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Abstract

One persistent challenge in scientific practice is that the structure of the world can be un-
stable: changes in the broader context can alter which model of a phenomenon is preferred,
all without any overt signal. Scientific discovery becomes much harder when we have a mov-
ing target, and the resulting incorrect understandings of relationships in the world can have
significant real-world and practical consequences. In this paper, we argue that it is common
(in certain sciences) to have changes of context that lead to changes in the relationships under
study, but that standard normative accounts of scientific inquiry have assumed away this prob-
lem. At the same time, we show that inference and discovery methods can “protect” themselves
in various ways against this possibility by using methods with the novel methodological virtue of
“diligence.” Unfortunately, this desirable virtue provably is incompatible with other desirable
methodological virtues that are central to reliable inquiry. No scientific method can provide
every virtue that we might want.

1 Introduction

Essentially all normative accounts of science, as well as the practices of many scientists themselves,
reflect a common assumption: namely, that the correct models of the world are stable through
time. That is, there is frequently an assumption that the relationships between elements in the
model are stable over time, though the values of those elements can of course change. For example,
one might believe or assume that the (probabilistic) causal relation between a light switch and the
state of the lights is stable, even though the particular states of the switch and light obviously
change over time. This assumption manifests itself in many ways in scientific practice, including
the reuse of data from earlier experiments, the drive to subsume earlier theories in later ones, and
the rejection of theories that failed earlier experimental tests.

For many sciences and many real-world contexts, however, this assumption is false. More
generally, our understanding of the world—causal, social, physical, and other—is through models
that ignore (necessarily, we argue below) broader contextual factors that are potentially relevant,
and so when those factors outside of the model change, the correct model of the world can also
change. We will refer to the former phenomenon—change in the unmodeled factors or conditions—
as context change, and the resulting change in which model is correct (when that occurs) as context-
driven model change. We here focus on this problem from the perspective of scientific inquiry and
methodology; we are less interested in the models themselves (though much of the discussion below
uses the language of models), and more in the methods that scientists should use to respond to the
possibility of this context-driven model change. When there is a change, for example, in the causal



relation between the switch and lights (e.g., the power goes out and thereby breaks the causal
connection), we require methods that detect and respond to (or otherwise are robust against) such
changes.

Such changes pose a significant challenge to many standard scientific practices. For example, if
one study concludes that C' causes E and another study concludes that C does not cause F, then
typical scientific practice is to conclude that one (or both) of the studies suffered from some sort of
flaw, either in study design or data analysis. If, however, the correct model can vary between con-
texts (e.g., the correct model is different at different times), then such a conclusion is unwarranted:
it is quite possible for both studies to be correct at the times each was run.! Different methods for
scientific inquiry are required if we allow for the possibility of context-driven model change. We
provide a schema for principled methods that can solve this problem (Section 5), but protection
against errors due to context-driven model change comes at a cost. These methods exhibit a novel
methodological virtue that we call diligence—roughly, the errors made in inquiry or by the learn-
ing method are bounded when model change occurs. Unfortunately, diligence is inconsistent with
one of the most commonly desired methodological virtues, consistency; there is an irreconcilable
tension, and so necessary trade-off, between these methodological virtues (Section 5.1).

Before moving to this positive project, however, we first need to show how context-driven model
changes emerge and the errors that they can introduce in scientific understanding and practical
applications. We provide a more precise specification of the problem of context-driven model change
(Section 2), and then show that this problem has real, practical impact. Context change is not
rare or insignificant, but rather very real: there are multiple real-world examples of correct models
changing in significant ways (Section 3), and standard normative accounts of scientific methodology
neglect this possibility (Section 4).

2 Context-dependence of models

Our principal interest is in models of the world, where we use the term ‘model’ in a general way to
refer to anything that supports prediction, explanation, and control. We deliberately use ‘model’ in
this broad way in order to be agnostic about the exact nature of our scientific and everyday models;
our arguments are consistent with any understanding of models in which they provide structured
understandings of the world that support key functions. Models necessarily include only a subset
of the possible factors or variables, and so inevitably involve some abstraction from the precise,
messy details of the system or situation under study (Cartwright, 1983, 2007). For both practical
and theoretical reasons, we simply cannot include everything in a model, but rather must omit
some variables, details, or levels of complication. We will refer to these omissions as the context of
the model—the elements of any particular situation that are exogenous to the model. Elements of
the context might matter for the system under study, but they need not.

One aspect of learning about the world involves finding the best model from a collection of
mutually exclusive models, all of which have the same context C'. That is, we are often trying
to decide which of several models is the correct one. We will refer to this task as finding the
target model in a framework. Roughly, a framework is a set of possible models for some situation
and context, and the target model is the best (or one of the equally-best) model according to some
defensible measure of a model’s quality (e.g., truth, accuracy, etc.). As a simple example, the target
model for the lights in one’s office is (in everyday contexts) presumably Switch — Lights, where
the causally relevant factor Power is in the context. We are deliberately and explicitly agnostic in

!Similarly, if contexts can change, then replications of experiments may have different evidential value than is
typically thought.



this paper about the proper measure of a model’s quality: in particular, we take no stand about
whether methods of scientific inquiry lead to “true” (in some sense) models, as opposed to ones that
are pragmatically useful, defeasibly justified, empirically adequate, or have some other desirable
property. As such, the issues that we discuss here are largely orthogonal to those usually studied
under the heading of (epistemic or scientific) “contextualism.”? Whether one is, for example, a
fallibilist about knowledge or models in any particular context does not necessarily imply anything
about the possibility of context-driven model change (over time), or algorithms that could be used
to detect it, or alternative scientific inference methods that are robust to its possibility.

We are principally interested here in what we will call contezt-driven model change: changes in
the context that result in a change in the relationships captured in the target model.? For example,
the target model for one’s office changes from Switch — Light to Switch Lights when the context
changes due to the power going out. Other everyday examples of context-driven model change are
easy to find, such as a calculator whose ‘+’ key breaks, or a laptop whose battery no longer holds
a charge. In all of these cases, there is a stable model M; at time t1, and a different model M,
at another time t9. This change can occur because of a single event (e.g., the key breaking or
the power going out) or because of a gradual change in the underlying system (e.g., the computer
battery slowly losing its ability to retain a charge).

