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ABSTRACT: A model of human automaticity in a dynamic visual task (RADAR) is reported. This model 

represents a first approximation for a model that reproduces the main results from human participants 

collected by Young, Healy, Gonzalez, and Bourne (2007). The initial results on response time 

demonstrate high degree of fidelity (R
2
=0.98) using a process model derived directly from task 

requirements.  The model leverages the ACT-R cognitive architecture (Anderson & Lebiere, 1998) and 

depends primarily on assumptions that have been imported from previous modeling efforts.  The model is 

an instantiation of a dual-process theory of automaticity that is mediated by a strategy selection stage. 

 

 

1. Introduction 
 

Several real-world tasks, ranging across fields such as 

aviation, military and healthcare, require participants 

to develop highly skilled and automated levels of 

performance to achieve fast and accurate responses to 

critical stimuli in the environment. In the context of 

target detection tasks, such automated detection 

processes are particularly relevant to situations such 

as that of a pilot detecting the presence of an enemy 

among “friendly” aircraft, a physician detecting the 

presence of a tumor in x-rays, or a luggage screener 

detecting the presence of a hidden weapon among 

objects in passenger luggage (Gonzalez, Thomas, & 

Madhavan, 2006). 

 

The development of automaticity in such contexts is 

particularly important as these complex tasks are 

characterized by multiple target stimuli and 

distractors, and environmental variables such as time 

pressure and workload make these tasks extremely 

difficult to perform in the absence of a practiced skill 

set (Gonzalez et al., 2006; Gonzalez & Thomas, 

2006). 

 

The phenomenon of automaticity was largely defined 

by Schneider and Shiffrin (1977) and Shiffrin and 

Schneider (1977), using a visual search and detection 

paradigm.  Human behavior was characterized using a 

dual-process theory where one process was labeled as 

controlled, and one was described as automatic.  A 

controlled process can be characterized as slow, 



deliberate, voluntary, serial, and requiring attention.  

Controlled processes are sensitive to the workload or 

number of items in the task.  On the other hand, 

automatic processes can be characterized as fast, 

involuntary, parallel, and requiring little overt 

attention.  Automatic processes, due to their parallel 

nature, can be insensitive to the number of items 

involved in a task (see Wolfe, 1998, for a review of 

these terms in the context of visual search).   

 

Initial performance in a novel task is typically 

performed in a controlled fashion.  However, given 

extended practice in a task where there is a consistent 

mapping between stimulus and response, where a 

target appears only as a target and never as a 

distractor, automaticity tends to emerge.  The 

transition from controlled to automatic processing can 

be detected by a shift in the pattern of response times 

to process a set of items: When increases in the 

number of items do not produce proportional 

increases in response times, automatic processing is 

said to be occurring.  This shift can also be described 

as a reduction in cognitive load.  Automatic 

processing is not only faster; it is also less effortful 

due to lower attentional demands. 

 

Shiffrin and Schneider (1977) and Schneider and 

Shiffrin (1977) identified mapping conditions that 

enabled the emergence of automaticity and labeled 

these conditions consistent mapping (CM), which 

means stimuli are consistently either targets or 

distractors and are not exchanged between sets, and 

varied mapping (VM), which means stimuli can 

appear as either targets or distractors.   

 

In addition to depending on consistent mapping 

conditions, the emergence of automaticity can also be 

impacted by the addition of other tasks that compete 

for resources during the acquisition phase.  Wickens 

(1980, 1984) demonstrated that competing tasks that 

share the same modality (e.g., two visual tasks) can 

be expected to produce more interference than tasks 

that depend on different modalities (e.g., one visual 

task, one aural task). 

 

From a training perspective, the emergence of 

automaticity is often a desirable outcome:  

Performance becomes less effortful allowing both 

quicker performance and simultaneous completion of 

other tasks that might compete for attention or other 

resources that voluntary controlled task execution 

requires.  However, automaticity might also have 

drawbacks in task environments where controlled 

processes might be called for due to, for example, a 

high cost for incorrect decision-making. 

