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Abstract 

It has been proposed that decision makers often misperceive 
the feedback provided by dynamically complex environments, 
and some have questioned whether people are capable of 
learning effective decision-making in such environments. 
Indeed, some (e.g., Sterman,1989) researchers believe that 
humans simply do not possess the “cognitive machinery” that 
allow them to deal with dynamic situations. In two 
experiments, we studied learning behavior in a well-known 
dynamic environment called the beer game. Contrary to 
previous findings, we found that performance significantly 
improved through repeated practice. In the first experiment, 
concurrent verbal reports indicated that performance 
improved through better utilization of critical information. 
Subjects also learned to engage in better future planning by 
anticipating changes in the system. In the second experiment, 
we provided only information that was critical for their 
decisions and found that initial performance was significantly 
better, indicating faster learning. It is concluded poor 
utilization of critical information and insufficient future 
planning are the major factors for learning in dynamic 
decision making.    

Introduction 
Recent research on decision making has shed significant 

light on human behavior in a variety of microeconomic 
contexts. Despite its success of explaining behavior in static 
and discrete decisions or judgments, relatively little work 
has been done to study decision behavior in dynamic 
contexts. One of the characteristics of dynamic contexts is 
that actions of the decision maker often cause, either 
directly or indirectly, changes in the system itself, which 
then affect the effects of future actions. For example, a 
firm’s decision to increase production feeds back through 
the market to influence the demand and price of goods; 
greater output may also tighten the markets for labor and 
raw materials to which competitors may react – all 
influencing future production decisions. Such multiple 
feedbacks, some of them with time delays, are arguably the 
norm rather than the exception in real problems of decision 
making.  

Behavioral research on dynamic decision making shows 
surprisingly poor performance, sometimes even with 
practice (e.g., Berry & Broadbent, 1984; Brehmer, 1992; 
Jensen & Brehmer, 2003; Kerstholt & Raaijmakers, 1997; 

Sterman, 1989). One possible reason for the poor 
performance is the individuals’ inability to incorporate 
delayed feedback into their decisions. In particular, people 
often fail to account for actions which had been initiated but 
not yet had their effects. In addition, people often attribute 
the dynamics they experience to external events, when in 
fact these dynamics are internally generated by their own 
actions. This “open-loop” mental model (Sterman, 1989) is 
believed to hinder learning of the temporal dynamics of 
complex systems. The poor performance has led Sterman to 
adopt the pessimistic view that humans simply do not have 
the cognitive machinery to understand the temporal 
dynamics in complex systems. 

This paper applies techniques in cognitive psychology to 
study decision making behavior in a dynamic task. We 
chose to study subjects’ behavior in a simulated supply 
chain management system. Supply chain management is a 
common and simple concept: your customer orders products 
from you; you keep track of what you're selling, you order 
enough raw materials from your suppliers to meet your 
customers' demand and keep your inventory and backorders 
as low as possible. Although the concept is simple, the 
dynamics of the input-output relationship in the whole 
supply chain have known to cause significant difficulties for 
people to perform optimally (e.g., Croson & Donohue, 
2002). Coordination and communication between suppliers, 
manufactures, and wholesalers is often considered the main 
difficulty in supply chain management (Croson and 
Donohue, 2000). However, our focus in this paper is on the 
psychology of decision making that emerge from individual 
behavior. 

Misperception of feedback 
In its strongest form, the misperception of feedback 

hypothesis implies that people simply cannot learn to 
control dynamically complex systems. Indeed, researchers 
often demonstrate that individuals cannot understand the 
‘basic building blocks’ of systems thinking such as the 
concept of stocks and flows (e.g., Sweeney & Sterman, 
2000; Cronin & Gonzalez, 2005). This position however, 
cannot explain how experts in the real world can perform 
effectively in highly complex dynamic systems such as air 
traffic control. 