Crucially, context-driven model change includes only cases in which the between-element rela-
tionships change; changes over time in the values of model elements (e.g., a light switch changing
from up to down and back again without affecting the causal relationship between Switch and
Light) are not, as we understand it, context-driven model change. More practically, we are not
interested in methods for rapid or complex inference within a given model; our concern is not about
the difficulty of inference in non-linear models or the surprises that can arise through non-monotonic
reasoning. Rather, our concern is about the possibility that the relationships in the target model—
whatever they might be, and whatever methods we use to do inference about them—can change
due to changes in the context (i.e., the relevant factors that are not included in the model).

One response to this possibility is to try to expand the scope of the model to include the relevant
aspects of the context. But we contend that all models necessarily have a nonempty context, as
noted by numerous authors (Cartwright, 1983, 2007): “A ‘model,” in the common use of the word,
is an idealized representation of reality that highlights some aspects and ignores others” (Pearl,
2000, p. 202). Some factors must always be left out or regarded in an idealized manner. For
some model M with context C, we can expand it to model M* by moving some of the factors in
C into M*, but we cannot include everything; M* will necessarily still have a non-empty context.
For example, even if we include Power in the Switch & Lights model, there will still be other
unmodeled factors (e.g., whether the bulb filament is intact, or whether the wire from the switch
to the bulb is broken). This context-dependence is the inevitable product of the complexity of the
world and our boundedness along many dimensions. We can never have a “complete” model, just

20f course, there is agreement with those positions that models are context-relative, but even that agreement is
tempered by the fact that we focus on different aspects of context. In particular, we are interested in contextual
factors that can change the relationships under study, rather than ones such as the pragmatic desires or goals of the
scientists. We suspect that most (epistemic or scientific) contextualists would be quite amenable to the conclusions
that we reach in this paper, but we think that our primary focus is quite different from their usual concerns.

3Although it will not play a role in this paper, we should note that context-driven model change is framework-
relative for two distinct reasons. First, context-driven model change requires that the target model change is due to
a change in the context. Since every model in a framework has the same context (e.g., every model has the same set
of variables), the same changes “in the world” can produce context-driven model change relative to one framework
but not relative to another, depending on whether the changing factors are in the context or in the framework’s
models. Second, since the target model is the “best of the bunch,” whether the target model changes can depend on
the competition (i.e., the other models in the framework).



as no map can represent every aspect of reality; every model has a non-empty context. Arguably
anything omitted from the model (assuming it is in the appropriate physical light cone, of course)
could end up being a necessary part of context-driven model change, given sufficient freedom in
changing the context.

In this paper, we are focused on scientific inquiry, and in particular on methods for the discovery
of scientific models. Some sciences have started to come to grips with the challenge of context-
driven model change (Sections 3.1 and 3.2), but there is little understanding of the general scope
and form of the problem. At a high level, all context-driven model change arises when a change
in a contextual factor produces a change in the modeled relationships. For example, a change in
the contextual factor of the building power (by the power going out) produces a change in the
modeled causal relationship between Switch and Lights: the target causal model changes from
Switch — Lights to Switch — Lights.*

A ?‘ B Model

C Context

Figure 1: Schematic structure for context-driven model change.

We can abstractly represent context-driven model change using Figure 1. Suppose our frame-
work is the relevant models over {4, B}, where C is some factor in the context.® Suppose further
that C influences (whether causally, definitionally, logically, or in some other way) property I' of
the A, B relationship (e.g., its existence, informational content, causal direction or strength, etc.).
Given some particular target model (i.e., some specification of I'), changes in A’s value can lead to
changes in B’s value without having any model change. However, if C' changes between times t; to
to, then the I'-property can change, and so the target model will change.

Context-driven model change can occur even when we (as scientists) have made no errors in our
scientific inference; it can happen simply because our models must exclude some factors, and those
factors could end up mattering. Of course, context-driven model change can also occur when we
make certain kinds of errors in our scientific reasoning. An interesting “special case” is when our
framework (i.e., the set of possible models that we entertain) mistakenly conflates heterogeneous
(with respect to the modeled relationships) sub-types. Since the sub-types are distinct, the correct
target model can easily depend on the distribution of sub-types in the population. But the conflation
of those sub-types implies that information about the distribution is contextual, and so changes in
that distribution are context changes that can produce model change.

For example, suppose one included in the context (rather than the model) the distribution
of whether particular Staphylococcus aureus bacteria have the genetic structure to be antibiotic-
resistant. In that case, populations of staph—whether regular or antibiotic-resistant—will be picked
out by a single variable Staph, or more precisely, a variable denoting the population size (corre-
sponding to B in Figure 1). Because individuals who are different (i.e., have different target
models) are grouped together, the overall target model can change as the proportions of those in-
dividuals change. For example, Penicillin (A in Figure 1) is a significant inhibitor of nonresistant

4This example makes the framework-relativity of context-driven model change quite clear, as there would be no
change in the target model if our framework included the causal model Switch — Lights < Power.

For example, the framework might be the set of causal models: {Switch — Lights, Switch  Lights, Switch
Lights}, and C might be the Power state.



staph, but has essentially no effect on resistant strains. For years, the target causal model was
Penicillin — Staph, as it was in fact the case that penicillin treatments led to reductions in the
amount of staph in an individual. Once penicillin became mass-produced, however, resistant strains
of staph became more common and so the inhibitory strength of Penicillin in the target causal
model became significantly lower, perhaps approaching zero (Davies and Davies, 2010). That is,
the proportion of antibiotic-resistant bacteria (C' in Figure 1) changed, and so the presence of a
causal edge (I') changed as well.

