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Abstract. This research improves our understanding of the Stock-Flow (SF) Failure, found to be a 

robust problem in the perception of accumulation (Cronin, Gonzalez, & Sterman, 2009).  We demonstrate 

the SF Failure with an interactive simulation in a relevant climate change context (Dynamic Climate Change 

Simulator (DCCS).  In DCCS the climate change problem was simplified to an accumulation (stock), CO2 

concentration; inflows, anthropogenic CO2 emissions; and outflows, CO2 absorptions from the atmosphere; 

using realistic climate models and their predictions. DCCS was used in a laboratory experiment to test 

participants’ ability to control the CO2 concentration to a goal over 100 to 200 simulated years. Participants 

confronted one of four scenarios differing in emission decision frequency (every 2 years or 4 years) and rate 

of CO2 transfer from the atmosphere (1.2% or 1.6%, of CO2 concentration). Results show that performance 

in controlling CO2 concentration remained poor in all conditions of the task. An investigation of participant 

control strategies revealed misperceptions of feedback: participants brought CO2 concentration to the goal 

fastest for the condition where dynamics were slow and emission decisions were made less frequently, yet 

their stabilization after reaching the goal remained worst under the same conditions.

 

INTRODUCTION 
 

Growing evidence indicate human misunderstanding 

of the basic building blocks of dynamic systems, including 

stocks, inflows and outflows (Booth Sweeney & Sterman, 

2000; Cronin & Gonzalez, 2007; Cronin, Gonzalez, & 

Sterman, 2009; Sterman & Booth Sweeney, 2002).  Many 

people, often highly educated in mathematics and sciences, fail 

to understand a basic principle of dynamic systems: that a 

stock rises (or falls) when the inflow exceeds (or is less than) 

the outflow (Cronin et al., 2009).  This problem, termed Stock-

Flow failure (SF Failure), has been shown to be persistent even 

in simple tasks, with well motivated participants, in familiar 

contexts and simplified information displays (Cronin et al., 

2009). 

Climate is a very complex dynamic system that 

presents important challenges to the perception, interpretation 

and understanding from the general public (Bostrom, Morgan, 

Fischoff et al., 1994; Read, Bostrom, Morgan et. al., 1994; 

Sterman & Booth Sweeney, 2007). For example, Sterman and 

Booth Sweeney (2002, 2007) have shown that humans often 

misperceive the dynamics of the Green House Gases 

concentrations in the atmosphere wherein they tend to use 

simple but erroneous heuristics, assuming that if one is to 

increase the gases concentration, emissions should increase as 

well. Judging that the stock behaves like the flows has been 

termed the "correlation heuristic" and it has been found to be a 

robust problem of human thinking in the interpretation of non-

linear relationships (Cronin et al., 2009). The faulty participant 

emission behavior may also be due to the “Misperceptions of 

Feedback” (MOF) hypothesis (Sterman, 1989) and provides 

supportive evidence for the “wait and watch” policies currently 

followed in real world climate policymaking (Sterman, 2008). 

As per MOF, people tend to neglect the delay in emissions and 

dynamics due to their cognitive limitations and misperceptions 

of feedback. 

The Stock-Flow Failure has been commonly 

investigated as a static problem (Cronin & Gonzalez, 2007; 

Cronin et al., 2009; Sterman, 2002; Sterman & Sweeney, 

2002, 2007) in which participants are provided with a graph, 

indicating the Inflow (that increases the stock) and the Outflow 

(that decreases the stock) over a time period.  People are then 

asked to make judgments about the level of flows shown in the 

graph (time point with maximum inflow and time point with 

maximum outflow) and the level of stock (time point with 

highest and lowest stock).  Different forms of visual 

information representation have been investigated including 

line graphs, bar graphs, dot graphs, simpler graphs, textual 

description of the problem, among others (Cronin & Gonzalez, 

2007; Cronin et al., 2009), resulting in no improvement in the 

judgments of the level of stock.  In addition, respondents are 

often given only one chance to answer the questions with no 

feedback regarding the accuracy of their responses. 

Unlike as done in the past using static, one shot, 

paper and pencil decision making tasks, we suggest that the 

Stock-Flow Failure may be best understood using interactive 

dynamic stock management tasks.  In these tasks people 

attempt to balance the stock by making repeated decisions on 

the level of inflow and outflow and receiving feedback about 

their decisions’ outcomes.  The interactive dynamic stock 

management tasks would help them build cause-effect 

relationships resulting in an implicit understanding of the 

Stock-Flow problem (see Gonzalez, Lerch & Lebiere, 2003 for 

the Instance Based Learning theory of dynamic decision 

making). 

