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Abstract The use of analogies and repeated feedback might help people learn about the
dynamics of climate change. In this paper, we study the influence of repeated feedback on the
control of a carbon-dioxide (CO2) concentration to a goal level in a Dynamic Climate Change
Simulator (DCCS) using the “bathtub” analogy. DCCS is a simplification of the complex
climate system into its essential elements: CO2 concentration (stock); man-made CO2

emissions (inflow); and natural CO2 removal or absorption in the atmosphere (outflow). In a
laboratory experiment involving DCCS, we manipulated feedback delays in two ways: the
frequency of emission decisions and the rate of CO2 absorption from the atmosphere (climate
dynamics). Our results revealed that participants’ ability to control the CO2 concentration
generally remained poor even in conditions where they were allowed to revise their emission
decisions frequently (i.e., every 2 years) and where the climate dynamics were rapid (i.e., 1.6%
of CO2 concentration was removed every year). Participants’ control of the concentration only
improved with repeated feedback in conditions of lesser feedback delay. Moreover, the delay
due to climate dynamics had a greater effect on participants’ control than the delay due to
emission decisions frequency. We provide future research directions and highlight the potential
of using simulations like DCCS to help people learn about dynamics of Earth’s climate.

1 Introduction

Growing evidence indicates that people do not understand accumulation processes even in
simple dynamic systems that include a single stock (or accumulation), a single inflow rate
that increases the stock, and a single outflow rate that decreases the stock (Booth Sweeney
and Sterman 2000; Cronin and Gonzalez 2007; Cronin et al. 2009; Sterman and Booth
Sweeney 2002). In fact, even people with strong background in mathematics and sciences
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fail to interpret a basic principle of dynamic systems: a stock rises (or falls) when the inflow
exceeds (or is less than) the outflow (Cronin et al. 2009).

Climate is a complex dynamic system that presents important challenges for its
perception, interpretation, and understanding by the general public (Bostrom et al. 1994;
Moxnes and Saysel 2009; Read et al. 1994; Sterman and Booth Sweeney 2007). It has been
shown that people rely upon a simple but erroneous heuristic called the correlation
heuristic, whereby they wrongly believe that system outputs are positively correlated with
inputs. For the climate system, relying on the correlation heuristic means incorrectly
assuming that stabilizing emissions (inputs) would rapidly stabilize greenhouse gas (GHG)
concentration (output); and, emissions cuts would quickly reverse GHG concentration
(Sterman and Booth Sweeney 2002, 2007). Consequently, people who rely on this heuristic
are likely to defer acting on climate change (“wait-and-see” behavior) because they
significantly underestimate the delay between reductions in GHG emissions and reductions
in GHG concentration (misperceptions of feedback), and the magnitude of emissions
reductions needed to stabilize the concentration.

According to the misperceptions of feedback (MOF) hypothesis (Sterman 1989), people
ignore the actions in a dynamic system that involves feedback delays. In the case of the
climate system, the MOF hypothesis suggests that people likely fail to account for the long
time delays between increases in carbon-dioxide (CO2) emissions and the subsequent
increases in CO2 concentration, and those between increases in CO2 concentration and its
effects on increasing atmospheric temperature. An increase in emissions does not increase
concentration and atmospheric temperature immediately, but after a long delay where it
might be too late to act to avoid significant impact.

Moxnes and Saysel (2009) have built on Sterman and Booth Sweeney’s (2007) study by
investigating how people regulate CO2 emissions to reach an attainable concentration goal
in a simulated climate system. They tested participants’ ability to control the concentration
to 300 GtC above the pre-industrial level in a period between the years 2000 and 2100,
where participants decided on emissions every 10 years. Participants were tested in different
conditions that mimicked the working of the climate system, with repeated feedback about
decisions and the resulting changes in CO2 concentration. Participants entered ten numbers
which represented their emission decisions every 10 years over a 100 year period. In all but
one feedback condition, participants entered all ten emissions at one time and then saw the
effects of their decisions. In the conditions without feedback, Moxnes and Saysel’s (2009)
results coincided with the static, onetime, paper-and-pencil climate policy task’s results
from Sterman and Booth Sweeney (2007): Participants showed a general tendency to
overshoot the goal level and to rely on the correlation heuristic in their emission decisions.
In the feedback condition, however, Moxnes and Saysel (2009) gave participants the ability
to make repeated emission decisions every 10 years and to observe the effects of these
decisions. Within a 10 year period, the emissions remained constant at values which were
set at the start of the period. Results showed that providing repeated feedback helped
participants change their strategy over time, and may have helped them to reduce their
reliance on the correlation heuristic and misperceptions of feedback.

In this paper, we build on prior studies by utilizing an interactive and dynamic stock-
management simulation (Gonzalez and Dutt 2011). This task, called the Dynamic Climate
Change Simulation (DCCS),1 is used to investigate people’s ability to control CO2

concentration to a goal level under different kinds of feedback delays for inputs (CO2

1 The DCCS simulation can be downloaded for free under an academic license from: http://downloads.
ddmlab.com/?action=form&package_id=2
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emissions) and outputs (CO2 removal or CO2 absorptions). Our main objective is to investigate
the reasons for participants’ poor control over dynamic systems, particularly in the context of
climate change, and to discover possibilities in which these problems can be overcome.

The DCCS utilizes the graphical “bathtub metaphor” proposed by Sterman and Booth
Sweeney (2007) and expands upon the feedback manipulation presented by Moxnes and
Saysel (2009). The bathtub metaphor is a common analogy used to explain the behavior of
dynamic systems (Sterman 2000), and it has also been used to communicate the complex
dynamics of the climate system (Kunzig 2009). DCCS is different from the simulation used
in Moxnes and Saysel (2009) because it is an interactive simulation where participants
make emission decisions repeatedly after a certain number of time periods. The emissions,
absorption, and concentration information is represented graphically on the DCCS’s
interface. According to Moxnes and Saysel’s (2009) results, one would expect less reliance
on the correlation heuristic and MOF, and less wait-and-see behavior given the transparency
in DCCS. Furthermore, by manipulating the frequency of feedback, we expect participants
to improve their strategy in controlling CO2 concentration more often and over several time
periods of interaction with the task (Moxnes and Saysel 2009). However, there are currently
several open questions regarding how helpful feedback frequency and the historical
information provided in a simulation is to learning control (Moxnes and Saysel 2009).

