Bootstrapping the PC and CPC Algorithms to Improve Search Accuracy
Joseph D. Ramsey

May 31, 2010

Technical Report No. CMU-PHIL-187

Philosophy
Methodology
Logic

Carnegie Mellon

Pittsburgh, Pennsylvania 15213

Bootstrapping the PC and CPC Algorithms to Improve Search Accuracy!
Joseph D. Ramsey

Technical Report, Philosophy Department, Carnegie Mellon University
5/31/10

Abstract

By bootstrapping the output of the PC algorithm (Spirtes et al., 2000; Meek 1995),
using larger conditioning sets informed by the current graph state, it is possible to
define a novel algorithm, JPC, that improves accuracy of search for i.i.d. data drawn
from linear, Gaussian, sparse to moderately dense models. The motivation for
constructing sepsets using information in the current graph state is to highlight the
differences between d-separation information in the graph and conditional
independence information extracted from the sample. The same idea can be
pursued for any algorithm for which conditioning sets informed by the current
graph state can be constructed and for which an orientation procedure capable of
orienting undirected graphs can be extracted. Another plausible candidate for such
retrofitting is the CPC algorithm (Ramsey et al, 2006), yielding an algorithm, JCPC,
which, when the true graph is sparse is somewhat more accurate than JPC. The
method is not feasible for discovery for models of categorical variables, i.e.,
traditional Bayes nets; with alternative tests for conditional independence it may
extend to non-linear or non-Gaussian models, or both.

1. Background.

By attaching a certain kind of bootstrapping procedure to the output of the PC
algorithm (Spirtes et al. 2000; Meek 1995), is it possible to define a novel algorithm,
JPC, that significantly improves total error for continuous-variable causal searches,
under the assumptions of causal sufficiency, acyclicity and linearity, for i.i.d data
with Gaussian errors. A similar algorithm can be defined as a bootstrapping post-
processor to the CPC algorithm (Ramsey et al. 2006). These algorithms have an
advantage over competing algorithms in that they minimize average total error—
that is, the sum of false positive and negative adjacency error rates, directional error
rate, and average number of bidirected edges erroneously inserted into the output.
For sparse graphs, at relatively small sample sizes JCP and JCPC display a markedly
lower total error rates than PC, CPC, and the Greedy Equivalence Search (GES), a
consistent scoring algorithm. JCPC has an advantage over JPC for models with the
number of edges equal to the number of nodes; for denser graphs, the advantage
tends to reverse. Notably, for discrete variable searches, due to the large size of the
conditioning sets involved, neither JPC nor JCPC has any real advantage over
competing methods.

I The author thanks Clark Glymour, for many helpful comments and edits and to the
James S. McDonnell Foundation, for support.

JPC and JCPC rely on standard theory for constraint-based causal searches of the
sort used for the PC algorithm and other algorithms of that ilk. The types of paths
and graphs that the algorithms use are as follows. A variable X is adjacent to a
variable Y in G just in case XY, X<V, or X—Y, or X<>Y; the adjacent nodes of X in G
are denoted adj(X, G). X*=2Y, X*—Y, or X*-*Y indicates an edge from X to Y, where
the starred endpoints are unknown. X is a spouse of Y just in case X2>W<Y for some
W. A path is an n-tuple of variables <X, ..., Y> in G such that each adjacent pair of
variables in the tuple are adjacent in G. The length of a path is the number of edges
along the path. A path of length 2 of the form X->Y<Z a collider, and a path of length
2 of one of the forms X2>Y2>7Z, X&YEZ, or X&Y>Zis a noncollider. A path P =
<X,...,.Y> is directed from X to Y, denoted X...=2Y, if for each i from 1 to the length of
the path minus 1, P(i)>P(i+1). A variable W such that X< ..W...2Y is a common
cause of X and Y provided the two paths intersect only at W. A set V of variables is
causally sufficient just in case all common causes of X and Y are in V, for all Xand Y in
V. A directed path of the form X...2Xin G is a cycle.