This study is primarily focused towards determining 

human perceptions and control on a dynamic system by using a 

climate like system as an example. It tries to answer the 

research question on the role humans may choose to play in 

mitigating global warming and climate change. The Dynamic 

Climate Change Simulator (DCCS) is an interactive dynamic 

tool created to help understand the sources of the SF Failure, 

how people make decisions and how they understand and 
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control simple dynamic systems as suggested by Cronin et al. 

(2009). DCCS is based on an adapted climate model from the 

Dynamic Integrated Climate Economy model-1992 (DICE-92) 

(Nordhaus, 1992) which is a general macro-economic model to 

assess the effects and consequences of Earth’s climate. In our 

adaptation, there are two anthropogenic CO2 emissions into an 

atmospheric stock. One is the emission due to deforestation 

and land use and the other is due to the burning of the fossil 

fuels in automobiles and in industries. 

This paper uses DCCS and investigates human 

perceptions of climate like dynamic system in a laboratory 

experiment. The experiment intended to determine the effect 

that a delay in the human emission policy in combination with 

the speed of climate dynamics (i.e. the variation of rates of 

CO2 absorption) would have on the participant’s ability to 

control the CO2 concentration to safer levels. Both of these 

factors have been identified as particularly problematic for 

understanding the climate problem for general public (Sterman 

& Booth Sweeney, 2007).  We present results from this 

experiment and discuss the implications of DCCS and the 

behavioral results to the policy interventions and education of 

climate change for general public. 

 

THE CLIMATE CHANGE MODEL OF DCCS 
 

The model on which the DCCS is based was adapted 

from DICE-1992 (Nordhaus, 1992) and ideas from Moxnes & 

Saysel (2004).  Figure 1 provides the system dynamics 

representation of our climate model. The CO2 in Atmos 

represents concentration of CO2 in the atmosphere (i.e., stock). 

The CO2 concentration increases indirectly by human 

decisions on anthropogenic CO2 emissions (i.e., inflow) called 

User Action CO2 emissions (thus here User Action CO2 

emissions are made up of 2 kinds of emissions: fossil fuel and 

deforestation types). The CO2 emissions into the Atmosphere 

are only affected by User Action CO2 emissions which in turn 

increase the stock of CO2 in Atmos. The CO2 absorptions 

(i.e., outflow) cause a decrease in the concentrations of the 

CO2 in Atmos stock due to absorptions by terrestrial and ocean 

ecosystems. As long as the CO2 emissions into the 

Atmosphere or User Action CO2 emissions exceed absorption 

rates, i.e. CO2 absorptions, the CO2 in Atmos continues to 

increase. Only when the emissions equal the absorption rates 

will the CO2 in Atmos be stabilized. The arrow from the CO2 

in Atmos to the CO2 absorptions illustrates that the outflow at 

all times depends on the concentration of CO2 in Atmos. For 

the equation, CO2 absorptions are directly proportional to the 

concentration of CO2. 

 
Figure 1. Climate Model.  

The Rate of CO2 Transfer is a constant multiplier 

into CO2 in Atmos that gives rise to CO2 absorptions after the 

Pre-industrial CO2 (1970 baseline CO2 concentration) has 

been subtracted from the CO2 in Atmos. The use of a baseline 

concentration and year enables us to determine the change in 

value of CO2 absorptions in comparison to a common starting 

point or datum. 

We calibrated the climate model between years 2000 

and 2100 with projections given by two extreme 

Intergovernmental Panel on Climate Change (IPCC) 

emissions scenarios (IPCC, 2001; Nakicenovic, et al, 2000; for 

details see Dutt & Gonzalez, 2008). Based upon the 

calibration exercise, we found that Rate of CO2 Transfer had 

values of 0.016 (or 1.6%) per year for the optimistic scenario 

(called “B1” as per IPCC, 2001) and 0.012 (or 1.2%) per year 

for the pessimistic one (called “A2” as per IPCC, 2001).  

 

Dynamic Climate Change Simulator 
 

The DCCS interface (see Figure 2) represents a single 

stock or accumulation of CO2 in the form of an orange-color 

liquid in a tank (number 1).  Anthropogenic deforestation and 

fossil fuel CO2 emissions, are represented by a pipe connected 

to the tank (number 2), that increase the level of CO2 stock; 

and CO2 absorptions, also represented as a pipe on the right of 

the tank (number 3), which decreases the level of CO2 stock. 