In general, research is needed to develop interventions to help people learn about the
dynamics of climate. Simulation tools like DCCS may help overcome the reliance on MOF
and correlation heuristic by giving direct experience with the accumulation processes and
feedback delays involved. Research is also needed to compare people’s understanding using
tools like DCCS in contrast to other forms of information presentation, including
descriptive information such as the Intergovernmental Panel on Climate Change (IPCC)
reports (Houghton et al. 2001), one-shot climate policy task (Sterman and Booth Sweeney
2007), or simulations with no feedback (Moxnes and Saysel 2009). In this regard, an initial
evaluation of DCCS was performed to investigate the effects of repeated feedback on
subsequent performance in Sterman and Booth Sweeney’s (2007) climate policy task (Dutt
and Gonzalez 2010). In that study, we provided participants with experiences of future CO2

concentration in DCCS. One group was first asked to control the concentration in DCCS to
a predefined goal trajectory over 100 time periods. This group was later given Sterman and
Booth Sweeney’s (2007) climate policy task, which asked them to sketch emissions and
absorption corresponding to a CO2 concentration trajectory over 100 time periods. A
separate group of participants did not experience DCCS and were immediately given the
climate policy task. Results showed that participants with experiences in DCCS were able
to reduce their reliance on correlation heuristic and MOF in their sketches compared to
participants without DCCS experiences. Thus, the repeated feedback in DCCS enabled
participants to answer subsequent climate policy task more accurately.

In this paper, we study the effects of two delay types in repeated feedback that are
present in emissions and absorption on participants’ ability to control the concentration in
DCCS. One type of feedback delay is the frequency of emission decisions. Moxnes and
Saysel (2009) kept this delay fixed at 10 emission decisions in increments of 10 years each,
while we vary the frequency at two levels: high, every 2 years; and low, every 4 years. The
second type of feedback delay manipulated is the climate dynamics: variations in the rate of
natural CO2 absorption in DCCS. Moxnes and Saysel (2009) also discussed how current
uncertainty in our understanding of absorption processes might influence our ability to
control the concentration. In this paper, we test this idea by manipulating the climate
dynamics in DCCS at two levels: slow, 1.2% of CO2 concentration per year; and rapid,
1.6% of CO2 concentration per year.
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These two feedback delays in CO2 emissions (inflow) and CO2 absorption (outflow) are
of two very different kinds. The delay due to the frequency of emission decisions is similar
to production delay (Diehl and Sterman 1995), but it is feed-forward for climate (i.e.,
people need to anticipate future emissions that affect CO2 concentration). Thus, what is set
as emissions policies now is held constant in DCCS for a certain number of time periods
(years) in the future. On the other hand, feedback delay in the climate dynamics determines
the speed with which CO2 is absorbed from the atmosphere in each time period. This
feedback delay is outside of the participants’ direct control, and it is an inherent part of the
climate system simulated in DCCS.

In this paper, it is hypothesized that:

H1: In DCCS, slower climate dynamics and less frequent emission decisions would result
in poorer human control of the CO2 concentration to a goal level, compared to faster
dynamics and more frequent decisions.

This hypothesis is supported by prior evidence of how the MOF hypothesis and
feedback delays generally hinder human control in dynamic tasks (Brehmer 1989; Diehl
and Sterman 1995; Dörner 1980; Paich and Sterman 1993; Sterman 1989). In addition, both
the climate dynamics and frequency of emission decisions have been identified as
particularly hard to understand by the general public (Cramer et al. 2001; Joos et al. 2001;
Matear and Hirst 1999; Moxnes 2004; Moxnes and Saysel 2009; Sarmiento and Le Quéré
1996; Sterman and Booth Sweeney 2007), though it is hard to determine beforehand which
of these two delays would be more problematic in DCCS.

In what follows, we first motivate the development of DCCS and its capabilities. Then,
details of an experiment where the two feedback delays were manipulated are provided.
Finally, we provide experimental results, and discuss their implications for enabling better
understanding of the climate system and future research directions.

2 A simplified model of the earth’s climate

Figure 1 provides the system-dynamics representation of a simple climate model used in
DCCS (for Vensim® PLE model equations refer to the supplementary material). The CO2

Concentration represents the accumulation in the atmosphere which increases indirectly
from an inflow of man-made CO2 emissions called Total Emissions (made of two kinds of
emissions: fossil-fuel and deforestation). The outflow Absorptions causes a decrease in CO2

Concentration due to CO2 absorbed by terrestrial and oceanic ecosystems. As long as Total

Fig. 1 The simple climate model. The CO2 Concentration represents the stock or accumulation in the
atmosphere. The CO2 concentration increases indirectly by man-made (or anthropogenic) Total Emissions (i.e.,
inflow). The Rate of CO2 Transfer is a constant multiplier into CO2 Concentration that gives rise to Absorptions
after the Preindustrial CO2 (the 1970 baseline CO2 concentration) has been subtracted from the CO2

Concentration
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Emissions exceed Absorptions, CO2 Concentration continues to increase. Only when Total
Emissions equal Absorptions will CO2 Concentration stabilize at a particular level. The
arrow from CO2 Concentration into Absorptions illustrates that the Absorptions are a
function of CO2 Concentration at all times and are assumed to be directly proportional to
CO2 Concentration.

This model representation is very similar to the example of filling and draining a bathtub
(the bathtub metaphor) (Sterman 2000). The Rate of CO2 Transfer in the model is a
constant multiplier in CO2 Concentration that gives rise to Absorptions after the
Preindustrial CO2 (the 1970 baseline CO2 concentration) has been subtracted from CO2

Concentration (the Preindustrial CO2 concentration is assumed to be due to natural CO2

emissions and equals 677 GtC). The use of a baseline concentration and year enables us to
determine the change in Absorptions values.

