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ABSTRACT 

This paper presents an interactive simulation of the effects of emissions and absorptions of 
anthropogenic carbon dioxide (CO2) in the atmosphere. The interactive simulation based 
on the “bathtub” metaphor, was built using the Dynamic Integrated Climate Economy 
model (DICE)-1992.  The interactive tool allows participants to make decisions on the 
anthropogenic CO2 emissions, observe the consequences of the decisions and try new 
decisions.  In a laboratory experiment, we tested the participants’ ability to control the CO2 
concentration to a realistic amount in the atmosphere over a period of 100 to 200 years. 
Participants worked on one of two extreme conditions: one rapid, where transfer rate of 
carbon dioxide was 1.6% per year with CO2 emission decisions made every 2 years, and 
other slow, where transfer rate of carbon dioxide was 1.2% per year with CO2 emission 
decisions made every 4 years. Due to human incapacity to handle feedback delays and their 
use of faulty heuristics, we expected participants to find the slow condition harder to 
control as compared to the rapid condition. Results show that participants had more 
difficulty achieving control of CO2 concentration to goal in face of slower dynamics than 
rapid dynamics. Implications and future of our research findings are discussed. 
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INTRODUCTION 

Earth’s climate is a complex dynamic system with many uncertainties and is 
difficult to comprehend and understand. Simply stated, climate is an aggregate of local, 
regional and global weather phenomena averaged over many years and can only be 
perceived over long time delays. Many people around the world have come to believe that 
in the past 50 years Earth’s climate has started to undergo a change where warming is 
predicted for the future, with catastrophic economic, social and political consequences 
(Leiserowitz 2005, 2006). Atmospheric carbon dioxide (CO2) concentration has grown 
faster than it has at any other time in the past 20,000 years and this growth has picked up 
pace in the last 50 years where the higher concentrations of CO2 have led to Earth’s 
warming (Sterman and Sweeney, 2002). Anthropogenic CO2 and other green house gases 
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(GHG) emissions currently stand at twice the removal rates (Houghton, Ding et al. 2001). 
At this rate, it is imperative for us to act now so as to stabilize the GHG and CO2 
concentrations to safer levels. In order to do so, CO2 and other GHG emissions must be 
made lower than the removal rates of GHGs from the atmosphere, which means lowering 
of emissions by more than half of the current emission values (Sterman and Sweeney 
2002). Although many people believe that global warming is real (Climate Change Fact 
Sheet 2006) many think that we can wait and watch rather than act immediately (Sweeney 
and Sterman 2000; Moxnes and Saysel 2004; Sterman and Sweeney 2002).  Many think 
that the effects of global warming would happen slowly and that interventions to mitigate 
the warming could also be made at a slow pace. Clearly, the recently undertaken climate 
initiatives like the Kyoto protocol and Clear Skies initiatives aimed to mitigate global 
warming have expressed support for this belief with Kyoto Protocol’s proposed reductions 
in emissions exceeding proposed targets and Clear Skies initiative suggesting even further 
emissions growth (Sterman and  Sweeney 2002). Past evidence has shown that such wait 
and watch policy doesn’t work very well especially for dynamic systems where there is 
non-linearities, side effects and time delayed feedbacks (Sterman 1994; Sterman and 
Sweeney 2007). In dynamic systems like our climate, there is a considerable time delay 
between actions in terms of emissions of carbon dioxide into the atmosphere and its 
consequences in terms of increase in carbon dioxide stock and temperature of the Earth. 
Adoption of wait and watch policies for stopping the threat of global warming would prove 
to be catastrophic under such system dynamics because the consequences of what we do 
now in terms of emissions of carbon dioxide would only be known to us after many years 
(Sterman and   Sweeney 2007). 

Based on growing evidence, we hypothesize that human negligence towards our 
climate system is a result of human cognitive inabilities wherein people simply don’t 
understand the consequences of their actions, people cannot foresee how the system would 
evolve and have misperceptions of their actions. In other words, people suffer from poor 
system’s thinking as a result of their limited cognitive capacities and simply fail to account 
for non linearity, feedback delays and stock and flow dynamics..   

The problem of human understanding and control of dynamic systems, such as the 
climate change, is widely known (Sweeney and Sterman 2000; Brehmer 1989, 1992; Diehl 
and Sterman 1995; Moxnes and Saysel 2004; Paich and Sterman 1993; Sterman 1989; 
Sterman and Sweeney 2002) but recently, even a more disturbing problem has been 
uncovered: that people have trouble understanding even a simple dynamic task consisting 
of one stock, one inflow and one outflow (Cronin and Gonzalez 2007; Cronin, Gonzalez, 
and Sterman in press). For example, Moxnes (1998a, 1998b, 2000, 2004) in experiments 
concerning renewable resources using simple dynamic systems has shown that humans 
have strong tendencies to over utilize and over invest resources. In experiments when 
subjects were asked to set reindeer quotas in a district where lichen has been severely 
depleted by preceding overgrazing, Moxnes (2004) shows that all subjects make an error of 
overexploitation. According to Moxnes (2004), the plausible explanation for this behavior 
is faulty “static correlation mental models” where humans fail to distinguish between stock 
(i.e. accumulation) and flows (time derivatives) that cause the stock to change. Similarly, 
Sterman and Sweeney (2002, 2007) have shown that humans often misperceive the 
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dynamics of the GHG concentrations in the atmosphere wherein they tend to use a “pattern 
matching heuristic,” implying that if the task is to increase the GHG concentration, 
emissions should increase as well.  This problem, is now termed the “Correlation 
Heuristic,” (humans expect the stock to follow the same pattern as the flows) and it has 
been found in multiple contexts at the individual, organizational and social levels (Cronin, 
et al. in press; Gonzalez and Dutt, in preparation). 