Let G be a directed acyclic graph (DAG) over variables in V—that is, a set of nodes
taken together with a set of edges defined over those nodes, in which all edges are
directed and there are no cycles. G is interpreted as a causal model over V just in
case each directed edge X->Y in G is interpreted to mean that X is a direct cause of Y,
relative to the variables in G. A causal model in which the underlying graph G is
directed, acyclic and causally sufficient is a DAG model. In addition to single DAG
models, one may consider equivalence classes of DAG models, represented using a
graph type called a pattern, consisting of directed edges (X->Y) and undirected
edges (X—Y), with the semantics that all edges directed in the pattern are so
directed in each of the DAG models in the pattern, and all edges undirected in the
pattern are directed for some DAG model in the pattern in the one direction and for
some other DAG model in the pattern in the other direction.

The notion of d-separation is the following (Pearl, 1888). A descendant of X is a node
Y such that X =Y or there exists a path X...2Y in G. A path P is active (d-connecting)
relative to a set of vertices C (A, B not in C) iff (i) every noncollider on P is not a
member of C, and (ii) every collider on P is an ancestor of some member of C. A path
is blocked just in case it is not an active path. X and Y are d-separated conditional on
Cjustin case all paths from X to Y conditional on C are blocked.

Causal graphs relate to probability distributions through the following assumptions.
Let an independence oracle be a set of variables V together with a function [(X, Y, S)
from pairs of nodes X, Y in V and conditioning sets of variables S in V to true or false.
IfI(X, Y, S), then X is independent of Y conditional on S; otherwise, X is dependent on
Y conditional on S. The Causal Markov Condition is the condition that given a set of
variables whose structure can be represented as a DAG, each variable is
probabilistically independent of its non-effects (non-descendants in G) given its
parents. The Causal Faithfulness Condition is the condition that given a set of

variables whose causal structure is represented by a DAG, no conditional
independency holds unless the Causal Markov Condition implies it for the DAG.
Given these two assumptions, X is independent of Y conditional on C just in case for
the true DAG model G, X is d-separated from Y conditional on C.

An unshielded collider in G is a subgraph of G of the following form X*-*Y*-*Z*-*X,
Orientations inside of unshielded colliders cannot be discerned in the general case;
hence not all colliders in G may be identifiable in the pattern of G. The graphical
Markov blanket of X in a DAG D, MB(X, D) consists of the parents, children, and
spouses of X (a spouse of X being a parent of a child of X). If D* is the true model for a
probability distribution, then MB(X, D*) is the Markov blanket of X. (Cases will be
considered where D is not the true model.) If X is a variable in D*, then X is
independent of and variable not in D* U {I} conditional on D*. In patterns, Markov
blankets cannot strictly be identified. The parents and children of X and be
identified, since these are the nodes adjacent to X. However, since not all colliders
are marked in a pattern, it is not always the case the parents of children can be
identified. The algorithmic code discussed below will condition on Markov blanket
variables in order to block paths between variables X and Y in a pattern I1, doing
extra searches where necessary to discover Markov blanket variables, or parents, or
descendants, where these might otherwise not be identifiable.

The PC algorithm, which JPC extends, can be stated as follows:

PC(V,)
1. Form the complete undirected graph U on the set of variables V.
2. n=0
3. Repeat until for each ordered pair of adjacent variables X and Y, adj(U, X) \ Y
has less than n elements
a. For each pair of variables X and Y that are adjacent in (the current) U
such that adj(U, X)\{Y} or adj(U,Y)\{X} has n elements, check through
the subsets of adj(U, X)\{Y} and the subsets of adj(U, Y)\{X} that have
exactly n variables. If a subset S is found conditional on which X and Y
are independent, remove the edge between X and Y in U, and record S
as Sepset(X,Y).
b. n<-n+1
4. Let P be the graph resulting from step 3. For each unshielded triple <A, B, C>
in P, orient it as a A>B<C iff B is not in Sepset(4, C)
5. Execute the orientation rules given in Meek 1995.