 
Figure 2. Climate Change Simulator task 

The participant’s goal in DCCS was to maintain the 

CO2 stock within an acceptable range around the goal value of 

938 GtC shown with a green horizontal line with a label Goal. 

The participant decided on emissions of two different types: 

deforestation and burning of fossil fuels (number 4).  The 

participant set the fossil fuel and deforestation emissions in the 

respective text boxes labeled Fossil Fuel Emissions (GtC/year) 

and Deforestation Emissions (GtC/year), and click the Make 

Emission Decision button. To avoid extreme exploration of 

participants’ emission decisions, we restricted the fossil fuel 

and deforestation emissions values to between From and To 

ranges calculated after each emission decision time step 

executed by the participant (number 5; for details on 

calculations see Dutt & Gonzalez, 2008). When a participant 

makes a decision DCCS moves autonomously by a number of 

time steps to a future year. For other details on DCCS please 

see Dutt & Gonzalez (2008). In the next section, we describe 

the laboratory experiment conducted using DCCS. 

 

EXPERIMENT 
 

In this experiment, using DCCS, we manipulated the 

frequency of human emission decisions and the dynamics of 
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the absorption rate in the system. The variation in speed of 

dynamics of the climate system enabled us to capture the 

uncertainty and variability that might be present in future years 

in the Rate of CO2 Transfer parameter. The manipulation of 

frequency of emission decisions is motivated from the fact that 

in the past human beings have shown a poor understanding of 

feedback delays in dynamic systems (Brehmer, 1989; Diehl & 

Sterman, 1995; Dörner, 1980).  As explained earlier, two rates 

of transfer result from these two scenarios: 1.6% (optimistic 

scenario, rapid dynamics) and 1.2% (pessimistic scenario, 

slow dynamics). When emission decisions are less frequent, 

there is a larger time gap between two consecutive decisions, 

and thus combined with slow climate dynamics (1.2% rate of 

CO2 transfer) are expected to result in poor climate control. On 

the other hand, high frequency of emission decisions combined 

with rapid dynamics (i.e. 1.6% rate of CO2 transfer) is 

expected to result in best control of the system.  That is, we 

expected total CO2 emissions to be a function of the frequency 

of decisions as well as the speed of the system dynamics.  

Also, we expected that a system with higher feedback delays 

would produce poorer performance in terms ability to control 

CO2 to goal over time. This would be reflected in lesser 

number of participants reaching and stabilizing CO2 at the goal 

and taking more time to reach and stabilizing CO2 at the goal 

under conditions of more feedback delay (Forrester, 1961; 

Sterman, 1989). These effects would be primarily attributed to 

a participant’s inability to take into account the feedback 

delays and non-linearity of the dynamic task. 

 

Methods 
 

Experimental design. Participants were randomly 

assigned to one of four scenarios: rapid-high, where rate of 

CO2 transfer is 1.6% per year with CO2 emission decisions 

made every 2 simulated years; rapid-low, where rate of CO2 

transfer is 1.6% per year with CO2 emission decisions made 

every 4 simulated years; slow-high, where rate of CO2 transfer 

is 1.2% per year with CO2 emission decisions made every 2 

simulated years; and slow-low, where rate of CO2 transfer is 

1.2% per year with CO2 emission decisions made every 4 

simulated years. The goal under all four conditions was to 

maintain the level of CO2 within +/- 15 GtC from the 938 GtC 

goal (i.e. 923 GtC to 953 GtC and taken from IPCC, 2001). 

We ran the rapid dynamics condition for 100 simulated years 

and the slow dynamics condition for 200 years to equalize the 

number of decisions made in all four conditions to 50 

decisions. The From and To ranges of fossil fuel emissions 

were set at -14% to +22% of the value of current fossil fuel 

emissions. Also, for deforestation emissions, the From and To 

ranges were set as -51% to +55% of the value of current 

deforestation emissions. We used absolute discrepancy, fossil 

fuel, deforestation and total participant emissions as dependent 

variables to discuss participant decision making strategies.  

Participants. Fifty three graduate and undergraduate 

students from diverse fields of study
 
participated in this 

experiment, 26 were females and 27 were males. Ages ranged 

from 18 years to 54 years (Mean= 26 years, SD= 8 years). As 

high as 70% of the participants self-reported to have degrees in 

science, technology, engineering and management (STEM). 

Fourteen participants were randomly assigned to the slow-low 

condition and thirteen participants were assigned to each of the 

slow-high, rapid-high and rapid-low conditions.  All 

participants received a base pay of $5. The participants could 

earn an additional maximum bonus of $3, based on their 

performance in the DCCS (For details, see Dutt & Gonzalez, 

2008). 