There has been some previous work in philosophy of science on the types of context change
and context-driven model change that concern us here. Edmonds (2007) explicitly discusses the
problem of modeling context-dependent causal processes, though those analyses are relatively in-
formal and focus on a different understanding of ‘context.” There has also been some formal work
on the context-dependency of causal models, but that has been more narrow in scope than our
approach. Most notably, Glymour (2008, 2011) identified the important role of interactive cau-
sation in biological models, and argued that we should increase model complexity to account for
these complex interactions, rather than leaving them in the context of our models. We discuss
this approach—what we call the “model expansion” approach—in Section 5, but argue that it does
not solve all of the scientific inference challenges. Moreover, there are other possible responses to
context-driven model change.

3 Context-driven model change in scientific practice

Context-driven model change is clearly a theoretical possibility, but that does not imply that
it is necessarily a challenge for actual practice. Unfortunately, context-driven model change is
neither so rare, nor so small in magnitude or impact, nor so easily detectable as to make its
relevance to scientific practice moot. In fact, context-driven model change is arguably inevitable
in some scientific domains, as it requires only that there be factors that are exogenous to the
scientists’ models but nonetheless have an important influence on the modeled relationships. Such
omissions can be unavoidable in practice, simply because of the coarseness of the objects and
features studied in that domain. In particular, biology, the atmospheric sciences, and economics
are good examples of fields that arguably cannot solve (in an a priori manner) the problem of
heterogeneous populations (Eells, 1991): biologists must conflate populations of organisms with
non-identical DNA; atmospheric scientists must aggregate large volumes of space; and economists
must aggregate independent economic agents into economies. Context change events are thus almost
certainly inevitable for these sciences, and so it is unsurprising that two of them have developed
domain-specific methods to try to accommodate the possibility of context-driven model change.

3.1 Biology

Rapid evolution in organisms, regime changes in population dynamics and ecosystems, and norms
of reaction are some of the most prevalent examples of context-driven model change in biology.
In general, biologists respond by expanding their models: they identify the relevant contextual
(i.e., exogenous) factors that result in changing relationships, and then incorporate them into their
models.

Rapid evolution with respect to the time-scale of a causal model can change the causal relation-
ships and interaction patterns in the model, such as in the evolution of antibiotic-resistant bacteria
(Davies and Davies, 2010) and evolution in organisms due to trophic interactions (Duffy and Sivars-
Becker, 2007; Yoshida et al., 2003, 2007). If we do not include the possibility of rapid evolution in
our models, then those causal models (of the relationship between, e.g., bacteria populations and



antibacterial agents, or two distinct populations in a predator-prey or host-parasite relationship)
can exhibit context-driven model change. That is, we can fail to track the causal relationships in
the world because important aspects have been relegated to the context. Biologists have largely
adopted the domain-specific response of attempting to identify situations in which rapid evolution
may play an important role and then explicitly modeling the rapid evolution in such situations
(i.e., expanding their models).

Norms of reaction (Cooper and Zubek, 1958; Sarkar and Fuller, 2003; Scheiner, 1993) have
yielded a similar response. A norm of reaction is a function that describes how, for a particular
genotype, variations in the value of certain environmental factors (such as average temperature)
result in variations of certain phenotypes (such as height). Early biological models of populations
of organisms and their environments did not incorporate the influence of the environment on the
Genotype — Phenotype relationship, and so those models exhibited context-driven model change.
Today, norms of reaction are a recognized complication for modeling in biology, both to discover
them in particular cases and to use them appropriately in biological models.

Finally, regime change in models of ecosystems and population dynamics prompts both model
expansion and novel detection methods as responses to context-driven model change (Scheffer and
Carpenter, 2003). Regime change occurs when an ecosystem switches from one relatively stable
profile of organism populations to another. As before, scientists are sometimes able to identify
the relevant exogenous factors so that they can be included in their models (J. A. Estes, 2011;
Scheffer and Carpenter, 2003). In other cases, the potentially relevant exogenous factors for regime
change are unknown, or there are too many to feasibly survey them. Thus, there has also been
significant work in early detection and prediction of context-driven model change (Carpenter et al.,
2011); these methods are more domain-general than incorporating exogenous contextual factors
since they depend partly on changes in observed statistics, but they remain focused on biological
models. We show how to generalize this idea in a completely domain-general manner in Section 5.

3.1.1 The Canadian cod fishery collapse

A striking real-world example of the dangers and difficulties of regime change (i.e., context-driven
model change) is the 1992 North Atlantic cod (Gadus morhua) fishery collapse that devastated
the coastal economies of Newfoundland and Labrador (Finlayson, 1994; Kurlansky, 1997; McGuire,
1997).% Because fishery scientists assumed that there was no context-driven model change, the
cod population is now less than 1% of its original size, and the ecosystem itself has changed so
dramatically that the cod can no longer repopulate as they had for the previous 500 years. It is
useful to see how this happened.

Fishery scientists set limits on the number of fish that can be caught, but do not have direct
access to the number and weight of fish in the sea. Instead, they must rely upon indirect measure-
ments (i.e., effects of the size of the fish population). One indicator comes from scientific surveys
in which trawlers fish with standardized equipment to produce a controlled sample of the cod pop-
ulation. The carefully controlled nature of this data collection process makes it fairly robust: the
causal relationship between the actual fish population and the data collected is relatively stable.”
Such surveys are expensive to conduct, however, so they are used only sparingly.

Instead, fishery scientists largely use reports from fishermen of their commercial catch per unit

50f course, there are many different issues that the cod fishery collapse illuminates, such as the fact that even
central planning and control can be insufficient to prevent a tragedy of the commons. We focus here on the model
change aspect, but also think that this is a rich case study that has been insufficiently studied in philosophy of science.

TOf course, the fish population varies from year to year, but that is not model change as we understand it. The
important point here is that the relevant causal/sampling relationship does not change.
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Figure 2: (a) Fishable biomass compared to total CPUE from 1962 until 1988. (Adapted from
(McGuire, 1997)); (b) The ratio of CPUE to fishable biomass (the correct value for g).

effort (CPUE). CPUE is used to estimate the amount of fishable biomass by means of a model.
Intuitively, it makes sense that if there are more fish, it should be easier to catch them; fewer fish,
and it should be more difficult to catch them. This idea is captured in the simple model used by
fishery scientists—C PUE = qx* fish—that supports estimates of the fishable biomass given CPUE:
fish = %. The parameter ¢, commonly called the “catchability coefficient,” was assumed to

be fixed for any particular fish population.® That is, the scientists assumed that context-driven
model change could not occur: the C'PUE—fish relationship, whatever it might be, was assumed
to be stable from year to year (though the values of CPUFE and fish obviously fluctuated).