 

Although automaticity is implicated in many rapid 

decision processes, relatively few efforts have been 

made to understand the exact information used in 

making a rapid decision.  One notable exception is 

the research program described by Schunn, Reder, 

Nhouyvanisvong, Richards, and Stroffolino (1997).  

In a mental arithmetic paradigm, they investigated the 

decision of whether to calculate or retrieve from 

memory.  In their study, participants were asked to 

make decisions about the method they would use to 

solve a math problem more quickly than they could 

actually make the decision itself.  (They had to decide 

whether to retrieve the answer from memory or to 

calculate the answer upon very brief exposure to the 

problem.)  One of their main findings was that the 

surface features of the items being processed drove 

the choice of which decision process to use, and 

participants could be tricked into attempting to 

retrieve an answer that they had not memorized if it 

shared enough surface features (e.g., operands) with a 

previously memorized problem. 

 

Studying the interaction of these aspects of 

automaticity – the impact of dual tasking in different 

modalities, the contribution of surface features to 

decision making, the effect of environmental 

complexity, the effect of consistency of mapping – 

calls for a dynamic, complex task environment within 

which automaticity can be thoroughly evaluated.  The 

RADAR task environment (Gonzalez & Thomas, 

2006) provides just such an environment (described 

in detail below) in which the acquisition of 

automaticity can be carefully studied. 

 

The research reported in this paper is part of a major 

effort to create computational cognitive models that 

can be used as predictive tools for the effects of 

empirically-based training principles. An associated 

research effort is that of ACT-R models of training 

data entry skills (Gonzalez, Fu, Healy, Kole, & 

Bourne, 2006). 

 

The research reported in this paper leverages 

empirical research of the training difficulty 

hypothesis (Schneider, Healy, & Bourne, 2002). An 

experiment, which will be summarized below, was 

designed to test the hypothesis that training under 

more difficult conditions would enhance testing 

(Young, Healy, Gonzalez, & Bourne, 2007). The 

ACT-R model designed and reported here is a first 

approximation for a model that reproduces the main 

results found in such an experiment. 

 



In what follows, we will introduce the RADAR task, 

explain the empirical results, explain the cognitive 

model, and present the results from both modeled and 

human participants. Finally, implications for training 

will be discussed.  The purpose of this modeling 

effort is to create an explicit account of controlled 

and automatic processing on a dynamic visual task to 

improve our understanding of how to leverage these 

processes in a training context. 

 

 

2. The RADAR Task 
 

The RADAR task is a single-user control task in 

which the goal is to detect and eliminate a hostile 

enemy aircraft by selecting an appropriate weapon 

system (a screenshot of the RADAR task is shown in 

Figure 1). This task has been used to study the effects 

of automatic detection on decision making (Gonzalez 

& Thomas, 2006) and the effects of response 

mapping on automaticity development (Gonzalez et 

al., 2006). 

 

The RADAR task has two components: (1) visual 

detection and (2) decision-making and an optional, 

tone counting component explained below. The 

research reported in this paper utilizes the visual 

detection component and the tone counting task, but a 

complete description of RADAR including the 

decision-making component can be found in 

Gonzalez and Thomas (2006). 

 

The visual detection and memory component requires 

the user to memorize a set of targets and then look for 

the presence of a target on a RADAR grid. This 

component essentially reproduces the goals of 

Schneider and Shiffrin’s (1977) task, except that the 

visual elements in RADAR are not static but instead 

are dynamic. In Schneider and Shiffrin’s (1977) task, 

all stimuli appear within foveal vision, whereas in the 

RADAR task, the stimuli move on the screen, and 

thus eye movements and visual scanning are required 

to find a target. A target threat may or may not be 

present among a set of moving blips that represent 

incoming aircraft. The blips—in the form of symbols, 

digits, consonants, or blank masks—begin at the four 

corners of the RADAR grid and approach the center 

at a uniform rate. The detection of an enemy aircraft 

must occur before the blips collapse in the middle of 

the grid. 