The model can be represented mathematically as:

dðCO2 ConcentrationÞ=dt ¼ CO2 Emissions� Absorptions ð1Þ

Where Absorptions are defined as:

Absorptions ¼ Rate of CO2 transfer» CO2 Concentration� Preindustrial CO2ð Þ2 ð2Þ
2

This simple climate model was calibrated between years 2000 and 2100 with projections
given by two different and extreme emission scenarios from the 2001 IPCC report
(Houghton et al. 2001; Nakicenovic et al. 2000). A popular carbon-dioxide dynamics
model, called the Integrated Science Assessment Model (ISAM), was used to predict CO2

Concentration for the two emission scenarios: an “optimistic” and a “pessimistic” scenario
(Jain et al. 1994). The scenarios are storylines about potential courses of future emissions.
For details on the ISAM model, scenarios, and our calibration exercise, please refer to the
supplementary material.

After calibrating our simple climate model with the ISAM model, we found that the
Rate of CO2 Transfer was 0.016 of the CO2 concentration per year in the optimistic
scenario and 0.012 of the CO2 concentration per year in the pessimistic scenario. The
calibration of our model’s predictions for CO2 concentration with the ISAM model’s
predictions is shown in Fig. 2. The top and bottom panels show the calibration in the
optimistic and pessimistic scenarios, respectively. For the optimistic scenario, R2=.97,
RMSD=.50 GtC for a Rate of CO2 Transfer=1.6% of CO2 concentration. For the
pessimistic scenario, R2=.99, RMSD=.50 GtC for a Rate of CO2 Transfer=1.2% of CO2

concentration. Therefore, our model closely replicates results from a more mechanistic
ISAM model and represents realistic predictions of future CO2 concentration based upon
those two Rates of CO2 Transfer.

Those two Rates of CO2 Transfer were used to manipulate the feedback delay due to
climate dynamics. Later, we used this model as the scientific basis to design DCCS.

2 The units of CO2 Concentration are GtC (Giga or 109 tons of carbon) and represent the CO2 concentration
in the atmosphere above its preindustrial level. The units of Total Emissions and Absorptions are GtC per
year (Giga tons of carbon per year). The Rate of CO2 Transfer is the amount of CO2 absorbed in a single year
with units of percentage (%) per year. The inverse of the Rate of CO2 Transfer yields the average residence
time of CO2 in the atmosphere. As a cautious reader would have observed, the Rate of CO2 Transfer is
assumed to be a constant for the model.
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3 Dynamic climate change simulator (DCCS)

DCCS was built on the simple climate model described above, and was inspired by a
generic dynamic stock and flows task (Gonzalez and Dutt 2011) and ideas from an earlier
study by Moxnes and Saysel (2009). The interface, shown in Fig. 3, presents a single stock,
CO2 concentration, as an orange-colored liquid in a tank which metaphorically represents
Earth’s atmosphere (Fig. 3.1). The participants’ aim is to maintain the CO2 concentration
within an acceptable range around an attainable goal level of 938 GtC (=450 ppmv). The
level is shown with a green horizontal line labeled Goal. Participants are asked to keep the

Fig. 2 Top panel: The simple climate model calibrated to ISAM model’s predictions in the optimistic
scenario, R2=.97, RMSD=.50, Rate of CO2 Transfer=0.016. Bottom panel: The simple climate model
calibrated to ISAM model’s predictions in the pessimistic scenario, R2=.99, RMSD=.50, Rate of CO2

Transfer=0.012. In both figures, error bars show 90% confidence interval around the average estimate
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concentration within +/−15 GtC of the goal level (Goal upper bound (GtC) and Goal lower
bound (GtC) define the upper and lower bounds of this range). The current time period’s
CO2 Concentration is presented on the y-axis, and it is also displayed as a label above the
tank.

In the 1992 Dynamic Integrated Climate Economy model (or DICE-92; Nordhaus 1992)
and in the real world, there are two major man-made sources of CO2 emissions: from
deforestation and land use, and from burning fossil-fuels, especially in transportation,
power generation, and industry. In DCCS, participants decide on both emission types
(Fig. 3.4). These two emissions are summed, and their addition represents the Total
Emissions represented on the interface by a pipe connecting the top-left of the tank
(Fig. 3.2). Based upon the IPCC report (Houghton et al. 2001), the starting proportions of
fossil-fuel emissions in Total Emissions is 80% and starting deforestation emissions
constitute only 20%. Below the Year range, information on the last time period’s Fossil Fuel
Emissions (GtC/Year), Deforestation Emissions (GtC/Year), and Total Emissions (GtC/Year)
is displayed.

Absorptions, represented by a pipe on the bottom right of the tank (Fig. 3.3), are
proportional to CO2 concentration and decrease the concentration according to our simple
climate model. The absorption equation and its values are also shown on the interface (see
Fig. 3).

Participants set emissions in the boxes respectively labeled Fossil fuel emissions (GtC/
year) and Deforestation emissions (GtC/year), and then click the Make Emission Decision
button. This causes DCCS to implement these emissions as Total Emissions and to provide
feedback on the CO2 concentration resulting from Total Emissions and Absorptions.

To avoid extreme exploration in participants’ emission decisions, the fossil-fuel and
deforestation emissions are restricted to the values between the From and To ranges
(Fig. 3.5). These ranges provide realistic bounds on the possible increases and decreases in
emissions, and reflect realistic emission policies in the real world. The From value ensures
that emissions reductions do not underestimate world economic growth and energy

Fig. 3 Dynamic Climate Change Simulator (DCCS) task (see description in text)
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requirements. At the same time, the To value allows for economic growth and a more fossil-
fuel intensive economy. The From value does not allow participants to cut their yearly
emissions immediately, while the To value allows participants to increase their yearly
emissions by only certain amounts. The values in these ranges are dynamic and are
calculated after each emission decision is executed. The From and To range for fossil-fuel
emissions was set at −14% to +22% of the value of its current emissions. For deforestation
emissions, the From and To range was set at −51% to +55% of its current emissions. The
exact values were derived after analyzing the maximum and minimum values of current and
future emissions across different emission scenarios (Jain et al. 1994). To see how these
ranges were determined, please refer to the supplementary material of the paper.

There are three graphical displays provided at the bottom of DCCS’s interface. The
display on the left shows the current and past CO2 concentrations across several time
periods up to the current time point in the simulation (the simulation year is shown in the
top-left corner of the interface). Displays in the middle and on the right show the current
and past total CO2 emissions and CO2 absorptions, respectively.