Despite the model’s simplicity and strong assumptions, it was quite accurate for many years:
from 1962 to 1974, there seems to have been a stable target model (see Figure 2)? that yielded
accurate estimates of the actual fish population. After 1974, however, the relationship between
CPUE and fish changed as (i) new technologies were introduced; (ii) fishermen’s knowledge of
the area increased; and (iii) the decreasing cod population became sparsely distributed in dense
pockets. As a result, CPUFE was no longer a linear function of fish; that is, there had been
context-driven model change, though the fishery scientists were unaware of this fact.'® Again, the
key issue here is not that the value of fish changed over time; rather, the problem was that the
very function connecting fish and C' PUFE had changed in a fundamental way. The 1980’s Total
Allowable Catch was set using estimates derived from the old model, and the fishery collapsed
shortly after.

In the language of Figure 1, g (=T) is a property of the relationship between fish (= A) and
CPUE (= B). However, changes in elements of the context (= C') such as technology, fishermen’s

8Some researchers have argued that, under certain circumstances, reducing the amount of fish may actually make
it easier to catch them, and so g could potentially be negative. In such contexts, the CPUFE — fish relationship
would be piecewise linear, rather than a single linear function.

91n reading Figure 2, one must remember that fish is an unobserved variable. The fish numbers were retroactively
recalculated after fishery scientists realized that there had been context-driven model change. They were not available
to the scientists at the time.

0There actually were two scientific surveys during this time period, and they unsurprisingly contradicted the
significantly higher estimated fish population. Scientists were unsure of how exactly to reconcile the conflicting
measurements, so they decided simply to average the CPUE estimates with the survey data, which still grossly
overestimated the population.



knowledge, the distribution of fish, led to a change in ¢, and in fact to the very functional form
between fish and CPUE (Figure 2(b)). That is, there was context-driven model change.

fish q CPUE model
Technology Distribution .
of fish
Knowledge

Figure 3: Model used by fishery scientists and some of its context.

3.2 Context-driven model change in economics

In economics, context-driven model change has been recognized as a general class of phenomena
that have been named structural breaks. Structural breaks are understood to be cases in which there
is a shift in the (quasi-)objective structure of the world. More precisely, econometricians define a
structural break to be a significant change in the underlying data generating process (Clements
and Hendry, 1999). Structural breaks thus differ from “mere” shocks in which values of variables
are influenced or changed by factors outside of the system, but without substantively changing
the relationships between the variables in the model. Many authors have argued that structural
breaks are pervasive and significant in macroeconomics (Clements and Hendry, 1998, 1999; Hansen,
2001).'* A number of tools have been developed to combat this problem (see Perron, 2006 for
an overview) principally through model generalization: context-driven model change prompts the
development of a more general model in which (causal) parameters can vary with time (e.g., locally
stationary models, as in Dahlhaus, 1997; Dahlhaus and Polonik, 2009). This response can look
like a model expansion, but the generalized models do not actually include the exogenous factors
responsible for the context-driven model change; rather, they only model the resulting changes
in the distributions for the original set of variables. Similarly, structural break detection and
estimation (Davis and Rodriguez-Yam, 2008; Davis et al., 2006) aims to model the shifts over time
without necessarily explaining why the particular structural breaks occurred.

The “Great Moderation” is a well-known macroeconomic example of context-driven model
change (Blanchard and Simon, 2001). Many United States macroeconomic variables experienced a
significant decrease in volatility from the mid 1980’s until the 2007 financial crisis; this is referred
to as the Great Moderation because it was a period of significant stability in economic phenomena.
This was not simply a change in the values of the economic variables, but a fundamental change in
the underlying relationships, both at a particular moment and over time. However, despite the size
of the shift (it was the Great Moderation!), it went undetected for over a decade (Blanchard and
Simon, 2001). Moreover, this shift potentially had significant practical and societal implications, as
some economists believed that it would provide the key to preventing economic depressions (Lucas
et al., 2003).

"Hansen (2001) sums up the problem nicely: “Structural change is pervasive in economic time series relationships,
and it can be quite perilous to ignore. Inferences about economic relationships can go astray, forecasts can be
inaccurate, and policy recommendations can be misleading or worse.” (p. 127)



4 Normative accounts of scientific inquiry

Context-driven model change poses a serious, but not insurmountable, problem for science. Scien-
tists do, in practice, find ways to (partially) solve this problem, and so we should expect (or desire)
that normative accounts of scientific inquiry provide guidance on reliably handling context-driven
model change. One might hope that sophisticated inference and reasoning methods (e.g., various
types of non-monotonic reasoning) would be suitable, but these methods all operate only on a
given model. That model can represent very complicated between-variable relationships, but they
nonetheless remain fixed for the duration of inference. Consider a simple case of non-monotonic rea-
soning in the Switch, Light, Power case. Given Switch = on, one infers that Light = on, but that
reasoning is defeasible: if one subsequently learns Power = of f, then the Light = on conclusion is
retracted. This might appear to be a case in which the Switch — Light relationship changes, but
from the perspective of the reasoning method/model, the relationship is constant-but-complicated.
That is, the relationship appears to change only because we initially ignored the value of Power,
but the method has no such luxury. In order to use Power in its reasoning, it must have included
Power from the beginning (at least, implicitly), and so there is not actually any context-driven
model change.

One might instead look to normative accounts of when scientists ought to choose one model
rather than another. Unfortunately, all existing accounts essentially assume away context-driven
model change.'? The core problem is that all of these accounts assume that scientific inquiry is a
process that aims to discover theories that are “fixed-for-all-time”: for all of the accounts, the true
(or accurate, or fruitful, or ...) scientific theories represent a fixed target towards which scientists
are or should be aiming. This assumption that the correct theories do not change over time has the
impact of simply assuming away model change.'® Space constraints preclude us from surveying all
existing normative accounts of scientific inquiry, but we demonstrate this implicit assumption by
considering two prominent, but quite different, traditions.