A possibility we address here is that although people may 
not understand the building blocks of dynamic systems, 
extended practice may help individuals learn to control a 
dynamic system because it gives them the opportunity to 
learn the relationships between control inputs and system 
outputs, utilize relevant information that will affect their 
performance and dynamics of the system, and how to 
engage in future planning to anticipate common situations 
(Kerstholt and Raaijmakers, 1997).  

In previous research we provided evidence that people 
can learn to adequately control a supply chain system when 
given extended practice (Martin, Gonzalez, Lebiere, 2004). 
Further, we developed a cognitive model of the learning 
process that explains how people learn to control the system 
by using instance-based learning and partial matching 
mechanisms to retrieve the most useful actions from past 
experience (Gonzalez, Lerch, and Lebiere, 2003). Yet, many 
questions remained from that initial research. For example, 
it is not clear whether individuals improved their 
performance in the task because they worked in a ‘fixed’ 
scenario, meaning a fixed pattern of external customer 
demand. 

We focus on two questions related to the learning of 
temporal dynamics: (1) what information do people utilize 
to make decisions in a dynamic situation, and how do they 
change with experience, and (2) what are the major 
differences in terms of strategies or processes when we 
compare learning behavior between a static and a dynamic 
situation. To preview our results, we found that people 
tended to ignore the temporal dynamics initially, and as a 
consequence failed to utilize information that indirectly 
influenced the outcome of their decisions. In addition, we 
found that future planning was essential to anticipate 
changes as well as outcomes of actions in dynamic systems, 
and it often took a significant amount of experience for 
people to learn to engage in future planning. 

Supply Chain Management: The Beer Game 
We collected empirical data from individuals as they 

performed a supply chain management task called the “Beer 
Game” (Sterman, 1989). The beer game represents a 
simplified supply chain consisting of a single retailer who 
supplies beer to a consumer (simulated as an external 
demand function), a single wholesaler who supplies beer to 
a retailer, a distributor who supplies the wholesaler, and a 
factory that brews the beer (it obtains it from an 
inexhaustible external supply) and supplies the distributor. 
We developed a computerized version of the beer game that 
was used in all the experiments reported in this paper. A 
screenshot of this simulation is presented in Figure 1. 

In the original version of the game, individuals play the 
game in groups of four, with each participant playing the 
role of one of the four facilities. Their goal is to minimize 
the cost for the entire supply chain. Each player contributes 
to this goal by ordering beer from their respective supplier 
in a manner that maintains enough beer in their respective 
inventory to meet the demand from their respective 

customer (i.e., the facility they supply, or the consumer in 
the case of the retailer). 

The customer’s order is filled with available inventory, 
and then the player orders more beer from their supplier to 
replenish the loss from their inventory. Difficulties arise 
when players must anticipate demand, as there is a one-
week delay between when an order is placed and when the 
supplier receives the order. Assuming that the supplier has 
enough inventories, there is an additional two-week 
transportation delay before the player receives the ordered 
beer. If the supplier’s inventory is too small to fill the order, 
additional delays will occur. 

Costs accrue as follows. Each week, each player is 
charged a 50¢ holding fee for each case of beer in their 
inventory. If inventory is too small to meet demand, the 
shortage is backlogged to be filled as soon as possible. 
Players are charged a weekly $1 shortage fee for each case 
of backordered beer. The basic strategy, therefore, is to 
minimize inventory while avoiding backorders. The 
dynamics of the beer game make successful performance 
difficult.  

 

 
Figure 1.A screenshot of the beer game simulation. 

The Temporal Dynamics in the Beer Game 
Figure 2 shows the simplified temporal dynamics 

involved in the beer game when the player is deciding on 
how much to order from the factory (i.e., the player works 
as the distributor). Once the order is placed, it will go to the 
factory, but there is a one-week delay (i.e., the “recent 
order” box) before it reaches the factory. When the factory 
sends out the beer, it will be in the supply line (i.e., the 
arrows and the trucks between the Factory and the 
Distributor in Figure 1) and it takes two weeks before the 
beer can be used to satisfy the demand from the wholesaler. 
The current inventory (if any) or backorder will be updated 
after beer is sent to the wholesaler.  