In DCCS, each time a participant is unable to keep the concentration within the goal
range, she incurs a cost penalty based upon the IPCC report (Houghton et al. 2001). The
penalty (in $) represents damages due to climate change in the time participants take to
control the CO2 concentration to the goal. It is assumed to be $100 million per GtC times
the difference between the goal and the current CO2 concentration (in GtC). Participants do
not incur this penalty if they maintain the concentration within the permissible range around
the goal. Current and accumulated penalties are shown as the Current Costs and Total Costs.

After participants enter their emissions values and click Make Emission Decision, DCCS
automatically moves forward by a number of simulated years. During each of the transit
years until DCCS stops again, Total Emissions are maintained at the same constant values
initially entered. This procedure is similar to establishing an emission policy that is kept
constant for a number of planned years. After that number of years, participants can again
decide on new values for emissions based upon the current and past CO2 concentrations.
This repeated decision-feedback process carries on until the final year is reached.

4 Experiment

When emission decisions are made less frequently, there is a larger gap between two
consecutive decisions. Due to the MOF hypothesis and feedback delay in emission
decisions, poorer performance in DCCS is expected when decisions are less frequent
compared to when they are more frequent.

Different climate dynamics were induced by taking two Rates of CO2 Transfer values,
which result in different CO2 absorptions in DCCS (Eq. 2). We used a 1.6% per year rate
(optimistic scenario, rapid dynamics) and a 1.2% per year rate (pessimistic scenario, slow
dynamics). When climate dynamics are slow, the feedback delay in DCCS increases and
poorer performance is expected compared to a situation where the climate dynamics are
rapid.

Although any kind of feedback delay is expected to produce sub-optimal control over
the CO2 concentration, this experiment helps us determine which of these two feedback
delays produces a more detrimental effect and how they interact to determine how people
learn about climate dynamics under different dynamic conditions. These feedback delays
are important representations of the actual delays in man-made emission decisions and in
the real world climate system (where the latter is beyond the direct human control). For
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example, climate meetings and negotiations (i.e., the frequency of emission decisions) have
become nearly annual events since 1996.3

Also, it is expected that oceans (Matear and Hirst 1999; Sarmiento and Le Quéré 1996)
and plants would reduce their ability to absorb CO2 due to the increases in CO2

concentration (Cramer et al. 2001; Joos et al. 2001). Therefore, it is important to consider
the variations in climate dynamics and its effects on human learning.

As mentioned, the climate dynamics combined with the frequency of emission decisions
is expected to hamper human learning and result in increased difficulties in the control of
CO2 concentration in DCCS. Specifically, a situation with slower climate dynamics (i.e.,
1.2% rate of CO2 transfer) combined with less frequent emission decisions (i.e., every
4 years) is expected to result in the poorest performance. Due to these long feedback delays
involved, participants who are unable to foresee the long-term effects of their decisions are
likely to show overshooting and undershooting in their attempts to reach the goal level. It is
also likely that only a smaller proportion of participants are able to reach and stabilize the
CO2 concentration within the goal range, and that they would need more time periods to do
so. This oscillatory (sinusoidal) behavior in CO2 concentration trajectory over time is
similar to that observed in other complex dynamic control systems (Forrester 1961;
Sterman 1989). In contrast, higher frequency of emission decisions (i.e., every 2 years)
combined with rapid climate dynamics (i.e., 1.6% rate of CO2 transfer) is expected to result
in the best control of the concentration in DCCS.

5 Methods

5.1 Experimental design

Participants were randomly assigned to one of four between-subjects conditions: rapid-
high, where the rate of CO2 transfer is 1.6% per year with emission decisions made every 2
simulated years; rapid-low, where the rate of CO2 transfer is 1.6% per year with emission
decisions made every 4 simulated years; slow-high, where the rate of CO2 transfer is 1.2%
per year with emission decisions made every 2 years; and slow-low, where the rate of
transfer is 1.2% per year with CO2 emission decisions made every 4 years.

Participants’ target under all four conditions was to maintain the CO2 concentration
within a +/−15 GtC range around a 938 GtC (~450 ppmv) goal value. In order to equalize
the number of decisions made in all four conditions to 50 decisions each, the high
conditions ran for 100 simulated years and the low conditions for 200 years. The DCCS
started in the year 2000 where the initial CO2 concentration was fixed at 769 GtC, the real-
world value of CO2 concentration that year (Houghton et al. 2001). Similarly, the initial
deforestation emissions were fixed at 1.3 GtC/year and the initial fossil-fuel emissions at
6.88 GtC/year (Houghton et al. 2001).

The value of the CO2 concentration goal (=938 GtC) was deliberately set above 2000’s
CO2 concentration (=769 GtC~370 ppmv). That is because attainable goals in the real-world
are set higher than the status-quo concentration with an expectation that emission reductions
will be immediately initiated to attain these goals. In addition, the goal used in our experiment
corresponds to the IPCC’s “best-case” stabilization scenario (Houghton et al. 2001, pg. 76).
Goal values that are higher than year 2000’s actual concentration were also used by Moxnes

3 See a list of previous Congress of Parties (COP) meetings at: http://unfccc.int/meetings/archive/items/2749.php
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and Saysel (2009). Setting the goal higher than the status-quo concentration is also necessary
to make the goal realistically achievable and to account for the practical inability to drastically
reduce emissions. In addition, a participant may try to increase emissions initially. Again, this
increase mimics the pattern of real-world emissions, which are accelerating (see CSIRO
Australia, December 8, 2006 for more details). The main implication of achieving the goal in
our experiment is to attain control over the CO2 concentration to levels that are considered
safe for Earth’s climate. Thus, participants who manage to do so do not incur any costly
penalties. The more time participants take to reach and maintain the concentration within the
goal range, the more it will cost them.

Across all conditions, the CO2 concentration will stabilize at the goal when total
emissions equal CO2 absorption. This means that when climate dynamics are slow, the
optimal value of total emissions should equal (938–677) * 0.012=3.13 GtC per year.
Similarly, when climate dynamics are rapid, the optimal value of total emissions should
equal (938–677) * 0.016=4.18 GtC per year (Eq. 2).