Karl Popper’s falsifiability criterion (Popper, 1963) treats the identification of false scientific
theories as the key to normative inquiry: one should rigorously test the falsifiable (in principle)
scientific theories, and when a theory fails some test, then it should be removed from the pool of
potentially true theories. Over time, this process should converge towards a set containing only
true theories, as the false ones will eventually be falsified and eliminated. Model change poses
an obvious problem for this approach, as falsified theories are never reintroduced into the pool of
potentially true theories. If a theory is falsified at time ¢, then it is no longer available at time
t + A, even though it could be correct at that later time.

In Deborah Mayo’s related account of scientific inquiry based on severe testing (Mayo, 1991,
1996, 1997; Mayo and Spanos, 2006), scientists should subject their theory to a series of severe
tests—tests that can not only falsify the theory, but also support positive belief in the theory if
it passes the test.!* The scientist’s warrant in believing her theory depends on “the degree of
severity with which a hypothesis H has passed a test” (Mayo and Spanos, 2006, p. 328). Mayo’s
account is thus a strengthening of Popper’s, as it shows how scientific inquiry can be a reliable
process, in contrast with falsification.!® At the same time, it shares with Popper the assumption

120f course, it is certainly possible that the accounts discussed in this section could be adjusted to handle model
change. We simply aim to show that existing ones do not currently accommodate it.

130ne might object that accounts of scientific inquiry are about theories, not models (i.e., our focus), and that this
makes a meaningful difference. However, it is not clear what the relevant difference would be. Moreover, the two
accounts we consider below are both supposed to apply to more focused models, as well as broader theories.

11n statistical language, severe tests should have both a low false positive and a low false negative rate. Falsifying
tests need only have a low false negative rate (where ‘negative’ means “theory is found false”).

15 Additionally, her account is relatively localist, as it advocates testing “small” claims (e.g., models) rather than



that falsified theories—alternately, theories that have failed severe tests—are excluded from the
subsequent possibility space. Both accounts could try to accommodate model change by allowing
previously rejected theories back into the pool of possibilities, but this change threatens the long-run
convergence guarantees that provide an important part of the accounts’ normative justification.

A second example is the cluster of normative Bayesian accounts of scientific inquiry (Earman,
1992; Howson and Urbach, 1993), all of which are based on updating P(H;|E)—the probability
of each hypothesis given the evidence—using Bayes’ rule whenever new evidence is observed. The
standard (and natural) statement of an hypothesis H; is in the form “Theory T; is true for all times,
space, contexts, etc.” This yields as many hypotheses as scientific theories, and most Bayesian ac-
counts use this sort of hypothesis space. In general, the hypothesis space (for a Bayesian account)
cannot change during inquiry, and so the use of such universal hypotheses amounts to the implicit
assumption that model change is impossible. In principle, Bayesian accounts could allow for model
change by expanding the size of the hypothesis space to include ones that assert different theories
at different times or spaces (e.g. “I; at time ¢; & T at to & ...”). This leads to a combinatorial
explosion of the hypothesis space, however, and so makes calculation of P(H;|E) computation-
ally intractable. In addition, the normative grounding of Bayesian accounts becomes shaky when
multiple hypotheses have identical likelihood functions (i.e., when H; and H; imply the same prob-
abilities for possible data sequences), and that is significantly more likely with these more complex
hypothesis spaces.

One might respond that these accounts are focused on “ideal” inquiry, and so on maximally
general models that include all possibly relevant contextual factors (e.g., Power or the various
influences on the catchability coefficient g). The problem of context-driven model change simply
does not arise if models explicitly incorporate every relevant contextual factor. The problem is,
as we argued earlier, that maximal models with empty contexts would have to include everything
in the past light-cone. Such models are certainly impossible for actual human scientists, and
arguably impossible even in theory. In general, such normative accounts neither represent nor
solve the problem of context-driven model change, even though actual scientists both recognize and
(partially) solve it. We now show that scientists can (normatively) recognize and respond to context-
driven model change, and even protect themselves against such model change. Unfortunately,
this protection requires giving up on a standard normative desideratum of statistical methods for
scientific inquiry.

5 A domain-general response

We desire normatively justifiable methods that can learn the appropriate target model, even when
there is a possibility of context-driven model change. We also seek methods that can work in all
sciences, so they should be domain-general. It is important to recognize that any such response
will need to assume that we do not have large, frequent changes.'® If the target model changes
significantly at every moment in time, then there is no stable information for the learning method
to use. We thus assume (as, we contend, all scientists do) that the real world phenomena that we
want to model are sufficiently orderly and parsimonious (relative to the variables in our models)
that they could potentially be discovered. This assumption is essentially a response to Hume’s
problem of induction: if the future can be arbitrarily different from the past, then no reliable

entire scientific theories.

16What counts as ‘large’ or ‘frequent’ will depend partly on our inference or learning method. Informally, we need
to assume that the target model does not continue to change before we can identify it with the particular inference
method in use.
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inference is possible, and so we must assume that there is some regularity. Importantly, however,
we are making a significantly weaker assumption than one finds in standard normative accounts,
as we do not assume that the target model is the same for all time.

Given this assumption of locally stable contexts, any domain-general methods that detect and
respond to context-driven model change must instantiate this general schema:

1. Recognize context-driven model change by detecting a collection of anomalies
2. Decide whether to find the new target model by:

(a) changing model components (e.g., parameters); or

(b) changing the framework to include models with additional contextual elements
3. Learn the (appropriate) new target model

First, the method must recognize that model change has potentially occurred, either at that
moment or soon after. If no model change is detected, then there is no reason to do anything
different. Since we are focusing on domain-general methods, however, the only (somewhat) reliable
signal of context-driven model change is a group of observations or phenomena that cannot be
predicted or explained by a model M that had previously done a good job predicting and explaining
the data (i.e., was plausibly the target model). Such observations are typically characterized by
the scientific community as anomalies, precisely because they cannot be explained by the model
that had previously been successful.!”