The PC algorithm produces a pattern, that is, a graph consisting of directed and
undirected edges, representing an equivalence class of DAGs, such that every
directed edge in the pattern is found in every DAG in the equivalence class, and each
undirected edge is directed the one way in some DAG in the pattern and the other
way in some other DAG in the pattern. The Conservative PC (CPC) algorithm
(Ramsey et al. 2006), which JCPC extends, modifies step 4 of the PC algorithm as
follows:

4. Let P be the graph resulting from step 3. For each unshielded triple <A, B, C>
in P, check all subsets of adj(A, G) and of adj(C, G):
a. IfBisnotin any such set conditional on which A and C are
independent, orient A—B—C as A>B<C;
b. If Bisin all such sets conditional on which A and C are independent,
leave A—B—C as it is, i.e., a non-collider;
c. Otherwise, mark the triple as “unfaithful” by underlining the triple.

The CPC algorithm produces an e-pattern, that is, an extended pattern, in which
some triples are marked as ambiguous. For each algorithm steps 1-3 can be run to
produce a graph showing the adjacencies of each node. Orientation is done in steps
4 and 5 of each algorithm. In the case of PC, this orientation requires a sepset map—
that is, a map from each node pair to the conditioning set used to show the nodes in
that node pairs are conditionally independent—or null if not the node pair was not
shown to be conditionally independent. In the case of CPC, orientation does not
require a sepset map and can be done directly from a graph.

Note that whereas a pattern characterizes a set of DAGs that are Markov equivalent,
a e-pattern need not do so.

2. The Algorithms.

Pseudocode for JCP is given in Figures 1 and 2. The JPC algorithm bootstraps the PC
algorithm by adding a meta-step. Given the graph, for each node pair X and Y of the
graph, a set is constructed, S = Sepset(X, Y, G), that blocks all paths (conjectured by
PC output) from X to Y except possibly for a direct connection between X and Y. If X
and Y are independent conditional on S, then if there is an edge between X and Y in
G, it is taken out. Alternatively, if X and Y are dependent conditional on S, then if
there is no edge between X and Y in G, one is added. This procedure is carried out
for all node pairs in G, and this entire procedure is iterated until no further changes
are made to G. The graph at the end of each epoch is stored, and sepsets for the next
epoch are calculated using this stored graph. Reorientation of the graph is
performed once per epoch, using any new sepsets discovered and taking into
account any adjacency changes that have been made.

Both the metastep and considerations of orientation require that some attention be
paid to selection of separating sets in steps 3 and 4 of the algorithm. The sets chosen
by the Sepset procedure have been shown in practice to yield good accuracy results
for the algorithm. The rationale for PathBlockingSet is to construct a modified
Markov blanket about X. It may be that Y is a spouse of X, in which case variables
that are adjacent to both X and Y that are colliders must not be conditioned on. In
order to separate X and Y, among all variables adjacent to both X and Y, those which
form colliders with X and Y should not be conditioned on, and those that form
noncolliders with X and Y should be conditioned on. As noted above, in general it is

not possible to know which variables along which paths form colliders in a pattern.
Therefore, a search is done among all subsets of the variable adjacent to both X and
Y for the subset that, when not conditioned on, allow X and Y to be separated, if such
a set exists. Also, because conditioning on any descendant of such a collider would
cause an otherwise blocked path to be unblocked, a search is done for variables
(among those that might be conditioned on) that are descendants of one of these
potential colliders, so that these may not be conditioned on either. The following
theorem shows that failing to condition on descendants of common colliders does
not lead to paths being unblocked that would otherwise be blocked by Markov
blanket conditionings.

Theorem 1. Let X and Y be variables in a DAG G. Let C be the set of common colliders
of Xand Y. Let E consist of C taken together with its descendants in MB(X, G). Let S =
MB(X, G) \ {E U {X} U {Y}}. Then X is d-separated from Y conditional on S.