We aim at further investigating human perceptions and understanding of 
dynamically complex problems.  In this paper, we use the climate change as an important 
dynamic system that can be reduced to the essential elements of every dynamic system, one 
stock, one inflow, and one outflow.  

Guided by the tradition of research in Dynamic Decision Making (DDM), we 
constructed an interactive tool, “Climate Change Simulator” (CCS) which is based on an 
adapted climate model from the Dynamic Integrated Climate Economy model-1992 (DICE-
92; Nordhaus 1992) which is a general macro-economic model to access the effects and 
consequences of Earth’s climate. CCS, based on the DICE model, has a single stock which 
is shown as an atmospheric tank that represents the concentration of CO2 in the atmosphere. 
There is a single removal outflow from the CO2 stock that depletes the CO2 in the 
atmospheric tank due to natural absorptions of CO2 by the oceans and the biomass. Also, 
there are two manmade and human controlled (anthropogenic) CO2 (inflow) emissions into 
the atmospheric tank. One of the inflow emissions is the emission due to deforestation and 
land use and the other is due to the burning of the fossil fuels in automobiles and in 
industries. The system allows humans to make repeated emission decisions over a long 
time span where the goal is for humans to control the CO2 concentration stock to safer 
levels. Thus, CCS, in its current form enables us to study human DDM behavior when 
participants encounter a simple climate problem. 

Here, we report one of our initial lab-based studies using CCS, in which we attempt 
to determine the effect of delay of human emission policy interventions and speed of 
climate dynamics (i.e. the variation of rates of CO2 removal) on the participant’s ability to 
control CO2 concentrations to safer levels. Specifically, in a laboratory experiment, we 
tested humans’ ability to control the CO2 concentration to a realistic amount in the 
atmosphere over a period of 100 to 200 years in the simulation.  We put people on two 
extreme conditions: one rapid, where transfer rate of carbon dioxide is 1.6% per year with 
CO2 emission decisions made every 2 years, and other slow, where transfer rate of carbon 
dioxide is 1.2% per year with CO2 emission decisions made every 4 years.  We expected to 
see similar effects on human control performance on the climate problem. Specifically, in 
the presence of a slower dynamic condition (1.2%) where there is more delay in emissions 
decisions (made every 4 years), we expected people to have more trouble controlling the 
climate system over many years, compared to people in the face of a rapid climate 
dynamics condition (1.6% and emissions decisions made every 2 years). 

Next, we introduce a simple adapted climate model from DICE-1992; then, we 
present the workings of CCS which is built on the workings of DICE. This is followed by 
the experimental design and results. Finally, we conclude by suggesting implications for 
future research. 
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CLIMATE MODEL 
In this section we propose a simple climate model that we adapted from DICE-92 

and ideas from Moxnes and Saysel (2004). The model enables us to control all the basic 
elements of the climate problem yet the model remains simple to understand and can be 
used in a lab experiment. Although the heat trapping ability of our climate is governed by 
many global warming elements like different gases and water vapor, among the major 
driving factors, the concentration of CO2 in the atmosphere remains the most crucial and 
important element in its ability to trap Earth’s long wave radiation in IR band, emitted from 
the surface of the Earth. Thus, for this research we concentrate on this component only. 
Figure 1 provides the system dynamics of our climate model (For Vensim® PLE equations 
refer to the Appendix A). The CO2 in Atmos represents concentration of CO2 in the 
atmosphere. The CO2 concentration increases indirectly by human action of anthropogenic 
CO2 emissions called User Action CO2 emissions (thus here User Action CO2 emissions 
are made up of 2 kinds of emissions: fossil fuel and deforestation types). The CO2 
emissions into the Atmosphere are only affected by User Action CO2 emissions which in 
turn increase the stock of CO2 in Atmos. The CO2 removals cause a decrease in the 
concentrations of the CO2 in Atmos stock due to absorptions by terrestrial and ocean 
ecosystems. As long as the CO2 emissions into the Atmosphere or User Action CO2 
emissions (inflow) exceed absorption rates i.e. CO2 removals (outflow), the CO2 in Atmos 
continues to increase. Only when the absorption rates equal the emissions, the CO2 in 
Atmos will be stabilized, enabling a stabilization of the climate system in the long term. The 
arrow from the CO2 in Atmos to the absorption rate CO2 removals illustrates that the 
outflow at all times depends on the concentration of CO2 in Atmos. For the equation CO2 
removals is directly proportional to the concentration of CO2.  

 

 

Figure 1. Climate Model 
 

The model representation is very similar to the example of filling and the draining a 
bathtub i.e. the bathtub metaphor (Sterman 2000; Moxnes and Saysel 2004). The Rate of 
CO2 Transfer is a constant multiplier into CO2 in Atmos that gives rise to CO2 removals 
after the Pre-industrial CO2 (1970 baseline CO2 concentration) has been subtracted from 
the CO2 in Atmos. The use of a baseline year and concentration is done only for purpose of 
comparison in the model. The model can be represented mathematically as, 
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d(CO2 in Atmos)/dt = CO2 emissions into Atmosphere – Rate of CO2 Transfer * 
(CO2 in Atmos – Preindustrial CO2)                (1) 
 
In the above equation, the units of CO2 in Atmos are GtC (Giga tons of carbon) and 

represent the CO2 in atmosphere above the preindustrial level. Units of CO2 emissions into 
Atmosphere and CO2 removals were GtC per year (Giga or billion tons of carbon per year). 
For us, the most important factor in the above equation is the Rate of CO2 Transfer which 
is the rate of storage of atmospheric GHGs (with units of year-1). The inverse of Rate of 
CO2 Transfer yields average residence time of GHGs. Note that this factor has an 
associated uncertainty for climate depending upon different climate conditions that we 
assume for our model.  