Procedure. Participants were given instructions and 

full information before starting the DCCS task. Participants 

were encouraged to ask questions. Finally, participants were 

reminded on the requirements of the control task where every 

detail was kept transparent to the participant including the 

delay in their emission decisions and that in the system’s 

dynamics. Once all participants acknowledged that they 

understood the system and task requirements they were 

allowed to interact with the DCCS task. 

 

Results 
 

Effects of frequency of emissions decisions and 

dynamics of absorption rate. Mann-Whitney test reported that 

the discrepancy in the low condition (Median = 61.77 GtC) 

was significantly higher than the discrepancy in the high 

condition (Median = 45.57 GtC) with U = 267.00, Z = -3.00, p 

< .01, r = -.21. Thus, the frequency of emission decisions did 

have a significant effect on the absolute value of discrepancy. 

Also, Mann-Whitney test reported that the discrepancy in the 

slow condition (Median = 61.67 GtC) was significantly higher 

than the discrepancy in the rapid condition (Median = 37.42 

GtC) with U = 182.00, Z = -3.00, p < .01, r = -.41. Thus, the 

absorption rate had a significant effect on the absolute value of 

discrepancy. Figure 3 shows the average absolute discrepancy 

per condition. The red line in Figure 3 is the “optimal”s 

discrepancy at 15 GtC and in all conditions the discrepancy is 

greater than the optimal value i.e. outside the permissible goal 

range. 

 
Figure 3. Absolute Discrepancy (GtC) under four 

experimental conditions. Red line is at 15 GtC and shows the 

permissible goal range (participants kept discrepancy outside 

the goal range in all conditions). Error bars show 90% 

confidence interval around the point estimate. 

Proportion of who reach the goal but can and cannot 

stabilize at the goal. To do this analysis, we calculated the 

number of participants that did not reach the goal range and 

did not stabilize at the goal range for 8 consecutive decision 

points, did reach the goal but did not stabilize at the goal range 
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for 8 consecutive decision points, and did reach the goal and 

did stabilize at the goal range for 8 consecutive decision points 

under four different experiment conditions. To get the 

proportions, the number of participants under three different 

goal reaching and stabilizing categories for four experimental 

conditions was divided by the total number of participants. 

These proportions have been shown in figure 4 for all four 

experimental conditions under the three different categories of 

goal reaching and stabilization. There is clear pattern evident 

in figure 4. As the feedback delay on account of climate 

dynamics and frequency of emission decisions decreases i.e. 

we move from slow-low to rapid-high conditions, there is an 

increase in proportion of people who could both stabilize and 

reach the goal range and at the same time a decrease in 

proportion of people who either don’t reach the goal range or 

reach the goal range but do not stabilize the CO2 at the goal 

range for eight consecutive decision points.  

Figure 4. Proportion of participants reaching/not-reaching goal 

range and stabilizing/not-stabilizing at the goal for eight 

consecutive time periods after reaching the goal across 4 

different experimental conditions.  
Decision point at which participants reach and 

stabilize CO2 concentration at the goal. For the purpose of this 

analysis we defined reaching the goal first time to mean the 

decision point at which participants first attain the goal range. 

For the purpose of stabilizing CO2 at the goal we are interested 

in the earliest decision point (out of 50 decision points) after 

which the participant is able to keep CO2 concentration in the 

goal range for the next eight consecutive decision points 

(results are similar on changing the definition to include seven, 

six, five, four, three and two consecutive decision points; as 

we increase the number of consecutive decision point criterion 

beyond eight the most difficult condition looses a number of 

participants making data analysis infeasible).  

Figure 5 shows the earliest decision point for 

reaching the goal range under the four different experimental 

conditions and figure 6 shows the results of earliest decision 

point among 50 decision points at which participants reach the 

goal range and stabilize CO2 concentration for three 

definitions of stabilization (those based upon 2, 4 and 8 

consecutive decision points) across four different conditions. 

Making a definition of stabilization higher than 8 consecutive 

decision points produced no participant in the slow-low 

condition so that was assumed to be a reasonable upper bound. 

The results revealed that the effect of dynamics of absorption 

rate did not significantly affect the earliest decision point for 

reaching the goal nor did it affect the earliest decision point at 

which participants reached and stabilized CO2 at the goal 

range for three different definitions of stabilization. Also, there 

was no effect of frequency of emissions decisions on the 

decision point for reaching and stabilizing at the goal range.  

