflow and 
Outflow. These amounts are the main decisions made by the 
user in each time period that increase (user inflow) or decrease 
(user outflow) the level of the stock. 

Figure 1 presents the graphical user interface of DSF. At 
each time period users see the values of Environment Inflow 
and Outflow, values of User Inflow and Outflow, the amount 
of water in the tank (stock) and the goal level. At each time 
period, users can submit two values (including zero): User 
Inflow and User Outflow, and click in the submit button. Users 
may also receive a ‘bonus’ performance monetary incentive in 
each time period in which they were close enough to the target 
level. 
 

 
Figure 1: A screenshot of the Dynamic Stock and Flows 

(DSF) task. 

The Slope Effect 
In dynamic decision making, it has been observed that people 
may detect linear, positive correlations given enough trials 
with outcome feedback. However, people have difficulty when 
there is random error or non-linearity and negative correlations 
(Brehmer, 1980). As part of the stock-flow failure studies we 
have also observed that people have difficulty understanding 
the effects that increasing or decreasing trends of inflow and 
outflow have on controlling a stock (Gonzalez and Vanyukov, 
in preparation).  

In a laboratory study we investigated how individuals 
controlled DSF over 100 time periods of practice when the 
environmental inflow increased (positive slope) or decreased 

(negative slope) as a function of time period (Dutt & Gonzalez, 
submitted). 

Participants played DSF for 100 time periods with the 
objective of maintaining the tank’s water level at the 4 gallon 
goal line (within +/- 0.1 gallons). In experiment 1, we used an 
Environment Inflow function that was either increasing: 0.08 * 
(timeperiod) + 2 or decreasing: (-7.92/99) * (timeperiod-1) + 
10. Environment Outflow was constant and set at 0 
gallons/time period during all 100 time periods. Both the 
increasing and decreasing functions resulted in an equal 
amount of environmental net flow into the tank over the course 
of 100 time periods (604 gallons).  

Results showed that the stock was higher for the decreasing 
function condition (M = 5.909, SE = .205) than the increasing 
function condition (M = 4.297, SE = .027) (F(1,31)=12.71, 
p<.001). The analyses also indicated that the participants’ 
inflow, outflow and stock diminished significantly over time in 
both conditions (i.e., subjects learned to control the system) 
(F(1,31)=9.894, p<.001); and the decrease of the participants’ 
outflow and stock interacted with the slope of the 
Environmental Inflow function (F(1,31)=7.031, p<.001) 
(Figure 2 illustrates the interaction on the stock measure). 

 
Figure 2: The stock for increasing and decreasing linear 
Environment Inflow curve conditions over 100 time periods. 

 
In experiment 2, we used a non-linear environment inflow 
function that was again either increasing: 5*LOG (timeperiod) 
or decreasing: 5*LOG (101- timeperiod). Outflow was 
constant and set at 0 gallons/time period during all 100 time 
periods. Both the increasing and decreasing functions resulted 
in an equal amount of environmental net flow into the tank 
over the course of 100 time periods (831 gallons). 

Results again showed that the user outflows follow the 
Environment Inflow functions quite closely. The user inflow 
and stock indicate that most variability occurred during the 
first half of the trials, where the decreasing (negative slope) 
function result in higher inflow and higher stock levels than 
the increasing (positive slope) function. No difference between 
the increasing and decreasing functions is observed for the last 
50 trials of the experiment in the user inflow and stock results. 
An analysis of the first 50 trials indicated that the stock was on 
average higher in the decreasing (M = 7.938, SE = .419) than 
in the increasing condition (M = 4.757, SE = .143) (F(1,30) = 
6.49, p<.05). The same analyses for the last 50 trials of the 
experiment did not show a difference between the increasing 
and decreasing functions for inflow and stock variables. A 
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significant difference was found only for the user outflow 
(F(1,31) = 85.334, p<.001) where the outflow was higher for 
the increasing (M = 9.543, SE = .081) than the decreasing (M 
=7.067, SE = .195) function. Once again, the decrease of the 
user outflow and stock interacted with the slope of the 
environmental inflow function; (Figure 3 illustrates the 
interaction on the stock measure). 

 
Figure 3: The nature of stock for increasing and decreasing 
Environment Inflow in non-linear curve slopes over 100 time 
periods. 