Anomaly detection is problematic precisely because one should expect low-probability events
to occur even if the underlying distribution is stable; a 1 in a million (or worse) chance will occur
in an infinite stream of data with probability 1. Thus, one unusual datapoint (i.e., a single outlier)
should not necessarily prompt suspicion of context change. An anomaly collection is a subsequence
of data that deviates so strongly from the expected data that we can be sufficiently confident
that it does not come from the same distribution as the previous data. Since models (in stable
background conditions) imply stable observational data distributions, a change in the distribution
implies a change in the target model.!® Anomaly collections provide a strong signal that there is
a new target model, but for most models, no finite amount of data will guarantee that the target
model has shifted, though it might be exceptionally probable that a shift occurred.

Second, one must decide how to respond to the suspected context-driven model change. One ap-
proach is to choose a new model (hopefully, the actual new target model) from the same framework
(i.e., approach 2(a)). For example, one might simply relearn certain parameters of the between-
element relationships (e.g., linear coefficients). A different approach is to change the framework
to include models that explicitly incorporate the contextual factors that drove the model change
(i.e., approach 2(b)). In many cases, the old target model will then be a sub-model of the various
possible models in the new framework.

These two approaches have different advantages and disadvantages. In practice, 2(b) is typically
more difficult to implement than 2(a), since we have to determine the appropriate factors, incor-
porate them into the possible models, and determine all of the relationships they bear to factors
that were in the old target model. There is arguably no domain-general way to implement 2(b),
as the decision about which factors might have mattered will invariably depend on domain-specific

17Such anomalies are similar in spirit to Kuhnian anomalies, but are of course on a much smaller scale.

8The converse obviously does not hold: different models can produce the same data distributions, so context-
driven model change does not necessarily lead to anomalous data. This is an instance of the general problem of
underdetermination of models by observed data that affects all model inference methods, including ones that do not
accommodate context-driven model changes.
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information. At the same time, 2(b) has the significant virtue that the resulting target model is
stable both pre- and post-context change; more precisely, the “context change” has been reinter-
preted as simply a change in the values of modeled variables within a stable model. The decision
about which approach to pursue will depend on weighting the practical advantages of 2(a) against
the theoretical virtues of 2(b).

Approach 2(b) also has the practical drawback that learning a new target model (step 3, dis-
cussed below) will require data about the factors that were formerly in the context, but are now
in the models. Because they were previously in the context, we are unlikely to have all of the data
that we need to learn the new target model, so learning will be delayed while data collection occurs.
In contrast, approach 2(a) uses the same variables that we already have, but recognizes that some
parameters may have changed. We thus need to reduce the relative influence of data generated
in contexts that are dissimilar from the current one, though we will frequently be able to reuse at
least some of the previously collected data.

One standard way to reuse the data intelligently is through downweighting: treat the down-
weighted points as fractions of points (or ignore them entirely), as in a weighted average. Different
datapoints can be independently downweighted, so the space of possible downweighting schemes is
large. If one knows only that context change has occurred but nothing about the similarity between
previous target models and the current one, then one could simply give all previous datapoints zero
weight. If the current target model is close to previous ones, then previous datapoints should
perhaps be downweighted only partially.!® As a more interesting example, suppose one believes
that there are alternating target models: C7 holds for times [0,%1), [t2,t3), ..., [ton, ton+1),- .. and
Cy holds for [t1,t2),[ts,ta), ..., [t2n—1,t2n),.... In this case, one should dynamically adjust the
downweighting over time—sometimes downweighting a datapoint and sometimes not—so that one
is always learning with data from the current target model.

Third, the new target model must be learned from either the original framework or a new
framework of expanded models, and using either downweighted data or data from an expanded set
of variables. The details of this step will be determined by the particular learning method that
one uses, typically the same one that was previously used to learn target models, perhaps with
some small adjustments. For example, statistical methods—those that use statistical estimation to
infer (frequency) distributional information about a set of defined variables—are widespread in the
sciences (e.g., in a range of standard causal inference algorithms as in Pearl, 2000; Spirtes et al.,
2000, or various sophisticated model selection/averaging methods), and can be adjusted to allow
for the possibility of context-driven model change in relatively straightforward, and enlightening,
ways. For example, we provide (in Anonymous, 2013) a causal learning algorithm that can respond
in real-time to changes in the underlying causal structure. In particular, that method weakly
dominates existing causal structure learning methods: it performs equally when the underlying
causal structure does not change, and significantly outperforms previous methods when changes do
occur, precisely because it can learn the new causal structure.

5.1 Diligence vs. consistency

This protection against context-driven model change comes at a cost: responsiveness using approach
2(a) is incompatible with a standard methodological virtue, at least for a wide class of methods

19Tt is tempting to think that one should always throw away all previous data whenever context-driven model
change occurs. However, this strategy potentially throws away useful data that could lead one to the target model
more rapidly, and also does not allow for the possibility of retracting an anomaly detection judgment.
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based on statistical estimation and distributions of observed data.2’ Model expansion (approach
2(b)) does avoid the following issues as it involves changing estimators “mid-stream,” but it involves
significant practical challenges and is not a domain-general response.

We first must define two desiderata for statistical estimators: consistency and diligence. Target
models in frameworks of statistical models are identified by statistical estimation from observed
data. One of the weakest (and so widely-assumed) virtues of a statistical estimator is consistency,
also known as convergence in probability. Informally, an estimator is consistent just when, with
probability 1, it outputs the target model given an infinite stream of data (under certain assump-
tions). That is, if there is a stable target model M for all time, then as the estimator is provided
with more data from M, the probability that the method’s “answer” is arbitrarily close to M
approaches 1. It should be clear why this is a desirable property: estimators that cannot even
weakly guarantee (in a probabilistic sense) that they reach the target model in the infinite limit
arguably cannot be trusted on short-run, real-world data. Moreover, many other plausible virtues
of estimators—e.g., almost sure convergence, convergence in quadratic mean, sure convergence—
strictly imply consistency. Essentially any statistical estimator with a claim to being reliable in the
long run is consistent.