We calibrated the climate model between years 2000 and 2100 with projections 
given by two extreme Intergovernmental Panel on Climate Change (IPCC) emissions 
scenarios (Houghton, et al. 2001; Nebojs¢a, Ogunlade, et al. 2000). The scenarios are: one 
optimistic and one pessimistic, for the future emissions of CO2 emissions into Atmosphere 
(See Figure 2 for a representation of both Emission Scenarios). We used the Integrated 
Science Assessment Model (ISAM) for predicting the concentration of CO2 in Atmos on 
two extreme Special Report Emission scenarios (SRES), one optimistic and the other 
pessimistic (Jain, Kheshgi, and Wuebbles 1994). As per Jain, et al. (1994), ISAM is a 
model that takes projections of human emissions of CO2 and other greenhouse gases and of 
atmospheric particulates and generates predictions of future greenhouse gas and aerosol 
concentrations, global climate change, and the impacts of climate change such as the 
expected rise in sea level. As per Nebojs¢a, et al. (2000) the SRES take into account human 
activity for the future CO2 emissions. SRES are made so that climate models like ISAM 
can run against such scenarios and form predictions of future concentrations of GHGs.  

For the calibration exercise, we converted IPCC’s parts-per-million by volume 
(ppmv) of CO2 concentration data to GtC units by using a factor of 2.083 GtC per ppmv (as 
per the method given in Oak Ridge National Laboratory 1990). For this calibration exercise 
we wanted to find the values of Rate of CO2 Transfer for two extreme IPCC emission 
scenarios, when our model values for CO2 in Atmos give us a good fit with the predictions 
of CO2 in Atmos from the ISAM climate model on the same emission scenarios.  
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Figure 2. CO2 Emissions into Atmosphere each year in Pessimistic and Optimistic 

Scenarios 
 

Using the above approach, we found that Rate of CO2 Transfer had values of 0.016 
(or 1.6%) per year and 0.012 (or 1.2%) per year for the optimistic and pessimistic CO2 
emissions scenarios respectively. The fits of our model to ISAM model predictions for 
these two values of Rate of CO2 Transfer has been shown in Figure 3 (emission for the 
optimistic scenario) and Figure 4 (emission for the pessimistic scenario). 

 
Figure 3. Climate Model fit to ISAM Model for Optimistic Scenario, R2=.97, RMSD = .50, 

Rate of CO2 Transfer = 0.016 
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Figure 4. Climate Model fit to ISAM Model for Pessimistic Scenario, R2=.99, 

RMSD = .50, Rate of CO2 Transfer = 0.012 
 

The two Rate of CO2 Transfer values that we obtained from the above model fit 
provided us with two extreme values for dynamics on the climate problem that were used in 
our experiment. This also captured the uncertainty and variability in the Rate of CO2 
Transfer parameter for our climate model. We used the model as the scientific basis for 
designing the Climate Change Simulator (CCS). 

 
CLIMATE CHANGE SIMULATOR TASK 

The experiment described in this paper was carried out using an interactive Climate 
Change Simulated (CCS) task. CSS was developed according to a generic dynamic stocks 
and flows task that represents the most essential elements of every dynamic system: a stock 
an inflow and an outflow (Dutt and Gonzalez, 2007; Gonzalez and Dutt, 2007). CCS is a 
dynamic system that is built upon our simplified and adapted climate model discussed in 
the previous section. CCS represents a single stock or accumulation of CO2 over time; 
Anthropogenic deforestation and fossil fuel CO2 emissions, which increase the level of CO2 
stock, and CO2 removals or absorptions, which decrease the level of CO2 stock. 

The participant’s goal in CSS is to maintain the CO2 stock within an acceptable 
range around the goal value. Participants do not completely control the CO2 stock level 
directly.  Rather, the stock is influenced by endogenous participant controlled emissions 
which are of two types i.e. those due to deforestation and those due to burning of fossil 
fuels, while the CO2 outflows are outside the direct control of the participants, altered based 
on the change in concentration of the CO2 stock over a period of time and the rate of CO2 
transfer parameter set for the experimental condition.  
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Figure 5 presents the graphical user interface of CCS. The stock is represented in an 
“atmospheric tank” in continuous units of the stock as CO2 concentration. The markings on 
the left-hand side of the tank represent the CO2 level in the atmospheric tank at any instance 
of time. There are 2 pipes connecting the tank, one labeled Emissions, which increases the 
level of stock in the tank, and other pipe labeled Absorptions, which decreases the level of 
stock in the tank. 

 

Figure 5. Climate Change Simulator task 

Emissions or total emissions are made up of 2 components, fossil fuel emissions and 
deforestation emissions.  The participant must set the fossil fuel and deforestation 
emissions in the respective text boxes labeled Fossil Fuel Emissions (GtC/year) and 
Deforestation Emissions (GtC/year), and click the Make Emission Decision button. To 
avoid extreme exploration of participants’ emission decisions we restricted the fossil fuel 
and deforestation emissions values to between From and To ranges. Ranges are calculated 
after each emission decision time step executed by the participant (i.e. after every click of 
the Make Emission Decision button).  The absorption calculations are shown on the 
graphical user interface as: 

Absorptions = Rate of CO2 transfer * (Current CO2 concentration – Preindustrial 
CO2 concentration)                  (2) 

Thus, absorptions are computed from assumptions of our climate model and are 
proportional to the current concentration of CO2 i.e. if CO2 concentration is high, the 
absorptions would also become high and vice versa. The target level of CO2 stock is shown 
with a green horizontal line with a label Goal. According to attainable goals in IPCC 
(Houghton, et al. 2001) documents, a Goal level was selected for this task to be 938 GtC.  
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Participants were asked to keep the stock within +/- 15 GtC of the goal (Goal upper bound 
(GtC) and Goal lower bound (GtC) define the upper and lower bounds of the range around 
the goal).  