 

In addition to visual detection component, some 

participants are also asked to detect and count the 

number of auditory tones presented that deviate from 
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Figure 1. The RADAR Task. Illustration of the RADAR task: visual detection component with blips at the 

moment of detection are shown in the RADAR grid. This example demonstrates a frame size of 4 (there are 4 non-

blank blips on the RADAR). The decision making component is shown on the right hand side of the figure. The 

experiment conducted by Young et al. (2007) involved only the visual detection component of RADAR and the 

tone counting task. 

 



a given reference tone.  Participants were individually 

calibrated to their own standard and deviant pitches 

prior to testing. These tones are presented irregularly 

at roughly 1 s intervals throughout the set of trials, so 

this count must be maintained and accumulated 

across the presentation of the set of individual frames 

within a trial. 

 

A set of targets containing either 1 or 4 letters or 

digits (depending on condition), drawn from the 9 

possible digits and a specific subset of 9 letters, is 

presented to participants prior to each set of trials 

(see Figure 2) and must be maintained in memory.  

The two main conditions of the experiment, 

consistent mapping and varied mapping, are defined 

by the keeping a member of the memory set 

consistently defined as target throughout a series of 

trials and not as a distractor (CM), or considering a 

memory element a target in some trials and distractor 

in other (VM). In the varied mapping (VM) 

condition, digits or letters could be targets (depending 

on the assigned target type, which was varied between 

subjects and always differed from that used for 

consistent mapping (CM)), whereas the same class 

(digits or letters) served as distractors. In the 

consistent mapping condition, either digits are targets 

and letters are distractors, or letters are targets and 

digits are distractors.  Thus, if the targets are digits, a 

blip filled in with a digit is necessarily a target on a 

CM trial. 

 

 

3. Human Performance on the RADAR 

Task 
 

Young, Healy, Gonzalez, and Bourne (2007) 

collected an extensive data set recording human 

performance on the RADAR Task.  The current 

modeling effort focuses on a subset of these collected 

data that spans two experimental sessions, with the 

second session conducted 1 week after the first.  

These sessions are subsequently described as 

“training” and “test”.  Consistent mapping target type 

was varied between subjects, and was either digits or 

letters, whereas mapping condition (CM or VM) and 

cognitive load – either 1 or 4 blips filled in and either 

1 or 4 targets – were varied within subjects. 

 

Forty-eight subjects participated in this experiment 

and completed the two sessions.  Each session took 

approximately 2.5 hrs.  The blocks were presented in 

the following predetermined order: CM 1-1, CM 4-4, 

VM 1-1, VM 4-4, Break, VM 4-4, VM 1-1, CM 4-4, 

and CM 1-1, where the first number represents the 

memory set size and the second number is the frame 

size (the number of non-blank blips). These two 

parameters represent the workload in the RADAR 

task. 1-1 is the lowest workload, whereas 4-4 is the 

highest workload. Each block consisted of 20 shifts 

each, where a shift contained 9 individual frames.  At 

the start of each shift a set of targets (either letters or 

digits) were presented for memorization, after which 

the frames started appearing.  Both the first and last 

frames were blank, whereas the remaining frames 

contained either 1 or 4 filled in blips according to the 

experimental condition.  Blips originated at the 

corners of the display and rapidly moved toward the 

center. 

 

75% of the shifts had a target present, and each shift 

had 7 frames that had to be checked for targets.  If no 

targets were presented, participants submitted a quiet 

airspace report by pressing the space bar. 