In the experiments reported here, subjects played the role 
of the distributor, and decided how much to order from the 
factory. The order took one week to reach the factory. After 
the order was received, the factory sent the beer to the 



distributor, which took 2 weeks. The dotted arrow indicates 
a common misperception, that the order placed would 
directly influence the inventory/backorder without delay, 
ignoring the temporal dynamics in the system. 
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Figure 2. The simplified temporal dynamics in the beer 
game. 

The retailer, wholesaler and factory were played by the 
same computer algorithm, which ordered the demand 
associated to the position. Thus, variability was not added to 
the external customer demand as it propagated upstream 
through the supply chain. 

Previous studies show that people tended to under-weigh 
the supply line, which eventually led to large fluctuations in 
inventories (Sterman, 1989; Croson & Donohue, 2002). In 
other words, instead of developing the mental model as 
shown in Figure 22, people tend to assume a direct 
influence from the order to the inventory/backorder (i.e., the 
dotted arrow in Figure 22), instead of the delayed influence 
through the factory and the supply line. The underweighting 
of the supply line seems to be persistent and robust across 
participants. Surprisingly, although the underweighting of 
the supply line was identified as the major reason of poor 
performance in supply chain management, there is, to our 
knowledge, still no good understanding of why this 
underweighting occurs.  
The Bullwhip Effect  

The bullwhip effect is a real-world phenomenon that 
involves oscillations of net inventory (i.e., inventory – 
backorders) at each level of the supply chain and 
amplification of those oscillations as one moves farther up 
the chain (Croson and Donohue, 2002). The amplification 
and oscillations are very costly, but unfortunately the 
bullwhip effect is very common and it has been treated as an 
inevitable effect of every supply chain. 

In multiple experiments Sterman (1989, 2004) has 
demonstrated the bullwhip effect in the laboratory, using the 
beer game. Analyzing individual behavior he has concluded 
that individuals do not learn to control the system because 
they often fail to account adequately for the supply line 
(they misperceive the feedback provided by dynamic 
systems). Thus, in responding to high demand, players 
increase their orders too much leading to excess inventory.  

Researchers have identified several causes for the 
bullwhip effect. Rational decision makers must use current 
demand to forecast future demand in an effort to control the 
impact of order delays, transport delays, production delays, 
etc. on inventory. Forecasts based on simple ordering 
formulae (e.g., moving averages) lead to the bullwhip effect. 

Ordering in batches (e.g., monthly instead of daily) can also 
create the bullwhip effect. Other causes include fluctuating 
prices which lead to forward buying, and rationing where 
suppliers divide limited inventory among customers who 
then inflate their orders to get a bigger share (Croson & 
Donohue, 2002). 

The Beer Game is much simpler than real world supply 
chains. Since prices are fixed players have no incentive for 
forward buying. The frequency with which orders are placed 
is fixed at one per week. This prevents order batching. Each 
facility in the supply chain has only one customer. Thus 
rationing is not possible. In addition, in the scenario 
commonly used in the beer game experiments, external 
consumer demand starts at a constant of 4 cases of beer per 
week and then jumps to a constant of 8 cases per week at the 
fifth week and remains there for the remainder of what is 
typically a 52 week scenario. 

Experiment 1 
Our experiment required playing the beer game for 20 

trials, where each trial used the standard 52-week scenario. 
The experiment, therefore, required a total of 1,040 ordering 
decisions in contrast to the typical single-trial experiment 
that requires a one-time run of 52 weeks and thus 52 
ordering decisions. 

Method 
20 subjects were recruited from the Carnegie Mellon 

University community. Subjects were paid $15 for their 
participation. 