For the calculation of the range of values i.e. Goal upper bound (GtC) and Goal 
lower bound (GtC), we first categorized all the SRES scenarios as for better and for worse 
based upon whether the net emissions in a particular scenario decreased or kept increasing. 
We then found the yearly percentage change in fossil fuel and deforestation emissions 
under for better and for worse scenarios (done separately for both kinds of scenarios). We 
then picked the lowest five percentage change values and averaged them. Also, we picked 
the highest five percentage change values and averaged them. This averaging for highest 
five and lowest five values was done independently for both for better and for worse 
categories. This averaging exercise gave us two high average values of percentage change 
and two low averaged values of percentage change for emissions. We picked the maximum 
of the two high values as the To value and the minimum of the two low values as the From 
value. 

The Year tells the participant what the current time period is out of a total number of 
years. The information on Fossil Fuel Emissions, Deforestation Emissions and Total 
Emissions, next to Emissions pipe, inform the participant of the emission values that the 
participant inputted in the previous time period for fossil fuel and deforestation emission 
constituents. The absorptions information display provides information on value of 
absorption at each time step that occurred in the previous time period and the method of 
calculation of CO2 absorptions. The Current CO2 concentration can be either read using the 
left scale provided on atmospheric tank or can be seen displayed on a label above the tank. 
There are three graphical information displays provided at the bottom of the tank. The left 
most shows the current and past CO2 concentrations over the years up to the current time 
point in the simulation. The middle graph plots the current and past total CO2 emissions 
which combine the deforestation and fossil fuel emissions parts. The right graph shows the 
current and past absorptions of CO2 from the atmospheric tank (notice that as absorptions 
are proportional to CO2 concentration, this graph has the same shape as the left most CO2 
concentration graph). A participant’s goal is to stabilize the CO2 concentration to values 
within the Goal range with minimum costs incurred. Every time a participant is unable to 
keep the CO2 concentration in the goal range, he or she incurs a cost penalty which is based 
on the IPCC documents (Houghton, et al. 2001) denoting damages due to climate problems 
as $100 million times the difference between the goal and the amount of CO2 in the 
atmospheric tank. Participants stop incurring cost penalty if they are able to maintain the 
CO2 concentration within the specified range limits above and below the Goal i.e. the green 
goal line. The current cost penalty is shown as Current Costs and accumulated penalty as 
the Total Costs on the information display. 

In CCS, participants decide on deforestation and fossil fuel emissions and click the 
Make Emission Decision button. This causes the climate simulator to move autonomously 
by a number of time steps to a future year with changes to CO2 stock and CO2 absorptions. 
During each of these transit years until the system stops in some future year, the total user 
emissions are the same in each transit year and their value equals the values entered by 
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participants before clicking the Make Emission Decision button. When the system stops, a 
participant can again decide on total emission values based on the current state of the 
system and its history over all the past years. This process carries on until the end year in 
the simulation is reached. In the next section, we describe an experiment conducted using 
the climate change model and the CCS task. 

EXPERIMENT 

The Optimistic and Pessimistic scenarios of future emissions proposed by the IPCC 
(Houghton, et al. 2001) were tested experimentally using the CCS task.  As explained 
earlier, two rates of transfer result from these two scenarios: 1.6% and 1.2% per year for the 
Optimistic and Pessimistic scenarios respectively.  

In the presence of slower dynamic condition (1.2% rate of CO2 transfer) where there 
is more delay in emissions decisions (made every 4 years), we expected participants to be 
unable to control the climate system and show poor control performance or higher 
discrepancy (i.e. difference between the goal and amount of CO2 stock) over many years. 
On the other hand, a participant’s performance in the face of a rapid climate dynamic 
condition (1.6% rate of CO2 transfer and emissions decisions made every 2 years) should be 
better with lower discrepancy. On account of greater delay in the slower dynamic 
condition, we expected to find oscillations or bullwhips in the discrepancy stock. Also, on 
account of the presence of time delay in both slow and rapid conditions, we expected that 
the mean value of total participant emissions under the two conditions would be 
significantly different from their respective optimal values (or the difference between the 
optimal and observed values of total emissions would be significantly different from 0). 
This would be primarily on account of a participant’s inability to take into account the 
feedback delays and non linearity in general of dynamic problems. 

Methods 

Experimental Design 

In this experiment, we controlled for the Rate of CO2 transfer parameter and the 
frequency of deforestation and fossil fuel emission decisions and asked participants to 
attempt to control the system over the course of 50 decision points. Specifically, 
participants worked on one of two extreme scenarios: one rapid, where rate of CO2 transfer 
is 1.6% per year with CO2 emission decisions made every 2 years, and other slow, where 
rate of CO2 transfer is 1.2% per year with CO2 emission decisions made every 4 years. The 
goal was to maintain the level of CO2 within +/- 15 GtC from the 938 GtC goal (i.e. 923 
GtC to 953 GtC). We ran the rapid condition for 100 years and the slow condition for 200 
years to equalize the number of decisions made in both conditions to 50 decisions in order 
to be able to compare both the conditions for results. We started CCS in the year 2000 
where the initial CO2 concentration was fixed at 769 GtC. The value of 769 GtC was 
obtained using the average of the values from all 12 IPCC SRES scenarios (Jain, et al. 
1994). Incidentally, all SRES scenarios predicted a value close to 769 GtC for year 2000 
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CO2 concentration. Similarly, the initial deforestation emissions for year 2000 were fixed at 
1.3 GtC/year and the initial fossil fuel emission was fixed at 6.88 GtC/year.  