 

4 conditions in the experiment varied whether 

subjects heard and counted deviant tones during 

training and during testing. The 4 conditions were: (a) 

tone during training and testing, (b) tone during 

training, silent during testing, (c) silent during 

training, tone during testing, and (d) silent during 

training and testing. There were 12 subjects in each of 

these 4 conditions.  At the end of the shift, 

participants who heard tones then entered the number 

of deviant tones. 

 

A measure of human performance on the RADAR 

task is the time required to identify a target on a target 

present frame.  The following table presents one of 

the results from the experiment. The table shows the 

response time by condition for both consistent 

 
 

Figure 2. A target set, with memory set size of 4 is 

presented to the participants before a set of RADAR 

frames. 



mapping (CM) and varied mapping (VM) conditions, 

and whether workload was low (CM 1-1, VM 1-1) or 

high (CM 4-4, VM 4-4). 

 

Target Identification Response Time (ms) 

Condition RT at Training RT at Test

CM 1-1 707.761 681.508

CM 4-4 1004.740 953.060

VM 1-1 683.304 717.141

VM 4-4 1242.503 1248.069

 

In general, the significant effects are of mapping 

condition (CM is faster than VM) and load (1-1 is 

faster than 4-4).  There is a significant interaction 

between load and mapping condition – CM 4-4 is 

much faster than VM 4-4 whereas CM 1-1 and VM 1-

1 are comparable.  These results are consistent with 

the automaticity theory and with previous 

automaticity results using the RADAR task (Gonzalez 

& Thomas, 2006). 

 

4. An ACT-R model of automaticity in the 

RADAR Task 
 

One of the main challenges faced in modeling this 

task is to account for the observed pattern of results 

through an explicit mechanism.  To achieve this goal, 

a detailed process model was constructed using ACT-

R 5.0 (Anderson & Lebiere, 1998).  Although many 

readers may be familiar with ACT-R, a brief 

overview will be provided for those unfamiliar with 

the architecture. 

 

4.1 ACT-R 

 

ACT-R (Anderson & Lebiere, 1998) is a unified 

theory of cognition developed with over 30 years of 

cumulative improvement.  At a fine-grained scale it 

has accounted for hundreds of phenomena from the 

cognitive psychology and human factors literature. 

The version employed here, ACT-R 5.0, is a modular 

architecture composed of interacting modules for 

declarative memory, perceptual systems such as 

vision and audition modules, and motor systems such 

as a manual module, all synchronized through a 

central production system.  

 

ACT-R is a hybrid system combining a tractable 

symbolic level (production system) that enables the 

specification of complex cognitive functions, with a 

subsymbolic level that tunes itself to the statistical 

structure of the environment.  The combination of 

these aspects provides both the broad structure of 

cognitive processes and the graded characteristics of 

cognition such as adaptivity, robustness, and 

stochasticity. 

 

The central part of the architecture is the production 

module. A production can match the contents of any 

combination of buffers, including the goal, which 

holds the current context and intentions, the retrieval 

buffer, which holds the most recent chunk retrieved 

from declarative memory, visual and auditory buffers, 

which hold the current sensory information, and the 

manual buffer, which holds the current state of the 

motor module.  During the matching phase, 

production rules whose conditions match perfectly to 

the current state of various information buffers (goal, 

memory retrieval, perceptual, etc.) qualify to enter the 

conflict set. Because ACT-R specifies that only one 

production can fire at a time, the rule with the highest 

expected utility from among those that match is 

selected as the one to fire. 

 

4.2 RADAR Process Model Structure 

 

Figure 3 shows the process flow within the model of 

human performance on the RADAR task.  The 

processes specified support the rehearsal of the 

memory set, allocation of attention to the presented 

frames, encoding and processing of the presented 

targets and distractors, and determination of whether 

a target is present or not on the given display. 

 

The model stipulates different processes for CM and 

VM conditions.  This model is, in effect, making a 

claim that participants are aware of the experimental 

condition in which they find themselves.This 

awareness can be achieved through recognizing errors 

(false alarms) when they occur (see discussion for 

more on this).  The effect of this awareness is that the 

overall process model is pruned, and is specific to 

condition. Each of these pruned process models will 

now be described individually. 