The possibility of context-driven model change suggests a different methodological virtue, dili-
gence. Suppose we have a model change event at time ¢, after which the target model is again
stable. Informally, an estimator is diligent if there is some finite amount of data A (which can
depend on the change but does not depend on ¢) such that the estimator will have a strictly pos-
itive probability of outputting the new target model after ¢t + A. In other words, no matter how
much data we have previously seen, we have a chance of learning the new target model after a fixed
(change-specific) amount of post-change data. Diligence implies that, regardless of the amount of
prior data, we will not remain ignorant of a model change for arbitrarily long. Put more colloqui-
ally, the method diligently evaluates all of the data, no matter how much data it has previously
seen. Given the practical and societal importance of context-driven model changes, it is a highly
desirable property for our statistical estimators.

As diligence is a novel methodological virtue, it might be helpful to give a simple example.
Suppose that we are measuring the value of a single, real-valued variable X, and our framework (i.e.,
set of models) consists of all possible Normal (i.e., Gaussian) distributions. For this framework,
one inference task is to estimate the mean of X: p(X). The simplest estimator of u(X) is the
average of all measurements, but this estimator is not diligent. If the mean changes from p; to po,
then the length of time that this estimator will be “fooled” (i.e., be far from ps) depends partly
on how much data it saw from the pi-distribution; if we have seen 1,000,000 datapoints from the
w1 distribution, then the estimate will take longer to converge to us than if we had seen only 1,000
datapoints. There is no fixed length of time within which this estimator will respond to the change
regardless of the amount of data seen previously.

In contrast, the estimator that returns the average of only the last 100 measurements is diligent,
since it will respond to any change within 100 datapoints, regardless of how much data it saw before
the change. If the mean changes from p; to uo at time ¢, then we are guaranteed to have a close
estimate of puo by ¢ 4 100, regardless of whether we saw 1,000 or 1,000,000 (or more) datapoints
from the py distribution. If it is important to quickly detect changes in the distribution mean,

20We conjecture that the general “consistency vs. diligence” tension that we discuss below arises for essentially all
methods of scientific inference, but only have a formal proof for statistical estimators. It is an open research question
whether this incompatibility can be proven for a broader class of methods, though we note that an enormous part
of scientific inquiry consists in statistical estimation. In general, we suspect that part of the reason that normative
accounts of science have ignored context-driven model change is precisely because they privilege consistency, and so
cannot value diligence in the same way.
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then this type of protection could be quite valuable. Similar observations can be made about more
complex statistical estimators.

Both consistency and diligence are desirable methodological virtues. Unfortunately, they are
incompatible virtues: no statistical estimator can satisfy both.2! To see why, we need one additional
notion. Let an €, §-error occur whenever the probability that the output of method M is within §
of the target model is less than e. That is, it is unlikely (occurs with probability less than €) that
the method is close (produces an estimate no further away than J) to the target. A method M is
subject to arbitrary errors if, for every model change, €, §, and n, there is some length r of initial
data that leads M to make n many e, d-errors after that model change. In other words, however we
want to characterize errors, M is subject to arbitrary errors when we can force it to make n many
errors in a row (for any n) by presenting enough initial data. More colloquially, we can always
find a way to force M to be fooled for arbitrarily long after the model change. Obviously, any
method that is subject to arbitrary errors leads one to be quite vulnerable to the effects of future
context-driven model changes.

Unsurprisingly, diligent estimators are not subject to arbitrary errors; the whole point of that
virtue is that the estimator adjusts within a known length of time. Perhaps surprisingly, though,
all consistent estimators are subject to arbitrary errors (given a nontrivial framework, where ‘non-
trivial’ is defined precisely in the Appendix). We can thus immediately prove:

Theorem: No statistical estimator for a (nontrivial) framework is both consistent and diligent.?>

We thus have a real, but insurmountable, problem for scientific methodology. Basic intuitions
about reliability imply that we should use consistent estimators. The existence of context-driven
model change, and the very real practical and societal impacts of it, imply that we should use
diligent estimators. But for most, if not all, of the modeling problems faced by modern scientists, no
estimator can satisfy both of these desires: every estimator must choose whether to converge to the
stable target model (when it exists), or to diligently watch for potential model change.?3 Consistent
estimators are stable-but-conservative: they find the right answer (when it exists) precisely by
ignoring unusual events. Diligent estimators are responsive-but-volatile: they can rapidly adjust
to a changing world, but only by sometimes changing unnecessarily. Of course, what we want
are estimators that are stable-and-responsive, but the above theorem tells us that we must choose
between them.

The choice about whether to use a consistent or diligent estimator in any particular context is a
complex, situation-specific one. The two key risks in this type of scientific inquiry are (i) missing an
actual context-driven model change for some length of time; and (ii) thinking that context-driven
model change occurred when it actually did not. Consistent estimators tend to minimize mistakes
of type (ii); diligent estimators tend to minimize mistakes of type (i). Thus, if the costs of one
of these errors outweighs the other, then we can intelligently choose an estimator to minimize the
more costly mistake. In fact, for particular estimators, one can sometimes derive the probabilities
of each type of error as a function of the sample size, current target model, and size of change that is

21This statement is not quite right: it is possible for consistent estimators to be diligent, but only under very special
conditions given in Appendix A.3. Roughly, an estimator can be both consistent and diligent only when every model
in the framework is sufficiently far away from every other model, so that certain data guarantee that model change
has occurred. Few realistic frameworks satisfy this condition, though many toy ones do. For example, a framework
for deterministic data generating processes with no measurement error meets this condition, as can (sometimes) a
framework for deterministic data generating processes with bounded measurement errors.

22The proof and precise statements of the above notions are provided in the Appendix

230f course, there are estimators that are neither consistent nor diligent, but we ignore those here.
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“meaningful.” If we have such probabilities for multiple estimators, as well as quantitative estimates
of the costs of each type of error, then the decision about which estimator to choose becomes a
simple exercise in minimizing some standard cost-benefit function (e.g., minimizing expected total
costs, perhaps after transforming the risk probabilities). It is thus sometimes possible to make a
principled decision about whether to use a consistent or diligent estimator, but much depends on
situation-specific details.