The From and To ranges of fossil fuel emissions was set at -14% to +22% of the 
value of current fossil fuel emissions. Also, for deforestation emissions, the From and To 
ranges were set as -51% to +55% of the value of current deforestation emissions.  

In both slow and rapid dynamic conditions for reaching and stabilizing CO2 to the 
goal, the total emissions should equal total absorptions when we reach and stabilize CO2 to 
the goal. This means that for the slow condition, the optimal value of total emissions equals 
(938 – 677) * 0.012 = 2.952 GtC per year. Similarly, for the rapid dynamic condition, the 
optimal value of total emissions equals (938 – 677) * 0.016 = 3.936 GtC per year. Thus, if a 
participant is able to decrease total emissions from their year 2000 value of 8.18 GtC per 
year (i.e. 6.88 GtC per year for fossil fuel + 1.30 GtC per year for deforestation) to the 
corresponding lower optimal values under the two conditions, then the participant would be 
able to hit the goal and stabilize the CO2 concentration to the goal. 

We used the absolute value of the difference between the goal and the concentration 
of CO2 in the atmospheric tank i.e. the discrepancy as the dependent variable for the 
purpose of statistical analysis. Also, we used the difference between average total emissions 
under each condition and its optimal emission value as the dependent variable (we call this 
variable discrepancy in emissions from optimal). 

Participants 

Eighteen graduate and undergraduate students from diverse fields of study 

participated in this experiment. 10 were females, and 8 were males. Ages ranged from 18 
years to 31 years with an average age of 23 years. Eight participants were randomly 
assigned to the slow dynamic condition and ten participants were randomly assigned to the 
rapid dynamic condition.  All participants received a base pay of $5. The participants could 
earn an additional bonus out of a maximum of $3, based on their performance in the CCS 
task. The calculation of performance bonus was tied to the cost incurred by a linear 
relationship. Each time a participant could not keep the CO2 stock between +/- 15 GtC 
above or below the goal of 938 GtC in the CO2 atmospheric tank (i.e. the CO2 stock level 
did not lay between 923 GtC and 953 GtC), the participant incurred a cost which was $100 
million times the discrepancy between the upper or lower bound of the goal and the CO2 
concentration stock. Cost incurred was $0 if the participant was able to control the CO2 
concentration stock to stabilize it between 923 GtC and 953 GtC. Participants got $3 in 
performance bonus if they could keep the total costs in the task to be less than or equal to 
$15 billion. Participants got $0 in performance bonus (i.e. only got the base pay) if they 
incurred a total cost of $400 billion or more. For total costs between $400 billion and $15 
billion the cost was linearly translated to give a bonus which lay between $0 and $3.   

Procedure 

Participants were randomly assigned to one of the two conditions (i.e. slow or 
rapid), and they were given instructions on the computer before starting the CCS task. Text 
of the instruction for both conditions is detailed in Appendix B. Soon after participants read 
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the instructions, they were shown a 50 year status quo scenario in CCS. This scenario 
demonstrated what the state of affairs would be if no action had been taken at all in the 
simulation. This scenario started in the year 2000 and ended in year 2050. In this scenario, 
the year 2000 emissions for deforestation were maintained at 1.3 GtC per year and the 
emissions for fossil fuels at 6.88 GtC per year for the next 50 years (these values of 
emissions are actually the year 2000 or status quo values). Starting with year 2000 
concentrations of 769 GtC (from climate model), the concentration of CO2 in the 
atmospheric tank increased to more than 1000 GtC by year 2050, which is more than a 5% 
increase from the year 2000 value. Participants were told of the severe consequences that 
this increase in concentration might hold in terms of economic and human losses. After the 
scenario finished, participants were encouraged to ask questions on the task. Participants 
were given full information on the CCS task and were reminded that their task was to 
control CO2 concentration to within the +/- 15 GtC range around the goal over the entire 
course of the CCS task. They were then asked to play the CCS task for 50 decision points 
over a course of 100 or 200 years depending upon the randomly assigned condition. 

Participants sat in front of a computer screen and were presented with the CCS 
displayed in the center of the screen. We made use of Windows XP-based desktop 
computer terminals with plasma screens, which had a resolution of 1024 x 1080; the 
desktop computers ran on a Pentium 4 processor base.  

Results 
The distribution for the discrepancy in the data for both slow and rapid dynamic 

conditions as a whole was found to be non-normal in K-S tests. We tested for normality of 
the data on the 1st decision point, 25th decision point and the 50th decision point. For the 1st 
decision point the data was normal for both the slow and rapid conditions, D(8) = .250, ns 
and D(10) = .180, ns respectively.1 For the 25th decision point, the data was non-normal for 
the slow condition but was normal for the rapid condition with D(8) = .324, p <.05 and 
D(10) = .178, ns respectively. Lastly, for the 50th decision point, the data was non-normal 
for both slow and rapid conditions with D(8) = .346, p <.05 and D(10) = .285, p <.05 
respectively. Also, Levene’s test for homogeneity of variances for the data revealed that for 
1st and 50th decision points, the variance in the data were homogenous F (1, 16) = 1.131, ns,  
and F (1, 16) = 2.104, ns respectively. But Levene’s test for the homogeneity of variances 
for the 25th decision point indicated that the variances to be significantly different, hence 
the assumptions of homogeneity of variances had been violated, F (1, 16) = 5.624, p <.05. 
Due to non-normality and non-homogeneity of variances across decision points we report 
non parametric statistics here. 