To familiarize subjects with the system they played a 
short 20-week training scenario with a constant demand 
increase from 4 to 8 at week 5. The purpose of the training 
scenario was to illustrate how to order from the factory and 
how the inventory and backorder were calculated as they 
progressed. All other questions are also answered during 
this time. To stimulate active learning and to encourage 
subjects to aim at reducing the total cost, subjects were 
required to keep the inventory and backorder below 20, and 
the total cost below 100. If subjects failed to meet any of 
these criteria, they were asked to repeat the training 
scenario. Subjects repeated the training scenario 3.4 times 
on average. 

After finishing the training scenario, subjects played the 
standard 52-week scenario for 20 trials. In a standard 
scenario, the demand from the wholesaler started at 4, 
increased to 8, back to 4, decreased to 2, and then went back 
to 4 and stayed there until the end of the trial. The weeks at 
which the demand change occurred were noisy, so that 
across trials, subjects could not simply recall when the 
changes would occur. Specifically, an integer was randomly 
selected from the range from -2 to +2 and the selected 
integer was added to the weeks when changes occurred.  

To understand changes in performance with practice, 
concurrent verbal protocols were collected from half of the 
subjects during trial 1, 11, and 20. Subjects were asked to 
“think aloud” when they were playing the games in these 
trials. They were specifically told to mention all information 



they were utilizing on the screen as well as in memory, all 
mental calculations, and all reasoning that they used during 
the task. All verbal utterances, the screen, and their actions 
were recorded as “movie” files by a computer program.  

Results 
Figure 3 shows the mean net inventory of the subjects in 

trial 1, 11, and 20. Subjects in trial 1 had large fluctuations 
in their net inventory. The largest fluctuation was near week 
20, where the demand was decreased from 8 to 4 for the first 
time, and then further decreased to 2 in week 30. The 
inventory peaked at approximately 30 in trial 1, but the peak 
was reduced to approximately 10 in trial 11. In trial 20, the 
peak was further reduced to below 5 throughout the weeks. 
The mean total cost after 52 weeks was 372.35, 152.54, and 
91.01 for trial 1, 11, and 20 respectively. A two-tailed 
paired t-test shows that all the differences were significant 
(t(10)=56.23, p<0.001), indicating learning across trials. 
Since the cost for inventory was lower than that for 
backorder, there was a bias towards keeping an inventory, as 
shown in Figure 3. 

Experiment 1
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Figure 3. The demand and the mean net inventory in trial 1, 
11, and 20 in Experiment 1. 

 
The verbal protocols were transcribed and coded 

according to what information was used to determine the 
order to the factory. We found that they fell into 8 
categories: Inventory/Backorder, recent order, total cost (of 
distributor), supply line, demand for the distributor 
(demand_distributor), demand for the retailer 
(demand_retailer), demand for others (demand_others), and 
inventory and backorder for others (inventory_others). We 
also noted instances where subjects explicitly expressed 
future planning or prediction. For example, as when subjects 
expressed things of the kind “I know that the demand is 
going to increase in a few weeks”. The coding results from 
the verbal protocols are shown in Table 1.  

Table 1 shows that in trial 1, subjects were mostly 
utilizing the demand from the wholesaler (i.e., 
demand_distributor), and their own inventories and/or 
backorders, and relatively under-utilized the supply line, 
and the demand to the retailer. This is consistent with 

previous findings (e.g., Sterman, 1989) that subjects tended 
to ignore the temporal dynamics of the system and 
attempted to find direct, immediate feedback between 
actions and their effects. In this case, subjects almost 
ignored the fact that to reduce the inventories/backorders, 
the supply line was as important as the current demand and 
the inventory/backorder. The fact that they under-utilized 
the demand to the retailer suggested that they were not 
looking ahead to how demand might have changed in the 
near future. In fact, we believe the high fluctuations shown 
in Figure 3 could be well explained by this lack of future 
planning in the first trial. 