6 Conclusion

We have argued that the possibility of context-driven model change—changes of context that result
in a change of target model—arises naturally from our inability to include absolutely every possibly
relevant factor in our models, but presents a significant challenge for scientific practice. Such model
change is not rare, not insignificant, and not obvious, but has been largely ignored in normative
accounts of science. There are natural ways to adjust our scientific inference methods so that they
are robust against the possibility of context-driven model change, but these adjustments come at
a cost: learning methods that are diligent (and so suitably “protected” against model change)
provably cannot be consistent, and so fail to have a key property of reliable inquiry. We cannot
find the right answer both (a) quickly when the world changes; and (b) reliably when the world is
stable. Instead, we must trade-off these desiderata based on a complex set of considerations.
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A Appendix

A.1 Notation

Let X represent a random sequence of data. Let X% represent a random subsequence of length ¢
of data generated from distribution B. Let F be a framework (in this case, a set of distributions).
Let Mg be a method that takes a data sequence X as input and outputs a distribution B € F; we
will typically drop the subscript F from M as we will be dealing with a single framework at a time.
Concretely, M[X%] = O means that M outputs O after observing the sequence X%. Let D be a
distance metric over distributions (e.g., the Anderson-Darling test). Let Ds(A, B) be shorthand
for the following inequality: D(A, B) < ¢. Finally, let [ X, Y] denote the concatenation of sequence
X with sequence Y.

Definition: A distribution A is absolutely continuous with respect to another distribution B
iff Vo Pp(x) = 0 = Pa(x) = 0. That is, if B gives probability 0 to some event z, then A also
gives probability 0 to that same event. Let AC(A) be the set of distributions which are absolutely
continuous with respect to A except for A itself.

Definition: An estimator M is consistent if VB € F V§ > 0lim,_,o P(Ds(M[X4], B)) — 1.
That is, for all distributions in the framework, the probability that M’s output is arbitrarily close
to the target distribution approaches 1 as the amount of data increases to infinity.

Definition: An estimator M can be forced to make arbitrary errors it VBy € F VBy € AC(B1) N
F Vd,e > 0 Vno3ni P(Ds(M[Xp!, X32], B2)) < e. That is, consider any distribution By which is
in the framework and is absolutely continuous with respect to By. Then for any amount of data
ng from Bs, there is an amount of data n; from Bj such that M’s output will still be arbitrarily
unlikely to be arbitrarily close to By after seeing the nq + no data.
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A.2 Lemma: Consistency = Arbitrary Errors (within AC)

Proof. Assume M is consistent. It suffices to show that:
VB1 € F Vng > 0VBy € AC(B1)NF V6 > 0 Ve <1 3ImP(Ds(M[Xp, X5, B1)) > ¢

That is, even if we add a finite sequence of data drawn from Bs to the end of any Xgi sequence,
then there is some amount of B; data so that the estimator M still converges to Bj.

Choose arbitrary Bi, Bs and ne. Let S be the set of all events in the metric space that, if
satisfied by Xg;, would stop M from converging to By. That is, let S be the set of all events that,
if satisfied by X "2, would entail the negation of:

V6 >0 Ve < 1 Iny P(Ds(M[X !, X[2], B1)) > €

Since M is consistent for By, then P(X}! € S) = 0. Since By is absolutely continuous with
respect to By, P(ng € S) = 0. As such, it is at most a probability 0 event that ng can take a
value that prevents M from converging to Bi, so M will still converge in probability to By over
sequences of the form [X3!, X72]. O

A.3 Construction: Diligence = — Arbitrary Errors

We construct the formal definition of diligence from that of “arbitrary errors” (AE) in a way that
makes it clear that diligent methods are not subject to arbitrary errors. The negation of AE is:

3By € F 3B, € AC(B1)NF 35 > 0 Je < 1 Ino¥ny P(Ds(M[X 3, X 2], B2)) >

This condition is, however, insufficiently weak to capture diligence, as we want to avoid such errors
for all pairs of distributions in the framework, not just for some absolutely continuous pair. We
thus strengthen the negation of AE by turning the two leading existential quantifiers into universal
quantifiers and extending the domain of the universal quantifier over Bs to include those distribu-
tions which are not absolutely continuous with respect to Bj:

Definition: An estimator M is diligent if
VB, €e FVBy € F\Bl V6 >03de>0 3122V711P(D5(M[Xg11,ng],Bg)) > €.

That is, for any pair of distributions in the framework, there is an amount of data no from By such
that M’s output will be arbitrarily close to By with positive probability after seeing n; + ng data,
for any amount of data n; from Bj.

Definition: A framework F is nontrivial iff there exists some B € F such that AC(B) NF # 0.

Clearly, diligence implies the negation of AE for all nontrivial frameworks. We thus have the
key theorem for this paper:

Theorem: No statistical estimator for a (nontrivial) framework is both consistent and diligent.

Proof. Assume M is both consistent and diligent. Its consistency implies that AE holds for it. Its
diligence, along with the nontriviality of the framework, implies that =AE holds for it. Contradic-
tion, and so no M can be both consistent and diligent for a nontrivial framework. O
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A.4 Generalizing Diligence

A natural generalization of diligence yields a novel methodological virtue: Uniform Diligence. Uni-
form diligence is a strengthening of regular (pointwise) diligence in the same way that uniform
consistency is a strengthening of pointwise consistency. Instead of requiring only that, for each By,
By and 9, there be some no, Uniform Diligence requires that there be some ny which works for all
such combinations.

Definition: An estimator M is uniformly diligent if

dnoVB, € F VB, € F\Bl V6 >03de>0 anp(Dg(M[Xgll,ng], Bg)) > €.

Obviously, consistency and uniform diligence are also incompatible, as the latter is a strength-
ening of diligence. The following chart shows three different ways of ordering the quantifiers in
the definition of Diligence, producing methodological virtues of varying strength. The weakest,
Responsiveness, is not incompatible with consistency. For space and clarity, B is used in place of
VB; € F VBy € F\B; V6 > 0 Je > 0.

Responsiveness | Diligence | Uniform Diligence
BanEIng BEInQan EInQBan
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