The Mann-Whitney test reported that the discrepancy in the slow dynamic condition 
(Mean =96.10 GtC; Std. Dev. =142.83 GtC) was significantly higher than the discrepancy 
in the rapid dynamic condition (Mean =50.38 GtC; Std. Dev. =42.65 GtC) with U = 86084, 

                                                 

1 The value D(8) means degree of freedom of 8. This implies that for the 1st decision points, we had in all 8  
participants in slow condition. Similarly, D(10) means 10 participants in the rapid condition for the 1st 
decision point.   
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Z = -3.59, p < .001, r = -.12. Figure 6 shows the discrepancy in both the slow and rapid 
dynamic conditions. From Figure 6, it is easy to see the oscillatory nature of the 
Discrepancy in CO2 concentration in the slow dynamic condition as compared to the rapid 
dynamic condition. 

 

Figure 6. Discrepancy in CO2 concentration between slow and rapid conditions 

To test for improvement of performance (or learning) across decision points within 
both the slow and rapid dynamic conditions, Wilcoxon test was performed. For participants 
in the slow dynamic condition, the discrepancy was significantly higher on the 1st decision 
point (Mean =162.78 GtC; Std. Dev. =.71 GtC) than the 50th decision point (Mean =58.04 
GtC; Std. Dev. =103.62 GtC), T = 3, p < .05, r = -.47. Also, for participants in the rapid 
dynamic condition, the discrepancy was significantly higher on the 1st decision point (Mean 
=162.35 GtC; Std. Dev. =1.23 GtC) than the 50th decision point (Mean =28.74 GtC; Std. 
Dev. =33.85 GtC), T = 0, p < .05, r = -.63. This result shows that participants showed 
learning or improvement in performance over time. 

To test whether the total emissions (i.e. sum of fossil fuel and deforestation 
emissions) under slow and rapid conditions were significantly different from their optimal 
values, we compared the discrepancy in emissions from the optimal dependent variable 
with a 0 value in a Mann-Whitney test for both conditions separately. The Mann-Whitney 
test reported that the discrepancy in emissions from optimal in the slow dynamic condition 
(Mean =1.28 GtC per year; Std. Dev. =1.43 GtC per year) was significantly higher than 0 
values (Mean =0 GtC per year; Std. Dev. =0 GtC per year) with U = 183.5, Z = -7.47, p < 
.001 r = -.74. Also, the Mann-Whitney test reported that the discrepancy in emissions from 
optimal in the rapid dynamic condition (Mean =1.36 GtC per year; Std. Dev. =1.68 GtC per 
year) was significantly higher than 0 values (Mean =0 GtC per year; Mdn = 0 GtC per year) 
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with U = 150, Z = -8.11, p < .001 r = -.81. Results indicate presence of suboptimal 
performance in both conditions and support for our expectation on emission hypothesis. 

Lastly, the Mann-Whitney test reported that the discrepancy in emissions from 
optimal in the slow dynamic condition (Mean =1.28 GtC per year; Std. Dev. =1.43 GtC per 
year) was not significantly different than the discrepancy in emissions in the rapid dynamic 
condition (Mean =1.36 GtC per year; Std. Dev. =1.68 GtC per year) with U = 1218, Z = -
0.22, ns. This result shows that performance on emission decisions was generally poor and 
similar under both conditions. Figure 7 shows the total emissions for participants under 
both the slow and rapid conditions. From figure 7, it can be seen that rapid emissions are 
higher in value than slow emissions (although this difference is insignificant). The higher 
value of emissions in rapid dynamic condition than slow dynamic condition produces more 
CO2 stock under rapid than slow condition. As the CO2 absorption from atmospheric tank is 
a function of CO2 stock, the higher CO2 stock under rapid dynamic condition leads to 
higher absorption rate (outflow) causing a greater lowering in stock and lesser discrepancy 
in rapid dynamic condition than the discrepancy in slow dynamic condition (as seen in 
Figure 6). 

 
Figure 7. Total Emissions in slow and rapid dynamic conditions 

DISCUSSION AND CONCLUSIONS 
Many of the complex dynamic effects found in the real world can be better 

understood with simple tasks (Cronin et al. in press) and here we present a demonstration of 
such a process in CSS. The focus of this is on the simplification of a complex problem such 
as global warming into one of the most important elements of the problem: the human 
understanding of accumulation and depletion of stocks over time. We varied the dynamics 
of the climate system and the frequency of emission decisions. Participants showed poor 
selection of emission decisions in both slow and rapid conditions and show an evidence of 
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bullwhip like oscillations and higher discrepancy for slower dynamics in terms of smaller 
CO2 absorptions rates. Such bullwhip oscillations and higher discrepancy due to faulty total 
emission decisions by humans could have drastic social, economic and political 
consequences. 