Table 1. The mean frequencies of use of information for 
each order to the factory in trial 1, 11, and 20. 

Categories Trial 1 Trial 11 Trial 20 
Future planning 0.5 4 7 
Demand_distributor 17.9 13.5 8 
Supply Line 2.1 5.2 6.6 
Demand_retailer 0.6 4.3 5.2 
Inventory/Backorder 16.9 9.8 5.3 
Total cost 1.1 0.2 0.1 
Recent orders 2 0.4 0 
Demand_others 0.8 0 0 
Inventory_others 2 0.2 0 

 
With practice, we found it striking that subject started to 

increasingly utilize the supply line and the demand to the 
retailer, and they had also learned to have more future 
planning, suggesting that they were adapting to the temporal 
dynamics of the system. They had also reduced the 
utilization of the demand from the wholesaler and the 
inventories/backorders. The utilization of other “irrelevant” 
information, such as the demand and inventories to others 
(e.g., the wholesaler or factory), were also reduced. All 
these changes were statistically significant, as shown by 
simple t-tests (t(10)=20.1, p<0.05). 

Figure 3 shows the mean net inventory of the subjects in 
trial 1, 11, and 20. Subjects in trial 1 had large fluctuations 
in their net inventory. The largest fluctuation was near week 
20, where the demand was decreased from 8 to 4 for the first 
time, and then further decreased to 2 in week 30. The 
inventory peaked at approximately 30 in trial 1, but the peak 
was reduced to approximately 10 in trial 11. In trial 20, the 
peak was further reduced to below 5 throughout the weeks. 
The mean total cost after 52 weeks was 372.35, 152.54, and 
91.01 for trial 1, 11, and 20 respectively. A two-tailed 
paired t-test shows that all the differences between the trials 
were significant (t(10)=78.21, p<0.001), indicating learning 
across trials. Since the cost for inventory was lower than 
that for backorder, there was a bias towards keeping an 
inventory, as shown in Figure 3. 

The results from Experiment 1 showed that with extended 
practice, subjects learned to improved performance 
significantly, even when the demand changes were variable. 
This finding supported the notion that subjects had learned 
to generalize from experience and were able to anticipate 



demand changes. Results from verbal protocols showed that 
initially, subjects utilized information that was not critical 
for their decisions and rarely engaged in future planning. 
With practice, subjects learned to utilize most of the critical 
information and ignored most of the “irrelevant” 
information, and were engaged in future planning to 
anticipate changes in external demand.  

Experiment 2 
Results from Experiment 1 suggest that subjects might have 
misperceived the system dynamics by ignoring the temporal 
dynamics and assuming immediate effects of actions. As a 
result, they did not fully utilize information that was 
important in controlling their own inventories/backorders. 
With practice, subjects learned to utilize the important 
information and ignore “irrelevant” information 
(information that did not directly affect the decision on how 
many to order from the factory). In Experiment 2, we 
further tested the idea that poor performance in early trials 
was caused by poor utilization of relevant information. In 
Experiment 2, we removed most of the information that was 
not critical for the calculation for the decision (i.e., the 
demand, recent orders, costs, and inventories/backorders of 
the retailers, the wholesaler, and the factory.) and just 
provided subjects with the important information. Our 
prediction was that providing only relevant information 
would help subjects to focus on figuring out the temporal 
dynamics of the system, resulting in better performance 
(low oscillations). 

Method 
20 subjects were recruited from the Carnegie Mellon 

University community. Subjects were paid $15 for their 
participation. The procedures were the same as those in 
Experiment 1, except that only the demand from the 
wholesaler, their own inventories/backorders, the supply 
line, and the demand to the retailer were provided to the 
subjects. All other information was not available on the 
screen. 