On average, participants reach the goal range faster in 

the condition with maximum feedback  delay i.e. slow-low 

condition and reach the goal slowest for the condition of least 

feedback delay i.e. the rapid high condition. The other two 

intermediate conditions on average make participants reach the 

between the two extremes. Also, the average earliest decision 

point across different definitions of stabilization occurs at a 

higher value when condition involves greater feedback delay 

(slow-low) than when it has the least feedback delay (rapid-

high). Other conditions have their stabilization decision point 

between the slow-low and rapid-high conditions. Both these 

results as seen in figure 5 and figure 6 are consistent with the 

earlier observation that participants keep their fossil fuel and 

deforestation emissions closer to the TO value for conditions 

in which there is more feedback delay (slow-low). Keeping 

emissions closer to the TO value makes participants reach the 

goal faster (as seen in figure 5 for slow-low condition 

compared to rapid-high condition) but in turn makes them 

unable to stabile the CO2 concentration once they are in the 

goal range as it becomes too late to do so. On account of 

misperceptions of feedback, the results show that participants 

reach the goal but cannot stabilize the CO2 concentration at the 

goal quick enough in the conditions which have more feedback 

delay.   

 
Figure 5. Earliest decision point at which participants CO2 

concentration reaches the goal range across four different 

experiment conditions. Error bars show 90% confidence 

interval. 

 
Figure 6. Earliest decision point at which participants achieve 

stabilization of CO2 concentration between goal range across 

four different experiment conditions for three different 

definitions of stabilization (for 2, 4 and 8 years). Error bars 

show 90% confidence interval. 
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DISCUSSION AND CONCLUSIONS 
Many of the complex dynamic effects found in the 

real world can be better understood with simple tasks (Cronin 

et al., 2009) and here we present a demonstration of such a 

process in DCCS.  

Results show that even for a batch of participants 

where 70% belonged to science, technology, engineering and 

management, participants were generally poor at controlling 

the CO2 concentration in all four conditions and showed 

evidence of higher discrepancy for slower dynamics and less 

frequent emission decisions. In addition, discrepancy was 

away from optimal under all four conditions. Participant 

emissions decision strategies show support of use of longer 

times to stabilize CO2 concentration to goal level in the 

presence of conditions of slower dynamics and less frequent 

emission decisions although reaching the goal faster under the 

same conditions. Less frequent emissions and slower dynamics 

decisions produce degraded performance, perhaps due to the 

higher feedback delays involved. 

The primary reason for the poor participant 

performance is attributed to the MOF hypothesis (Sterman, 

1989).  From the results it can be inferred that people took an 

“open loop” view of an actual closed loop system, failed to 

account for feedback delays between actions and responses, 

did not comprehend the system dynamics and ignored the non 

linearity present in the system. This also led participants to 

take more number of decision points under conditions of 

feedback delay as depicted in our results. Also, the same open 

loop approach caused lesser proportions of participants to 

reach and stabilize CO2 concentration at the goal range under 

conditions of feedback delay. 

In the slow and low dynamic conditions where people 

experience a feedback delay of four years between two 

consecutive decision points and the system dynamics is 1.2% 

of CO2 concentration, they tend to neglect this delay in 

emissions and dynamics probably due to their cognitive 

incapacities and misperceptions of feedback as inferred from 

the results. On the other hand, for the rapid and high dynamic 

conditions, the frequency of emission decisions is double and 

dynamics is rapid (1.6% of CO2 concentration) resulting in 

lesser feedback delay and better human performance.  

This participant emission behavior where they take 

more time to reduce discrepancy provides supportive evidence 

for the “wait and watch” policies currently followed in real 

world climate policymaking (Sterman & Booth Sweeney, 

2002). People in today’s world want to continue to maintain 

emissions at high levels rather than take actions which are 

geared towards reducing them (Sterman & Booth Sweeney, 

2007). It appears that at the current pace, people will continue 

to hold emissions at higher values until the concentrations of 

GHGs start overshooting the desirable goal amounts.  They 

will only realize the misperceptions of their actions when it is 

already too late to correct their actions, due to the delays 

present in the system (Sterman & Booth Sweeney, 2002). The 

realization of misperceptions on actions and tendency to act 

when it is too late is seen in our results where participants are 

able to bring the CO2 concentration at a rapid pace (i.e. in less 

number of decision points) to the goal under conditions of 

maximum feedback delay, yet when they are at the goal they 

are unable to stabilize the CO2 at the goal range for a longer 

period of time. A way to cure this problem is the creation of 

educational tools like DCCS and generation of practice and 

learning programs. This is a subject of future and continuing 

research. 
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