 

4.3 RADAR Process Structure Specific to 

Consistent Mapping Conditions 

 

The essential aspect of the model behavior when it 

recognizes a CM condition is that it does not attempt 

any memory retrievals.  If a candidate item is of the 

same type as the memory set, it is identified as a 

target.  If more than one candidate is present (in the 

4-4 conditions), each is attended in turn.  Thus, 

timing predictions from this condition are contingent 

on shifts of attention, but not retrievals from memory. 

 



4.4 RADAR Process Structure Specific to Varied 

Mapping Conditions 

 

During VM conditions the processing is more 

complicated.  All candidates are the same type as the 

target (e.g., the candidates are letters and the memory 

set consists of letters).  Hence, for all candidates a 

memory retrieval must be performed to make sure the 

candidate is not a distractor.  This procedure 

produces the essential differences of the model in the 

VM condition: memory retrieval repeated for the 

number of items considered.  In the VM 4-4 

condition, the search will complete immediately if a 

target is identified, but otherwise it must be 

completed for each candidate.  Given random 

ordering, this serial search will call for, on average, 

2.5 memory retrievals.  This is in contrast to the CM 

4-4 condition, which will call for an average of 2.5 

attention shifts, without the need for a retrieval. 

 

4.5 Timing Assumptions used by RADAR Model 

 

The model does depend on a set of explicit timing 

assumptions for producing detailed data.  Initial 

perception of the frame and selection of target is 

assumed to take 350 ms, whereas each individual 

attention shift is estimated at 185 ms (Anderson & 

Lebiere, 1998).  Adding the cost for an attention shift 

to the standard ACT-R cycle time yields 205 ms for 

any production that involves an attention shift.  Motor 

action preparation and execution is estimated at 350 

ms (making a response).  The ACT-R architecture 

provides the retrieval times for items from the 

memory set which is impacted by both base-level 

activation and rehearsal (activation receives a boost 

during rehearsal).  The time of memory failure is also 

important:  If an item is not in the memory set, this 

value is determined by the retrieval “timing out,” 

which is impacted by the retrieval threshold.  These 

assumptions, taken together, produce the timing 

predictions of the model. 

 

4.6 RADAR Model Fit to Data 
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Figure 3. The structure of the ACT-R model of the RADAR task. The gray boxes represent those extra processes 

needed in the VM condition that are not necessary in the CM condition. 

 



The process model described above, combined with 

the described timing assumptions, produces a model 

fit that is extremely close to the human data 

(R
2
=0.98) for the combined training and test sessions. 

Figure 4 presents the average latency for both model 

and human data at test. 

 

 

5. Discussion 
 

This paper introduces an ACT-R model of 

automaticity that reproduces latency human data in a 

dynamic visual detection task, the RADAR Task. The 

model reproduces a common result in the 

automaticity literature: that the effect of workload is 

larger under the VM than the CM condition. 

 

The issue of categorization and automaticity 

development has largely been a controversial issue 

(Cheng, 1985). The hypothesis concerning 

categorization that attempted to provide an alternative 

to the explanation of the automatization hypothesis by 

Schneider and Shiffrin (1977) has been clearly shown 

to be insufficient to explain the evidence of 

automaticity development (Schneider & Shiffrin, 

1985).  On the other hand, some accounts of 

automaticity have provided evidence that 

automaticity itself requires focal attention (Logan, 

1992). 

 

The particular process model described here suggests 

that participants are aware of the experimental 

condition (CM or VM) they are in to select their 

strategy for completing the task.  That is, they are 

gating the decision process, and choosing whether to 

rely on a fast automatic process or a slower conscious 

process.  Similar initial decision processes have been 

demonstrated in a range of empirical studies (e.g., 

Schunn, et. al., 1997; Lovett, 1998; Lovett & 

Anderson, 1996).   