Results 
Error! Reference source not found.4 shows the mean 

net inventories in trial 1, 11, and 20 in Experiment 2. 
Comparing it to the oscillations in Figure 3, one can clearly 
see that the fluctuations in trial 1 were much lower. Indeed, 
after 52 weeks, the total cost for trial 1 was 218.16. The 
difference in the first trial between the two experiments was 
significant (t(19)=31.08, p < 0.01), indicating that 
performance when only important information was shown 
was better than when information  for all players was also 
provided in Experiment 1. The total costs for trial 11 and 20 
were 156.87 and 85.67 respectively. The differences of total 
costs between the three trials were significant (t(10)=45.2, 
p<0.001), indicating learning across trials. 
 

Experiment 2
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Figure 4. The demand and the mean net inventory in trial 1, 
11, and 20 in Experiment 2. 

 
Figure 55 shows the learning trends for both experiments. 

We can clearly see the difference between the two 
experiments in the first 10 trials. In Experiment 1, when 
irrelevant information was available, subjects started out 
with a much higher total cost, and slowly started to reduce 
the total cost across trials. On the other hand, in Experiment 
2, when only relevant information was available, subjects 
started out with a much smaller total cost and learned across 
trials to reduce it. At around trial 10, subjects in both 
experiments reached roughly the same level, although they 
kept improving at a similar rate from that point onwards.   

As we showed in the analyses of the verbal protocols, 
subjects in Experiment 1 started out utilizing their own 
inventory/backorder and the demand from the wholesaler. 
This was a clear indication that subjects were ignoring the 
temporal dynamics and were assuming a “closed-loop” 
system with static relationship between their actions and 
their effects. The lack of understanding of the temporal 
dynamics was also supported by their lack of anticipation of 
the changes in customer demand, which eventually 
propagated through the supply chain and affect the demand 
from the wholesaler and their inventories.  

The difference in the first 10 trials between the two 
experiments suggests that the absence of irrelevant 
information helps subjects to learn the temporal dynamics of 
the system. In fact, it probably took subjects roughly 10 
trials to figure out what information was important, and 
perhaps after that they started to understand how the supply 
line and customer demand may affect the temporal 
dynamics of the system. 
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Figure 5. The total cost at the end of each of the 20 trials in 
both experiments.  

Discussions 
Consistent with previous results (Steman, 1989), we found 
that subjects had trouble dealing with the long time delays 
between placing and receiving orders – the supply line. The 
results show that initially, most subjects failed to account 
for the supply line adequately, which has been considered a 
major cause for the bullwhip effect. However, we found 
that, with practice, subjects learned to utilize the supply line 
and to anticipate the customer demand, and learned to 
ignore other information, especially those that were not 
critical for their decisions on how many to order from the 
factory.  

The results reinforce and extend prior work in dynamic 
decision-making (Brehmer, 1987; Hogarth, 1981, Gonzalez, 
2005). A heuristic may produce stable behavior in one 
setting and oscillation in another solely as a function of the 
feedback structure in which it is embedded. In general, we 
found that subjects had a strong tendency to assume a static 
environment in which direction input-output (i.e., action and 
its effect) exists. Specifically, we found that it took subjects 
a long period of training to (1) utilize the right set of 
information that are relevant to the temporal dynamics of 
the system, and (2) anticipate future demand changes by 
having sufficient future planning to incorporate their 
understanding of the dynamics into the appropriate actions.  

Our results show that the current approach is useful in 
understanding complex dynamic systems. We found that the 
change in utilization of information as a major factor for 
poor learning, which had been neglected by previous 
research using simple aggregate methods such as regression 
and statistical techniques in operations research (e.g., 
Croson & Donohue, 2002). To conclude, our results rejected 
the pessimistic view that humans simply do not have the 
“cognitive machinery” to deal with dynamic system. 
Instead, people often have difficulty recognizing what 
information is relevant for the temporal dynamics and how 
those information may help them anticipate future changes 
in the system. We show that by directing the focus on 
relevant information, learning can be much more effective; 
and with extended practice, people are still capable of 
controlling complex, dynamic systems. 
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