System Dynamics Model 
System dynamics (SD) is a field that was created by Jay W. 

Forrester at MIT in the late 1950s and it involves a modeling 
approach using computer simulations (see Forrester, 1990 for 
an historical view of the field; Lane, 2000 for a discussion on 
the modeling approach).  

A model in SD involves at its essence the concept of a 
feedback loop: the collection of information about the system 
state followed by an action that changes the state of the system 
(Lane, 2000). These causal links involve delays and non-
linearities as well as processes of accumulation (stocks) and 
flows. 

SD modeling has largely focused on the representation of 
social systems and their evolution over time. In fact, it has 
been argued that SD is concerned with aggregate social 
phenomena, not with individual meaningful actions (Lane, 
2000).. In this paper we use SD modeling to represent and 
reproduce the dynamics of individual human behavior found in 
DSF. We also construct a cognitive interpretation of the SD 
model, something uncommon in the SD field. 

A SD model was developed using Vensim®, an open source 
modeling software by Ventana Systems Inc. The software has 
a flexible GUI that provides easy capability to the modeler to 
represent stocks, define the stocks’ inflows and outflows and 
define their causal relationships. Although the conventions for 
representing stocks and flows followed in Vensim® are well 
known and documented in the SD literature (Forrester, 1961; 
Sterman, 2000) we discuss only some of the many software 
features that we used for our model of learning and the slope 
effect. These features are fixed time delay and smoothing.  

The function defined in Vensim® as DELAY FIXED (X, T, 
I) creates a delay of T time periods in an input X with the 
initial value I of the variable used on the left hand side of the 

function. In our model we use DELAY FIXED to create a unit 
time delay in the environment inflow at each time period. This 
is because participants in our DSF task are aware of the 
environment inflow value for a time period only at the end of 
that time period.  

Smoothing is defined in Vensim® as SMOOTH (X, T) and 
SMOOTHI (X, T, I) and creates an exponential smoothing of 
T time periods in an input X with I as the initial value of the 
variable used on the left hand side of the function. If X is a 
step function which jumps to a new value X’ at a time instance 
t, then the SMOOTH of X will start from X and approach the 
value X’ over a long range of time periods. The greater the 
value of T the more time SMOOTH of X takes to approach X’. 
This smoothing effect of time averages to represent 
expectations is similar to blending parameters used in learning 
models of dynamic decision making under the ACT-R 
cognitive modeling approach (Gonzalez, Lerch, & Lebiere, 
2003). In our SD model, we used a smoothing effect to account 
for the gradual correction of a discrepancy made by 
participants. 

A System Dynamics Model of the Slope Effect in 
DSF 

To help develop this model, we used our observations from 
verbal protocols collected from four participants (Dutt & 
Gonzalez, 2007). We also used human data analyses of inflow 
and outflow decisions and their resulting stock; the averages of 
individuals’ decisions for each of the conditions; and 
comparisons of the participants’ inflow and outflow decisions 
to the stock and environmental flow values. 

Based on these observations and empirical data analyses, we 
developed the SD model shown in Figure 4. The system 
essentially consists of 2 inputs (User Inflow and 
Environmental Inflow) that increase the stock and 2 outputs 
(User Outflow and Environmental Outflow) that decrease the 
stock. 

The behavior is represented by causal loops described in the 
model. The Environmental Inflow and Outflow are perceived 
by the participants. The perception may be different from the 
reality, as determined by the Environment perception (EP) 
parameter. Then, the perceived environment netflow is used to 
forecast the future flow under a Forecast Horizon (FH). This 
forecast together with the perceived current discrepancy 
between the stock and the goal are used to determine the 
netflow correction. This correction is to account for the 
increase in discrepancy over the perceived time for correction 
(PTC) smoothed over the memory of discrepancy (MD). Then, 
according to the determined user netflow correction the user 
inflow and outflow are entered by the user. Over the course of 
practice, Users modify the weight they put to inflows and 
outflows and in general, the empirical data demonstrated that 
individuals end up realizing that they only need to enter the 
User Outflow to control for the Environmental Inflow (W=1). 