 

In addition to the present effort, other modeling 

efforts that have attempted to account for 

automaticity results (e.g., Anderson & Lebiere, 1998) 

have similarly depended on either awareness of 

experimental condition, awareness of stimuli 

category, or both, to replicate the results of Shiffrin 

and Schneider (1977) and Schneider and Shiffrin 

(1977).   

 

Although this may not be a conventional 

interpretation of automaticity, the task requirements 

make it clear that there must be some mechanism that 

chooses between retrieving and deciding.  Given that 

participants demonstrate evidence of acquiring 

automaticity in blocks of consistent mapping that are 

interleaved with blocks of varied mapping, it is not 

unreasonable to expect that there is some awareness 

of this choice.  The categories are distinct (letters and 

numbers) for the CM condition and targets and 

distractors pertain to the same category in the VM 

condition.  The current modeling effort indicates that 

awareness of this block structure (or at least a 

transition to a period of CM from VM) may facilitate 

development of automaticity by encouraging reliance 

on the automatic process.   

 

Adaptation to such a shifting structure is a hallmark 

of human behavior, and has been previously modeled 

using the ACT-R architecture in other domains such 

as air-traffic control (Best, Schunn, & Reder; 1998) 

and an isomorph of the Luchins’ Water Jug Task 

(Lovett, 1998). 

 

There is still a challenge to validate this process 

against the data and even the challenge of identifying 

what that validating data would be.  Our future efforts 

will attempt to identify evidence of shifting strategies 

within the experimental blocks in the RADAR task, 

and seek the same data in other similar tasks.  What 

we expect to find is that, within blocks that are VM 

blocks, false alarms will be clustered in the early 

portions of the block, after which participants will 

start to retrieve (the strategy shift being driven by 

failures).  Conversely, we would expect CM blocks to 

be characterized by a gradual drop in response time 

across the block as memory retrievals are skipped 

(i.e., the VM strategy might persist but the more 

efficient CM strategy will gradually be adopted). 

 

This model may have significant implications for 

training, specifically relating to transfer.  Training in 

a VM condition is known to prevent automaticity.  
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However, if this model is correct, training in a CM 

condition can be expected to lead to a substantial 

number of false alarms when first exposed to a VM 

environment.  Thus, training ought to proceed from 

one to the other: initial CM training to build up 

automaticity followed by a brief period of VM 

training to allow for trainees to learn to make the 

determination of when to pursue an automatic 

decision process. This kind of training hypothesis has 

been tested empirically (Gonzalez & Madhavan, 

2006). 

 

The true value of this modeling effort may be that we 

have been forced to make the model explicit in terms 

of cognitive operations.  The main shortcoming of the 

current model, which we plan to address, is the need 

to allow the model to determine the appropriate 

strategy based on a pattern of changing success and 

failure and a drive to reduce cost (i.e., false alarms 

driving the transition to more effortful retrievals, and 

efficiency seeking driving the transition to skipping 

retrievals).  Another useful enhancement would be the 

addition of the ability to learn individual stimulus 

specific rules within the ACT-R model through 

exposure (e.g., Best, 2006).  In addition, richer 

validating data should be identified.  If the current 

model, augmented with adaptive strategy 

determination, accounts for a pattern of shifting hits, 

misses, false alarms, and correct rejections, it will be 

an even more compelling model. 

 

6. Conclusions 
 

The model of the RADAR task presented here 

emulates the response time data of human participants 

reported in Young et al. (2007) with a high degree of 

fidelity (R squared = 0.98) using a process model 

derived directly from task requirements and 

depending primarily on assumptions that have been 

imported from previous modeling efforts.  The model 

supports the view that dual-process theories of 

automaticity should be augmented with a strategic 

decision process that mediates between reliance on a 

fast, automatic process, or a slower, deliberate 

process. 
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