Proof: Consider a path from X to Y. No matter how this path begins, it is blocked. Let
D be the descendants of C in MB(X, G). If the path is of the form X>A->B...Y, then A
is conditioned on, blocking the path, unless A is in D. But in the latter case, if there
were a path A...->Y, then there would be a cycle Y->C—2>A...=Y, against assumption.
If the path has the form X->A<B...Y, then conditioning on A and B would block the
path, unless A or both A and B were in D.2 Assuming there is no cycle Y>C-2>B...2Y,
In either case, A would block the path, unless some descendant D of A were
conditioned on. However, in that case, D would be a descendant of C, against
assumption. If the path were of the form X< A...Y, then there would be a cycle
C>A->X->(, against assumption. Thus all paths are blocked except possibly for
length-2 paths of one of these forms: X->A->B, X&A>B, X<A$EB, and X2>A<B. In
the first three cases, conditioning on A blocks the path, and A is in S. In the last case,
not conditioning on A blocks the path, and A is not in S, and neither are any of its
descendants. Thus all paths from X to Y are blocked. ..

For patterns, the sepset S from Theorem 1 needs to be modified somewhat, since in
a pattern, not all colliders and not all descendants of a variable can be determined
from the graph alone. Because not all colliders can be determined, it’s not possible
to determine always whether a variable should be counted as a parent of a child.
The following rule is used. Instead of including all parents of children, all adjacents
of non-parents are used, a superset of the set of parents of children. By the same
reasoning used in Theorem 1, including the extra variables in the sepset is not
problematic. Since not all descendants of a variable can be determined from the
graph alone, a secondary search is initiated from among the potential descendants
of these the elements of C for a set that, when not conditioned on, in addition to the
potential colliders not being conditioned on, will allow X and Y to be separated. The
potential descendants of a variable X in G are those variables Y in G for which there

2IfBis in D in this case, then so is A.

Figure 1. G is a graph, X and Y distinct variables in G, and E a set of variables to be
excluded.

Procedure PathBlockingSet(X, Y, G, E)

1. T < adj(X, G)

2. T < T U adj(non-parents(X) \ E)
3. T < T U parents(Y, G)

4. T < T\ {X, Y}

5. T < T \ E

Procedure Sepset(X, Y, G)

1. B < PathBlockingSet(X, Y, G, empty)

2. A < {C such that adj(X, C, G) and adj(C, Y, G)}
3. For each subset E of A

4 E2 < E U descendants(X, E)

5. E3 <« semiDirectedDescendants(X, E, G) \ E2

6 For each subset E4 of E3

7 S* < PathBlockingSet(X, Y, G, E2 U E4)

8 If I(X, Y | S*)
9. Return S*
10. Return null

exists a semi-directed path from X to Y—that is, a path consisting of directed and/or
undirected edges, in which all of the directed edges point away from X and toward Y.

As far as the code is concerned, Figure 1 consists of two methods, PathBlockingSet
and Sepset. PathBlockingSet takes as arguments a graph G, two distinct variables X
and Y in G, and a set of variables E to be excluded. It constructs a set containing the
parents and children of X, and the parents of potential children of X (including
parents of adjacents that aren’t themselves parents but are not marked as children),
and the marked parents of Y, with some exclusions. Excluded are any variables in E,
any parents of variables of E, and X and Y themselves. If E consists entirely of the
common colliders of X and Y and their descendants, then this is a set that blocks
every path from X to Y with the exception of an edge between X and Y themselves.
The job of the procedure Sepset, then, is to produce the correct E, if there is one. It
does this by looking at every subset of the common adjacents of X and Y for the set
of common colliders, and then attempting to discover from the graph, using a bit of
search, what the descendants of those common colliders are, by initiating a search of
the sort described above. If the common colliders are found, then the descendants of
those common colliders will be found by the descendant search, and the search will
be successful. Also, if the search for a sepset was successful, that means the common
colliders were found, not conditioned on, and their descendants were also all not
conditioned on.