The user net flow correction variable in our model (Figure 4) 
serves as the main decision function for user inflows and 
outflows and consists of two parts, discrepancy and forecast of 
flow. The user net flow correction is given by the procedure: If 
the discrepancy is beyond an acceptable threshold (.1 above or 
below the goal), then, attempt to correct for such discrepancy 
little by little, by smoothing the discrepancy over the perceived 
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time for correction (PTC), and according to the memory of 
discrepancy (MD). Then, add to this smoothed discrepancy 
value, the value of the forecasted flow. 

Discrepancy is the difference between the goal and stock. 
The forecast of flow is defined as per the formula: SMOOTH 
(Perceived Environment Net flow, "Forecast Horizon (FH)") 
where the Perceived Environment Net flow is a fixed unit 
delay function of environment inflows and outflows (Vensim® 
formula: DELAY FIXED ("Environment's Perception 
(EP)"*(Env Inflow – Env Ouflow), 1, 0). 

Hence, the discrepancy over PTC is smoothed by MD and 
only adds to user net flow correction if the discrepancy is 
above or below the acceptable range of stock in the tank, else 
its affect to user net flow correction is zero. The perceived 
environment net flow is smoothed by parameter FH to makeup 
the forecast of flow. The environment inflow and outflow act 
on the stock each time period, with a subject becoming aware 
of actual values only at the end of that time period. This 
requirement is realized in our model by using a fixed unit 
delay as shown in the formula of perceived environment net 
flow. Participants’ accuracy to perceive the environment’s 
inflow and outflow affect is represented by the multiplier EP 
also present in the delay formula. 

As experiment 1 consisted of a linear environment function 
and experiment 2 consisted of a non-linear environment 
function we simulated our Vensim® model twice over a course 
of 100 time periods, once for getting model data for fit to 
experiment 1’s subject data and a second time for getting 
model data for fit to experiment 2’s subject data. During the 
course of each of the two simulation runs, we varied the values 
of FH, PTC, MD and W with an increment of 0.05 each. 
Although each of these parameters could take infinitely many 
values, their chosen values were inspired from results on 
experiments 1 and 2 and the availability of human data from 
both experiments. 

Stock

+

Discrepancy

Goal

User Inflow

Env Inflow Env Ouflow

User Outflow

Perceived Environment
Net flow

+

Forecast of flow

-

+

Forecast
Horizon(FH)

+

User Net flow
Correction

+

+

-+

Perceived Time for
Correction(PTC) +

Memory of
Discrepancy(MD)

+

User correction weight to
Inflow and Outflow(W)

- +

Environment's
Perception (EP)

+

 
Figure 4: Stock and Flows Model of DSF task. 

Fit of Model and Human Data 
Based on the results from both experiments, we expected 

that the parameters of the model, the environment perception 
(EP), the forecast horizon (FH), the perceived time for 
correction (PTC), the memory for discrepancy (MD), and the 
correction for inflow-outflow (W), would be different for the 
positive and the negative slope conditions. 

We went through a process of parameter tuning and 
sensitivity analysis and were guided by our results and 
expectations, while measuring the fit of the model’s data to the 
humans’ mean and median values over the course of 100 trials, 
using the r and RMSD statistics (Schunn & Wallach, 2001). 
The resulting parameter values and data fit statistics for our 
data from experiments 1 and 2 are summarized in Table 1. The 
same model depicted in Figure 4 was used to fit the data of the 
four different data groups from experiments 1 and 2. The value 
of the parameters summarized in Table 1 help provide a 
coherent explanation for the different human behavior found 
between the positive and negative slopes. 

 
Table 1: The value of model parameters and the resulting fit 
to human data (measured against both, the median and the 

mean) for each of the 4 groups in the 2 experiments (Linear 
positive and negative; Non-linear positive and negative) for the 

stock as dependent variable. 
 

 
 
Some general observations from results shown in Table 1 

are: PTC and FH parameter values are higher in the negative 
than in the positive functions; the model fits the linear 
functions better than the non-linear functions; and the model 
data fit the median of the human data better than the mean. 
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Figure 5: Graphs and parameter values for model’s fit to stock. 

Figure 5 is a graphical example of the fitting of stock data 
for the linear and non-linear, positive and negative slopes’ 
functions as a result of our analysis and parameter tuning. 