As already mentioned, the problem of human understanding and control of dynamic 
systems, such as the climate change, is widely known (Sweeney and Sterman 2000; 
Brehmer 1989, 1992; Diehl and Sterman 1995; Moxnes and Saysel 2004; Paich and 
Sterman 1993; Sterman 1989; Sterman and Sweeney 2002). But recently, evidence for an 
even more disturbing problem has been found: that people have trouble understanding even 
simple dynamic tasks consisting of one stock, one inflow and one outflow (Cronin and 
Gonzalez 2007; Cronin, et al. in press). When people are encountered by problems in these 
systems, they, due to cognitive incapacities, simply fail to account for non linearity, 
feedback delays and side effects. Although, the slow dynamic condition offers twice the 
delay in human decisions than the rapid dynamic condition, the rapid dynamic is also 
delayed (by two time periods). Also, in the slower dynamic condition, the absorption non 
linearity and side effects are only 0.4% less than the rapid dynamic condition (i.e. 1.6% in 
rapid dynamic condition minus the 1.2% in slow dynamic conditions). Thus, participants 
who received either of the two conditions, slow or rapid, due to human cognitive inabilities 
won’t be able to understand the consequences of their actions, won’t foresee how the 
system would evolve simply because they suffer from poor system’s thinking as a result of 
their limited cognitive capacities and this leads to poor control and performance under both 
dynamic conditions.  

We believe that due to the poor participant performance there is a strong evidence 
for faulty system’s thinking on part of our participants and support for “Misperceptions Of 
Feedback” (MOF) hypothesis (Sterman, 1989) exists in our research study. In our study, 
the slow condition has four units of time delay which is twice the delay in rapid condition 
where the slow condition accompanies slower system dynamics than the rapid condition. 
Under these conditions, although all features of the climate change task are transparent and 
salient, yet people simply fail to account for time delays and dynamic complexity due to 
their limited mental models and cognitive incapacities and this leads to bullwhip like 
oscillation in the slow dynamic condition. Diehl and Sterman (1995) reported the effect of 
variation of dynamic complexity on human performance in a first order dynamic decision 
making task where the task was to minimize cost in the system by controlling stock in a 
bathtub to a desired level. In their task participants made production decisions where the 
sales (outflow) of the system were a function of both the production (i.e. participant 
controlled inflow) and an exogenous noise. According to Diehl and Sterman (1995), there 
was a large deterioration of control performance with increase in feedback delay where 
participant’s stock showed oscillations which were directly proportional to delay in the 
production decisions. The primary reason for the poor participant performance was 
attributed of the “Misperceptions of Feedback” (MOF) hypothesis (Sterman, 1989), where 
people took an “open loop” view of an actual closed loop system, failed to account for 
feedback delays between actions and responses, did not comprehend the system dynamics 
and ignored the non linearity present in the system.  
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We also find an explanation for poor participant control performance in our climate 
change task under both slow and rapid conditions from experiments reported using a single 
player beer game by Martin and Gonzalez (under review). According to Martin and 
Gonzalez (under review), the bullwhip effect, i.e. the increase in oscillation in inventory 
stock, was found to be directly proportional to the lead time in terms of ordering and 
shipping delay in the beer distribution game. People simply ignored the supply line of the 
beer and mostly concentrated to keep their own inventory at a higher level. This neglect of 
the supply line led to bullwhip like oscillations due to the working of MOF hypothesis. 
When Martin and Gonzalez (under review) experimentally increase the ordering and 
shipping delay in weeks for procuring beer after placing an order, participants experienced 
more bullwhip. This finding applies directly to the current results for the climate system 
and forms an explanation for the presence of a bullwhip like oscillation in the CO2 stock for 
the slow condition compared to the CO2 stock in the rapid dynamic condition. We varied 
the frequency of CO2 emissions decisions made by the participants under the two different 
dynamic conditions. The frequency of emissions decisions between the slow and rapid 
conditions are the year gaps between decision points at which participants can order new 
CO2 emissions. Participants cannot alter emissions on any year between any two decision 
points. Increasing the frequency of decisions i.e. the time gap between two decision points 
is similar to increasing the shipping and ordering delay in a single player Beer Game 
(Martin and Gonzalez, under review). Thus, in slow dynamic conditions where people find 
a feedback delay of four years between two consecutive decision points, they tend to 
neglect this delay in emissions due to their cognitive incapacities and misperceptions of 
feedback. This results in bullwhip oscillations under slow conditions of feedback delay. On 
the other hand, for the rapid dynamic condition, the frequency of emission decisions is 
double and dynamics is rapid resulting is lesser feedback delay and better human 
performance. 

In our experiment, participants made poor total emissions decisions under both 
conditions which were significantly different from total optimal emissions behavior in the 
problem under both the conditions. This happened even after the CCS simulation was 
completely transparent to the participants i.e. we provide participants with full details on 
the dynamics of problem, and there was no time pressure on the participants in the task. 
The support for the finding comes from the account for human cognitive incapacities in 
face of dynamic complexities as reported by Diehl and Sterman (1995). Diehl and Sterman 
(1995) report that in a first order system like our climate system, participant’s ordering (i.e. 
inflow) decisions were poor and directed away from optimal behavior. The only condition 
where participants performed well was when the system did not have any side effects or 
feedback time delays: i.e. the simplest control condition. Under this control condition 
participants showed good performance with near optimal control as they did not encounter 
any MOF because there were no system delays. Under such conditions of no delay and no 
side effects a participant could simply turn off the production once the goal was attained 
and the system would behave optimally and instantaneously to participant’s commands. We 
argue that due to the presence of delays in both of the dynamic conditions in our climate 
task, following such a simple “turn off emissions” strategy would not provide better control 
and would continue to pose problems in system control. We cannot simply shut down the 
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emissions or drastically decrease them from high values when the CO2 concentration 
reaches the goal because by that time it is already too late to do so due to slow feedback 
delays governing the system: the climate system is slow with longer time delays between 
actions and their consequences. Even if we were able to completely shut down the total 
CO2 emissions from a high value to 0 as the concentrations of CO2 reached the goal, the 
concentration of CO2 would continue to rise and overshoot the goal due to the ordered 
emissions still pending to occur and also due to the low absorptions of CO2. 