The optimal combination of emission values was calculated to reach the goal in the
minimum number of time periods for each condition. These values are irrespective of the
frequency of emission decisions. Therefore, if a participant is able to decrease total emissions
from the initial value of 8.18 GtC per year to the corresponding optimal values, then that
participant would be able to optimally hit the goal and stabilize the concentration at the goal.

We use the absolute value of the discrepancy as the main dependent variable (absolute
discrepancy measures the deviation from a goal and equals the absolute value of the
difference between the goal and CO2 concentration). Also, we used fossil-fuel,
deforestation, and total emissions as other dependent variables to investigate participants’
decision-making strategies in a regression model.

5.2 Participants

Fifty-three graduate and undergraduate students from diverse fields of study participated in
this experiment, 26 were females. Ages ranged from 18 years to 54 years (Mean=26 years,
SD=8 years). In self-reports, 64% of participants indicated having heard of climate change
through television, websites, or movies; 25% reported having read something about climate
change through newspapers or magazines; and the remaining 11% reported having
knowledge on the subject through some other means. Also, 70% of participants either
reported having completed or currently pursuing degrees in science, technology,
engineering, and management (STEM).

Fourteen participants were randomly assigned to the slow-low condition and thirteen
participants were assigned to each of the slow-high, rapid-high, and rapid-low conditions,
respectively. All participants received a base pay of $5 for a 30-minute study. Participants
could also earn an additional bonus of no more than $3, which was based on their
performance in DCCS. If a participant deviated outside the goal range in any given time
period, then a cost penalty was incurred that was calculated as the product of $100 million
and the absolute discrepancy in that time period. Participants incurring more than
$400 billion in accumulated costs were paid a bonus of $0. Participants incurring less
than or equal to $15 billion in accumulated costs were paid a bonus of $3. All other
accumulated costs between $15 billion and $400 billion were linearly transformed to actual
dollar payments. Four hundred billion dollars is four times the accumulated cost incurred if
one entered the optimal values for total emissions for the slow climate dynamics. Therefore,
the upper limit on the penalty was not very stringent and still enabled them to explore and
learn from their decisions and repeated feedback. Similarly, a $15 billion lower bound was
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kept to ensure that the initial discrepancy between the concentration and the goal range’s
lower bound in the starting year did not penalize participants.

5.3 Procedure

Participants were given instructions before starting the DCCS task. The instructional text
given in the slow-low condition is provided in the supplementary material. After
participants read the instructions, they were shown a video of what would happen in
DCCS if the status-quo total emissions (=8.18 GtC) were maintained for the next 50 years.
Climate dynamics in this video were set at their manipulated value of 1.2% or 1.6% of the
CO2 concentration per year depending upon the condition. The main intention was to
motivate participants and to make them understand what would happen if they maintained
the status quo emissions for the next 50 years. Starting in the year 2000, the video’s CO2

concentration crossed the 938 GtC goal value and increased to more than 1000 GtC by the
year 2050, which is more than a 5% increase from 2000’s value. After watching the video,
participants were asked to imagine the severe consequences this increase would have on the
world’s climate. Participants only watched the video and did not interact with DCCS at this
point. In addition, 2000’s fossil-fuel and deforestation emissions values were used
throughout the demonstration and the same video was shown to all participants in all
conditions. Showing the video could possibly anchor and bias participants’ judgments. But
this bias does not constitute a problem in the experiment because believing that CO2

emissions need to change or fall does not necessarily help people understand when and by
how much these emissions need to be reduced.

After the video, participants were reminded of the requirements in DCCS. They were
then asked to play DCCS for 50 decision points over a course of 100 or 200 years
depending upon the condition.

6 Results

6.1 General performance: Discrepancy from goal

Figure 4 shows the average absolute discrepancy in each condition (the absolute
discrepancy is averaged over all participants and decision points in a condition).
Participants were clearly not performing optimally. The average absolute discrepancy is
greater than the optimal goal range (the black line showing “Optimal” is the upper bound at
15 GtC of the goal range) in all conditions. The distribution of discrepancies in all four
conditions was non-normal. Normality of the dependent variable in our data was tested for
on the 1st, 25th, and 50th decision points in all four conditions.4

4 We tested for normality of the dependent variable on the 1st, 25th, and 50th decision points in all four
conditions. For the 1st decision point, the data was normal in the rapid-high and slow-high conditions, D
(13)=.913, ns and D(13)=.930, ns, respectively; however, it was non-normal for the slow-low and rapid-
low conditions, D(14)=.776, p<.05 and D(13)=.862, p<.05, respectively. For the 25th decision point, the
data was normal for the rapid-high and slow-high conditions, D(13)=.887, ns and D(13)=.924, ns,
respectively; however, it was non-normal for the slow-low and rapid-low conditions, D(14)=.606, p<.05
and D(13)=.819, p<.05, respectively. Lastly, for the 50th decision point, the data was non-normal in all
conditions, i.e., rapid-high (D(13)=.655, p<.05), slow-high (D(13)=.650, p<.05), slow-low (D(14)=.819, p<.05),
and rapid-low (D(13)=.627, p<.05), respectively.
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Levene’s test for homogeneity of variances for the dependent variable revealed that the
variance in the data were non-homogenous at those points,F (3, 49)=2.668, p<.05; F (3, 49)=
7.561, p<.05 and F (3, 49)=10.136, p<.05, respectively.

A nonparametric Kruskal-Wallis test reported that the effect of different conditions on the
absolute value of the discrepancy was significant (H(3)=12.120, p<.05). In fact, the average
absolute discrepancy was greater when the emission decisions frequency was low (Median=
61.77 GtC) compared to when it was high (Median=45.57 GtC), U=267.00, Z=−3.00, p<.01,
r=−.21. In addition, the average absolute discrepancy was greater when climate dynamics were
slow (Median=61.67 GtC) compared to when they were rapid (Median=37.42 GtC), U=
182.00, Z=−3.00, p<.01, r=−.41. Thus, the hypothesis is supported: participants’ control of the
CO2 concentration is poorer when the climate dynamics were slow and the emission decisions
were made less frequently compared to when the climate dynamics were rapid and the emission
decisions were made more frequently.