Greater FH value means that participants takes more time to 
forecast the environment inflow value, and this extra time 
causes the stock to increase due to the environment inflow, 
which drives the stock away in each time period. Similarly, 
greater PTC value means that participants take more time to 
perceive the discrepancy happening in the tank and hence also 
take more time to correct the discrepancy; this extra time 
causes the stock to rise again due to environment inflow into 
the stock with each elapsing time period. To meet the higher 
stocks, participants order higher user inflows and outflows, 
causing user inflow and user outflow values to rise as well. 
When we fit our model to the negative-sloped environment 
inflow cases, we see that increasing FH and PTC generates a 
good fit for the human data. This increase in FH and PTC in 
our model causes the stock to rise higher (due to the 
environment inflow action and slower corrective action), 
causing the discrepancy to increase further and hence, the user 
net flow correction to increase further. The user net flow 
correction is further increased by the forecast for net flow, 
which now happens over a larger time period range (due to FH 
increase, where there are increased environment inflows over 
this larger time range). The increase in user net flow correction 
as described above causes higher user inflow and user outflow 
in our models, where the user inflow and user outflow are 
derived from the user net flow correction and weighted by the 
user correction weight to inflows and outflows (W). The fact 
that the model’s data fits the median of human data more 
closely than the mean is a reflection of the deterministic nature 
of SD models in general that fail to account for the variability 
of human performance, as they are deterministic models. 

Model Predictions 
From the results on linear and non-linear environmental 
curves, we find that a negative slope in the environment inflow 
produces higher stock, user inflow and user outflow as well as 
higher variability in stock, user inflow and user outflow, 
particularly in the first 50 time periods (this is also the time 
when subjects are learning to control the stock in DSF). 

If the parameters that we have proposed in our model and 
their fit to human data can have a cognitive interpretation as 

we presented in the previous section, then there are some 
interesting questions we could answer by looking into model 
fitting more deeply. 

Specifically, we are interested in determining how human 
data from each of the collected groups: Linear Positive (L+), 
Linear Negative (L-), Non-linear Positive (NL +), and Non-
linear Negative (NL -) would fit to the model’s data from the 
other groups. For example, we test how human data in L+ fits 
to the model’s data from L-, NL+, and NL- groups by looking 
at the difference between the r values (measures of fit) between 
equivalent groups from the model’s data and the comparison 
group. 

For this fit exercise, we found the mean and median of our 
human data for both experiments 1 and 2 under different 
conditions, L+, L-, NL+ and NL-. We already have our fits and 
model parameters calculated as a result of parameter tuning 
and sensitivity analysis to the mean and median of human data 
under L+, L-, NL+ and NL- conditions as mentioned in Table 
1. We took the model parameters under the NL- condition and 
fit the model data due to these parameters to the mean of 
human data under the L- condition. Similarly we took the 
model parameters under L- condition and fit the model data 
due to these parameters to the mean of human data under the 
NL- condition. We did a similar exercise for L+ to NL+ and 
NL+ to L+. This process helps us to foresee the mapping of 
our model’s cognitive parameters to different experimental 
conditions as measured by model fits, i.e. how different values 
of cognitive parameters EP, FH, PTC, MD and W perform 
under different experimental conditions. This mapping 
exercise can help us predict how the model experiencing a 
linear inflow would behave when put into a non-linear inflow 
and vice-versa. For example, from a managerial perspective a 
firm may suddenly face non-linear changes in demand after 
operating under a constant (linear) demand (Paich & Sterman, 
1993). In addition, the knowledge gained from this cross fitting 
exercise helps us understand the nature of underlying task 
situations involved, task complexity as it would possibly be 
experienced by the decision makers. 

The results from fitting model’s parameters on linear 
environment inflow to non-linear environment inflow and 
vice-versa are tabulated in Table 2. The r values given in 
Tables 1 and 2 provide results for the mean stock in DSF. 

The results show that r(NL- to L-) > r(L-), r(L- to NL-) < 
r(NL-) and r(NL- to L-) > r(L- to NL-). Also from Tables 1 
and 2, similar results hold for the positive slope environment 
inflow cases for both the linear and non-linear curve types. 
This means r(NL+ to L+) > r(L+), r(L+ to NL+) < NL+ and 
r(NL+ to L+ > L+ to NL+. 