We have already shown in this paper that in both dynamic conditions, the optimal 
strategy, or the correct thing to do is to slowly reduce the CO2 emissions from there year 
2000 value of 8.18 GtC per year down to where they become equal to absorptions and the 
system reaches the goal concentration of CO2. This optimal decrease in the case of the slow 
and rapid dynamic conditions has to be from 8.18 GtC per year to 2.952 GtC per year and 
3.936 GtC per year respectively. Thus, simply stated in our task the optimal strategy is to 
slowly decrease the velocity of emissions i.e. to reduce emissions and make them approach 
the absorptions when the concentration approaches the goal. Participants although try to 
reduce emissions under both conditions but do not follow the optimal strategy to reduce 
emissions at the correct pace and continue to maintain emissions at higher values than to 
gradually decrease them till they reach the goal. But by this time, when they are at the goal, 
it is too late to act or respond to correct their mistake and cut down emissions. This 
distressing participant emission behavior on account of MOF hypothesis also provides 
supportive evidence for the “wait and watch” policies currently being followed in the real 
world for our climate (Sterman and Sweeney 2002). People in today’s world want to 
continue to maintain emissions at high levels rather than to take actions which are geared 
towards reducing them. It appears that at the current pace people will continue to hold 
emissions at higher values till the concentrations of GHGs start overshooting the desirable 
amounts and goals and only realize the misperceptions of their actions when is already too 
late to correct their actions due to the delays present in the system (Sterman and Sweeney 
2002). The solution to the problem is to make people repeatedly play climate scenarios like 
ours using climate simulator tools like CCS where people learn to foresee their mistakes 
with repeated practice and come to realize that the key to the problem of global warming to 
gradually reduce emissions at the correct pace from their current higher values so that the 
problem does not lead to catastrophic outcomes for the future. 

There are a number of suggestions that come out of this research. Firstly, 
participants show lower CO2 discrepancy in the rapid dynamic condition than slow 
dynamic condition. Thus, making rapid emission policy decisions helps to control climate 
change more successfully than slower policy decisions; our emission policies for climate 
should be revised periodically and at short periods of time. Secondly, another main 
intervention is the use of CCS to give training and educate people on the problem. The tool 
in its simplistic structure is able to make the climate problem understandable to common 
people and has a potential to increase the human understanding of accumulation and 
depletion of stocks over time, making them aware of the urgency of the situation before it 
becomes too late to act to save the Earth from climate change. 
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Our results in this study demonstrate that individuals have lesser discrepancy and 
bullwhip oscillation in the rapid condition than the slw condition thus participants learn 
more quickly when the system follows rapid dynamics than slower dynamics. This means 
that a more frequent repeated policymaking strategy on climate issues would lead to 
significantly better outcomes than the less frequent policymaking strategy intervention. 
Results also show that in general, people have great difficulties in understanding and 
controlling a stock even in simpler dynamic systems consisting of one stock. Individuals 
were better at controlling the system with shorter decision delays and rapid system response 
dynamics than their inverse counter parts, supporting previous findings in dynamic systems 
(Dörner, 1980; Sterman, 1994). The results support our hypothesis and findings from a 
wide literature on people’s inability to handle dynamically complex systems and people’s 
reliance on faulty stock – flow heuristics (Brehmer 1989; Cronin, et al. in press; Diehl and 
Sterman 1995). 

We plan to continue our initial research investigations reported in this paper. In 
particular, it is important to understand the independent effects of the two variables 
manipulated in this experiment: the dynamics of the system and the feedback.  For 
example, it would be important to see if in the pessimistic scenario more frequent decisions 
would help in controlling the system compared to less frequent decisions. We see that 
greater understanding of human incapacities and cognitive limitations using tools like CCS 
is the right step for research in this endeavor.  
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Appendix A 

 
Vensim® PLE Equations for System Dynamics Climate Model 

 
(01) CO2 emissions into Atmosphere= User Action CO2 emissions 
 Units: TonC/Year [0,1e+012] 
  
(02) CO2 in Atmos= INTEG (CO2 emissions into Atmosphere-CO2 removals, 
   7.69e+011) 

Units: TonC 
 
(03) CO2 removals= (CO2 in Atmos-Preindustrial CO2)*Rate of CO2 Transfer 
 Units: TonC/Year 
  
(04) FINAL TIME  = 2100  

Units: Year 
 The final time for the simulation. 
 
(05) INITIAL TIME  = 2000 
 Units: Year 
 The initial time for the simulation. 
 
(06) Preindustrial CO2= 6.77e+011 
 Units: TonC 
  
(07) Rate of CO2 Transfer= 0.012 
 Units: 1/Year 

Rate of Storage of Atmospheric Greenhouse Gases [delta-m]  (1/year) Inverse 
yields average residence time of gases (120 years).  

 
(08) SAVEPER  = 5 
 Units: Year [0,?] 
 The frequency with which output is stored. 
 
(09) TIME STEP  = 10 
 Units: Year [0,?] 
 The time step for the simulation. 
 
(10) User Action CO2 emissions 
 Units: TonC/Year 

We define different user inflow actions here (SRES Scenarios A2 and B1 were 
defined here for our model fits) 
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Appendix B 
 

Instructions for Slow Dynamic Condition 
 

The only change in text for the instructions given in the Rapid Dynamic Condition 
was making the end year as 2100 (in place of 2200), the frequency of emission 
decisions to be every 2 years (in place of every 4 years) and the absorptions to be 
1.6% of the difference between the current CO2 concentration and the preindustrial 
CO2 concentration (in place of 1.2%).  
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