Post-hoc pair-wise comparisons for the average absolute discrepancy revealed the following:
slow–low condition (Median=79.40 GtC)>rapid-high condition (Median=40.34 GtC),
U=26.00, Z=−3.154, p<.01, r=−.43; slow–high (Median=52.78 GtC) was no different from
rapid-low (Median=32.74 GtC), U=64.00, Z=−1.051, ns, r=−.14; rapid–high (Median=
40.34 GtC) was no different from rapid-low (Median=32.74 GtC), U=83.00, Z=−0.077, ns,
r=−.01; slow–low (Median=79.40 GtC)>slow-high (Median=52.78 GtC), U=53.00,
Z=−3.000, p<.01, r=−.25; slow–low (Median=79.40 GtC)>rapid-low (Median=32.74
GtC), U=37.00, Z=−2.620, p<.01, r=−.36; and rapid–high (Median=40.34 GtC) was no
different from slow-high (Median=52.78 GtC), U=55.00, Z=−1.513, ns, r=−.21.

Fig. 4 Average Absolute Discrepancy (GtC) in the four conditions (this discrepancy is averaged over all
participants and decisions points in a condition). Participants have more difficulty achieving control of CO2

concentration when climate dynamics are slow than rapid and when the frequency of emission decisions is
low than high. Error bars show 90% confidence interval around the average estimate. The line labeled
“Optimal” shows the optimal value around the goal of 15 GtC (if participants kept their Average Absolute
Discrepancy within the goal range then they should be below the optimal). Absolute Discrepancy was more
than the “Optimal” value in all conditions. Readers wanting to convert the result to ppmv can use a
0.47 ppmv to 1 GtC conversion ratio
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6.2 Learning effects

Figure 5 shows the average absolute discrepancy in each of the four conditions over 50
decision points (each point within each condition is averaged over all participants in that
condition). As expected, the discrepancy in the slow-low condition shows a sinusoid
oscillation above the optimal value across all 50 decision points. In addition, according to the
confidence intervals, the slow-low condition has the greatest variability in human behavior.

In each of the four conditions, the average absolute discrepancy changed significantly
over 50 decision points according to a nonparametric Friedman’s ANOVA test (χ2(49)=
371.02, p<.001; χ2(49)=230.51, p<.001; χ2(49)=296.17, p<.001; and χ2(49)=97.40,
p<.001 for the rapid-high, rapid-low, slow-high, and slow-low conditions, respectively).
There was no difference in the average absolute discrepancy between the 1st decision point
(Median=163.27 GtC) and the 50th decision point (Median=59.32 GtC) in the slow-low
condition, T=23, p>.05, r=−.35. In contrast, this difference was significant in the other
three conditions. The average absolute discrepancy in the rapid-high, slow-high, and rapid-
low conditions was significantly greater for the 1st decision point (Median=161.57 GtC;
Median=163.04 GtC; and Median=162.80 GtC respectively) compared to the 50th
decision point (Median=5.66 GtC; Median=8.24 GtC; and Median=11.97 GtC), with,
T=0, p<.001, r=−.62; T=1, p<.001, r=−.61 and T=0, p<.001, r=−.62, respectively. These
results suggest that the repeated feedback in DCCS enabled participants to learn about the
dynamics of the simulated climate system in all conditions but slow-low. In the slow-low
condition, learning is offset by the presence of strong oscillations in discrepancy due to
excessive feedback delays. These results also demonstrate DCCS’ effectiveness in helping
participants learn how to stabilize their CO2 concentration in three out of the four
conditions; however, these three conditions are those that have comparatively less feedback
delay than the slow-low condition.

6.3 Participants’ strategies

6.3.1 Reaching and stabilizing within the goal range

The time it took participants’ CO2 concentration to reach the goal range for the first time and
their ability to keep it within the goal range thereafter were analyzed. The proportion of
participants that reached the goal range for the first time was smaller when climate dynamics
were slow (Mean=78%) compared to when they were rapid (Mean=96%), U=286.50,
Z=−1.97, p<.05, r=−.27. The frequency of emission decisions had no effect on the proportion
of participants reaching the goal. Furthermore, we classified participants as “stabilizing at the
goal,” if their CO2 concentration was maintained within the goal range for eight consecutive
time periods after it initially came within the goal range. The proportion of participants
stabilizing at the goal was significantly smaller when climate dynamics were slow (Mean=
41%) compared to when they were rapid (Mean=65%), U=286.00, Z=−1.97, p<.05, r=−.27.
Again, frequency of emission decisions had no effect on the proportion of participants
stabilizing at the goal. These results suggest that human control behavior is significantly driven
by the climate dynamics and less so by the frequency of emission decisions.

6.3.2 Ratio of fossil-fuel to total emissions

To understand participants’ choices between the two emission types, the ratio of
fossil-fuel emissions to total emissions was analyzed. Fossil-fuel emissions constituted
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on average 96% of total emissions and deforestation emissions only the remaining
4%. However, these percentages did not change significantly as a function of different
conditions. These results indicate that participants chose fossil-fuel emissions as the
primary means of controlling their CO2 concentration over the deforestation emissions
overall.

6.3.3 Distance of emissions from TO value

A reason for greater discrepancy in conditions of greater feedback delay might be that
participants maintain the fossil-fuel and deforestation emissions closer to the To value in the
range of emissions. When emissions are closer to the To side of the range, it also indicates
participants’ attempt to increase emissions faster. An analysis of fossil-fuel and
deforestation emissions’ distances to the To value revealed that fossil-fuel emissions were
on average only 36% away from the To value and the deforestation emissions were on
average only 42% away. Therefore, participants generally kept emissions closer to the To
values. Furthermore, this strategy for the two emission types varied with condition (fossil-fuel
emissions: H(3)=12.044, p<.01; deforestation emissions: H(3)=7.800, p<.05). Fossil-fuel
and deforestation emissions were significantly closer to the To value when climate dynamics
were slow (Median=28%; Median=25%) compared to when they were rapid (Median=
45%; Median=38%), U=168.00, Z=−3.26, p<.001, r=−.45 and U=206.00, Z=−2.58,
p<.01, r=−.35, respectively. Again, the frequency of emission decisions did not influence the
distance to the To value.