 
Table 2: Values of correlation coefficients for model 

predictions on linear and non-linear positive and negative 
sloped environment inflow for stock mean. 
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These cross fit results indicate the r value diminishes from 

linear to non-linear curves but increases from non-linear to 
linear inflows. This is, the non-linear conditions are more 
difficult to fit than the linear condition. 

Similar results were reported on the human data collected 
from both experiments 1 and 2 earlier, where subjects’ 
performance was poorer in the non-linear environment inflow 
DSF task when compared to performance in the linear 
environment inflow DSF task. These similarities between the 
nature of DSF model and the DSF human data also further 
support the choice of the model’s parameters. 

Conclusions 
Stock-flow failure is a phenomenon representing the poor 
interpretation of very simple problems involving accumulation 
over time by flows (Cronin & Gonzalez, 2007). In this paper 
we investigated one possible explanation for the stock-flow 
failure and that is the increased difficulty for controlling 
systems with decreasing more so than increasing inflows. We 
investigated this simple failure in a Dynamic Stock and Flows 
(DSF) task. We found that participants yielded greater quantity 
of stock, inflows and outflows and more variability in them for 
negative slope (decreasing) environment inflow conditions 
when compared with the quantity and the variability in stock 
inflows and outflows for the positive slope (increasing) 
environment inflow conditions. 

We explain these results through a system dynamics model 
that helps derive differences in human behavior due to slopes 
of environment inflow. The constructed model and its fit 
revealed minimize of a number of human cognitive parameters 
in the dynamic task which makes us think that similar 
cognitive parameters would constitute many such simple 
dynamic stocks and flows tasks which are important in our day 
to day lives (our bank accounts to our weight gain and loss 
processes to name a few) where the understanding of such 
parameters would be helpful in overcoming the difficulties that 
most of us face while encountering them.  

Acknowledgments 
This research was partially supported by the National Science 
Foundation (Human and Social Dynamics: Decision, Risk, and 
Uncertainty, Award number: 0624228) and by the Army 
Research Laboratory (DAAD19-01-2-0009) awards to 
Cleotilde Gonzalez. 

References 
Brehmer, B. (1980). In one word: Not from experience. Acta 

Psychologica, 45, 223-241. 

Cronin, M., & Gonzalez, C. (in press). Understanding the 
building blocks of system dynamics. System 
Dynamics Review. 

Cronin, M., Gonzalez, C., & Sterman, J. D. (under review). 
Why don't well-educated adults understand 
accumulation? A challenge to researchers, educators 
and citizens. 

Dutt, V., & Gonzalez, C. (2007). Slope of inflow impacts 
dynamic decision making. 

Forrester, J. W. (1961). Industrial dynamics. Waltham, MA: 
Pegasus Communications. 

Forrester, J. W. (1990). The Beginning of System Dynamics. 
Boston, MA: The Sloan School of Management, MIT. 

Gonzalez, C., & Dutt, V. (submitted). A generic dynamic 
control system for management education. 

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cognitive 
Science, 27(4), 591-635. 

Lane, D. C. (2000). Should system dynamics be described as a 
'hard' or 'deterministic' systems approach? Systems 
Research and Behavioral Science, 17, 3-22. 

Moxnes, E. (2003). Misperceptions of basic dynamics: The 
case of renewable resource management. System 
Dynamics Review, 20, 139-162. 

Paich, M., & Sterman, J. D. (1993). Boom, bust and failures to 
learn in experimental markets. Management Science, 
39(12), 1439-1458. 

Schunn, C. D., & Wallach, D. (2001). Evaluating goodness-of-
fit in comparison of models to data. University of 
Pittsburgh. 

Sterman, J. D. (2000). Learning in and about complex systems. 
Reflections: The SoL Journal, 1(3), 24-51. 

Sterman, J. D., & Sweeney, L. B. (2002). Cloudy skies: 
Assessing public understanding of global warming. 
System Dynamics Review, 18(2), 207-240. 

Sweeney, L. B., & Sterman, J. D. (2000). Bathtub dynamics: 
initial results of a systems thinking inventory. System 
Dynamics Review, 16(4), 249-286. 

 
 

66