Detailed comparisons show that both emissions were significantly closer to the To value
in the slow–low condition (Median=25%, Median=26%) compared to the rapid-high
condition (Median=38%, Median=48%), U=32.00, Z=−2.692, p<.01, r=−.52 and U=
33.00, Z=−2.641, p<.01, r=−.52, respectively. Thus, these results show that participants
kept emissions closer to the To value of the From - To range in conditions of longer
feedback delay.

6.4 Decision rule: Emission decisions

Similar to other stock-management problems (Sterman 1989), the decision rule used to
determine CO2 emissions can be adapted to the DCCS task: emissions are a function of
CO2 concentration and CO2 absorption. We developed three regression models to predict
each of the following: the average Total Emissions (TE), the average Fossil-fuel Emissions
(FE), and the average Deforestation Emissions (DE).

Predictor variables were calculated as the average of the 50 decision points for each
participant. This gave a dataset of 53 data points (one point for each participant) for the
purpose of three multiple regression models with the following predictors:

A CO2 absorption
D Discrepancy (Goal - Amount)
FEfrom Fossil-fuel emissions’ From Value
FEto Fossil-fuel emissions’ To Value
DEfrom Deforestation emissions’ From Value
DEto Deforestation emissions’ To Value
RatioFossilToTotal Ratio of fossil-fuel emissions to Total emissions
DistanceFossilfrom Distance of fossil-fuel emissions from the From value
DistanceDeforestationfrom Distance of deforestation emissions from the From value
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In addition, we kept two dummy {0, 1} variables to test for the effects of different
conditions:

FR Frequency of emission decisions (FR=1 for low, i.e., every 4 years; FR=0 for high, i.e.,
every 2 years)

CD Climate Dynamics (CD=1 for slow, i.e., 1.2% of CO2 concentration; CD=0 for
rapid, i.e., 1.6% of CO2 concentration)

e Residual

The following equations were used in each of the three models:

Model 1

FE ¼ b0 þ b1 Dþ b2 Aþ b3 FEfrom þ b4 FEto þ b5 RatioFossilToTotal

þ b6 DistanceFossilfrom þ b7 CDþ b8 FRþ e ð3Þ

Model 2

DE ¼ b0 þ b1 Dþ b2 Aþ b3 DEfrom þ b4 DEto þ b5 RatioFossilToTotal

þ b6 DistanceDeforestationfrom þ b7 CDþ b8 FRþ e ð4Þ

Model 3

TE ¼ b0 þ b1 Dþ b2 Aþ b3 FEfrom þ b4 FEto þ b5 DEfrom þ b6 DEto

þ b7 RatioFossilToTotal þ b8 DistanceFossilfrom þ b9 DistanceDeforestationfrom

þ b10 CDþ b11 FRþ e ð5Þ

When CD=0 and FR=0, the three resulting models generate predictions for the rapid-
high condition, which is the condition with the least feedback delay and best participants’
performance. Therefore, values of the standardized beta coefficients (bx) in these models are
relative to the rapid-high condition.

Table 1 provides the results of ordinary least-squares linear regression involving these
models.

As seen in Table 1, model 1 (p<.001) accounted for 92.7% of the variance in fossil-fuel
emissions. The only standardized beta coefficients that were significant were the From and
To ranges for fossil-fuel emissions. Both of these standardized beta coefficients also
possessed strong positive values, i.e., an increase in the From or To predictors caused an
increase in fossil-fuel emissions while holding all other predictors constant. Participants did
take the values of the From and To ranges into account while making their fossil-fuel
emissions, and moreover the ranges caused participants to increase fossil-fuel emissions.

Model 2 (p<.001) accounted for 92.9% of the variance in the deforestation emissions.
Similar to Model 1, the standardized beta coefficients of the From and To ranges for
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deforestation emissions were significant and positive. The standardized beta coefficient of
the distance of deforestation emissions from the From value was also significant and
positive. These findings are consistent with the reasoning that participants who maintained
their deforestation emissions father away from the From value, or kept them closer to the To
value, were bound to cause significant increases in their deforestation emissions.

Model 3 (p<.001) accounts for 100% of the variance in total emissions. Firstly, the
standardized beta coefficients of Discrepancy and CO2 absorption predictors were negative
and significantly affected total emissions. As per our simple climate model, CO2 absorption
is proportional to the concentration and thus also proportional to the discrepancy. In
addition, participants in DCCS need to decrease emissions from a higher value to make it
equal to absorption in order to control CO2 concentration (the absorption were less than
total emissions initially in the year 2000). Due to the same reason, the correlation between
total emissions and CO2 absorption should be negative if participants were able to control
the concentration within the goal range. The decrease in total emissions on account of an
increase in Discrepancy and absorption predictors indicates that participants decreased their
total emissions from the greater initial year 2000 value in different conditions. Participants
do learn to control the CO2 concentration over repeated time periods as they decrease their
total emissions when their Discrepancy predictor increases.

In addition, consistent with the previous two regression models, the standardized beta
coefficients of the From and To ranges in model 3 for both emission types significantly
affected the total emissions. The effect of the From and To ranges for fossil-fuel emissions
on the total emissions (beta coefficient=.929) exceeded that of the From and To ranges for
deforestation emissions (beta coefficient=.226) when all other predictors were maintained
at their constant values.

Furthermore, the standardized beta coefficients for the RatioFossiltoTotal and Distance-
FossilFrom predictors were positive and significantly affected total emissions. The effect of
these two predictors on total emissions validates earlier findings that participants
predominantly used fossil-fuel emissions to control the CO2 concentration. Finally, climate
dynamics (determined by CD dummy) significantly affected the total emissions. This
observation is also consistent with the earlier finding where the discrepancy and therefore
CO2 concentration resulting from total emissions was greater with slower climate dynamics
(as shown in Fig. 4). The frequency of emission decisions did not influence total emissions.
Furthermore, the magnitude of standardized beta coefficient for emission decisions
frequency (FR dummy) was less than the standardized beta coefficient for climate
dynamics (CD dummy variable). The significance and magnitude of the standardized beta
coefficients for the CD and FR dummy variables show that climate dynamics played a
significantly greater role compared to decision frequency when comparing their individual
effects on total emissions.

7 Discussions and conclusions

Many of the complex dynamic effects found in the real world can be better understood with
simple tasks (Cronin et al. 2009), and a demonstration of such a process for a simulated
climate system was presented here in DCCS. The complex problem was simplified into its
essential elements: CO2 concentration, and CO2 emissions and absorptions over time.
DCCS was built from a simple climate model, and it was used to investigate participants’
ability to control the system under different conditions of feedback delays: frequency of
emission decisions and climate dynamics. Results show that a change in climate dynamics

Climatic Change



from rapid to slow (when averaged across the frequency of emission decisions) deteriorated
participants’ control of CO2 concentration compared to a change in frequency of emission
decisions from high to low (when averaged across the climate dynamics). This supports
many previous results on people’s inability to understand basic dynamics and to control an
accumulation in the presence of feedback delays (Brehmer 1989; Diehl and Sterman 1995;
Dörner 1980; Gonzalez 2005; Sterman 1989). Despite the poor performance, participants
improved their control over the CO2 concentration over many time periods in DCCS for
three out of the four conditions. These three conditions are those where the feedback delay
was the least.

Emission decisions frequency results are consistent with previous findings in a simulated
climate system (Moxnes and Saysel 2009) and in other dynamic systems (Diehl and
Sterman 1995; Paich and Sterman 1993). Participants’ control performance deteriorates as a
function of increasing delays in the inflow and outflow. The effects created by delays in our
study are similar to the cause-and-effect relationships that determine the fate of the
population in Dörner and Kimber’s (1997) study, where participants had to increase the
well-being of fictitious occupants in the presence of long feedback delays between their
decision actions and outcomes.

Furthermore, we find evidence of the MOF hypothesis in our results on account of the
oscillatory behavior found in CO2 concentration for the slow-low condition. In this study,
participants started below the goal and were asked to stabilize the concentration within the
goal range as quickly as possible. These requirements caused participants to rapidly
increase emissions in the initial period of performance to bring their concentrations closer
to the goal as quickly as possible. However, participants soon realized that their CO2

emissions were too high to stabilize the concentration and thus their concentration
trajectories tended to overshoot the goal range.

We argue that participants’ poor control is likely due to their failure to reduce CO2

emissions in DCCS. To be successful in this task, participants need to slowly reduce
emissions, but instead we found their emissions to be closer to the To value of emissions
range. The late realization that emissions are too high when participants reach the goal
range produces an attempt to reduce emissions when it is already too late (the coefficients
of absorptions and discrepancy in regression model 3 were negative, showing that overall
participants do try to reduce total emissions on account of these two predictors). This late
correction causes a “bullwhip” sinusoidal oscillation, which is well known in dynamic
systems with feedback delays (Sterman 1989) and a sign of the MOF. One possible
explanation for the greater effect of climate dynamics is the saliency and nature of the
feedback delay in emission decisions. Fossil-fuel and deforestation emissions are directly
controlled and manipulated by participants in all conditions from one decision point to the
next. Repeatedly making emission decisions and observing their effects might force
participants to notice the delay present in their direct controls. Furthermore, repeatedly
making decisions enables participants to anticipate the future effects of emissions. This
explanation is supported by the fact that prior research has found similar effects for repeated
feedback and how it improves performance in a control task similar to DCCS (Dutt and
Gonzalez 2008a, 2008b).

Participants’ control only improved in those conditions that offered comparatively less
feedback delays. In future research, we plan to investigate learning over many repeated
performances in DCCS. Prior work in dynamic decision making literature suggests that
participants’ initial performance in interactive management flight simulators is generally
quite poor, but they can improve due to repeated performances (Brehmer 1989; Diehl and
Sterman 1995; Dörner and Kimber 1997; Sterman, 1989). This finding of learning-by-
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doing is intuitive, and it is one of the strengths of management flight simulators that we
could test for in DCCS in the future. In the current experiment, participants faced the same
conditions in a single performance and thus, may have improved solely as a function of
repetition, without developing any generic understanding about accumulation or how to
handle time delays. Following the work of Diehl and Sterman (1995) and Paich and
Sterman (1993), we would like to vary the learning parameters in DCCS from one
performance to the next without revealing these variations to participants. This
manipulation is likely a better test of participants’ understanding of the principles of
accumulation. For example, we would like to vary key parameters such as the climate
dynamics and then asses participants’ knowledge of the relevant processes (i.e., the stock-
flow structure, controlling atmospheric CO2 concentrations, the impact of feedback from
CO2 concentrations, etc.) using a pre-test and post-test design. As part of the pre- and post-
test, participants’ knowledge may be tested outside the context of the simulator by using
Sterman and Booth Sweeney’s (2007) climate policy task.

Management flight simulators are becoming increasingly common and may be used by
the IPCC to supplement its forthcoming assessment reports.5 Currently, in the real world,
people are more likely to be exposed to traditional descriptive text and figures that describe
the projected impacts of different climate policies. Here, people must make judgments
about when and by how much emissions must decline to meet any goal for either the CO2

concentration or temperature change (such as stabilizing at CO2 at 450 ppmv or with
warming ≤2°C). Because prior research shows that people cannot make such judgments
reliably, one would like to know if the chance to explore these dynamics through a
simulator might help them better understand these issues in common settings. These
settings might include reading media reports or other information about future climate
change, and the policy options to control it. As mentioned above, Dutt and Gonzalez (2010)
have found DCCS to be effective in helping people to understand the dynamics of CO2

concentration. A group of participants, who experienced DCCS, performed better in the
succeeding Sterman and Booth Sweeney’s (2007) climate policy task compared to another
group of participants who performed the climate policy task directly. As part of future
research, we would also like to know what features of simulations are most helpful in
building people’s understanding of climatic processes – as the examples above illustrate,
existing simulators vary widely in their level of detail in regards to the carbon cycle, other
greenhouse gases, radiative forcing, and other climate processes in their interface designs,
use of graphics and video, and in many other attributes. Therefore, it might be interesting to
evaluate what features enable the most effective learning. A future study centered on
investigating a simulator’s greatest features would make a vitally needed contribution to our
understanding of the critical processes in risk communication for climate change and other
issues involving complex dynamic systems.
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