The main loop is given Figure 2, along with an orientation procedure (taken from
PC). To produce the JCPC algorithm, CPC is used instead of PC in line 1 of

Figure 2. The Reorient procedure takes a graph G and a map S from pairs of
variables to sepsets (or to null). The JPC procedure takes as input a set of
variables V over which a conditional independence relation has been defined, I.
The procedure copy(G) returns a copy of graph G.

Procedure PC-orient(G, S)

1. Remove all orientations from G.

2. Orient colliders using sepsets in S.

3. Add implied orientations using Meek rules (Meek 1995) and
sepsets in S.

Procedure JPC(V, I)

1. <G, S> < PC(V, I)

2. Repeat while G changes:

3. G2 < copy(G)

4. Repeat for every pair of nodes X and Y in G:
5. S1 = Sepset(X, Y, G2)

6. S2 = Sepset(Y, X, G2)

7. If S1 is not null and S2 is not null
8. S(X, Y)< the larger of S1 and S2
9. Else if S1 is not null

10. S(X, Y) < s1

11. Else if S2 is not null

12. S(X, Y) < 82

13. Else

14. S(X, Y) < null

15. If ~adj(X, ¥, G)

16. If S(X, Y) is null

17. Add X—Y to G

18. Else

19. If S(X, Y) is not null

20. Remove X*-*Y from G

21. G < PC-orient(G, S)
22. Return G.

Procedure JPC, and use CPC orientation is used instead of PC orientation in line 19 of
Procedure JPC. With these substitutions, sepset map S does not need to be tracked,
so lines 5-9 of the algorithm can be eliminated.

Obviously, any procedure such as Sepset in Figure 1 for choosing separating sets for
nodes X and Y will work in theory so long as the chosen set blocks all paths from X
to Y except for the possible adjacency between X and Y itself. A well-known
alternative strategy is to block all parents of X or of Y. Since the adjacents of X are
marked in G, one could simply search over all combinations of adj(X) to see if,
conditional on any such combination, X is independent of Y. Incorporating known
information about parents and children in G, this yields a “small” sepset, computed

by procedure Sepset2 (see below) as given in Figure 3. To compare this alternative
to PC and]JCP, an additional algorithm will be added to performance results, code-

Figure 3. An alternative procedure for producing sepsets. This procedure
produces smaller sepsets than the Sepset procedure in Figure 1.

Procedure Sepset2(X, Y, G)
T <- adj(X, G) \ {children(X, G) U parents(X, G))
For each subset E of T
If (I(X, Y | E U parents(X, G))
Return E U parents(X, G)
Return null

U wN -

named “JPC-small,” using Sepset2 in place of Sepset to calculate sepsets in JPC.
Unsurprisingly especially for denser searches, performance drops off radically using
the “small” sepset.

4. Comparison to Alternative Algorithms.

Most algorithms recommended for causal search assuming causal sufficiency and
acyclicity in the literature are aimed at the discrete variable case. Three are notably
aimed at the continuous variable case: PC (Spirtes et al., 2000; Meek 1995), CPC
(Ramsey et al,, 2006), and GES (Checkering, 2002). These form a sensible
comparison set for JPC and JCPC. Two further algorithms are added. Even though
MMHC is aimed at the discrete variable case, arguments by its authors for its
superiority in the discrete case invite a comparison. It is implemented in the
continuous case by using the same adjacency phase as is published for the MMHC
algorithm but using GES restricted to the adjacencies returned by the adjacency
phase as the greedy hill-climbing orientation step. In addition, JPC-small is added,
for reasons given above.3

These algorithms are compared in Tables 1 through 9. For each table, 30 random
data sets are simulated, and error rates rages for each algorithm are listed, with the
exception that in some cases certain algorithms are left out of the comparison for
reasons of time. For each table, 30 random data sets are simulated; these same data
sets are then given to each algorithm compared in that table and results tabulated.
Data sets are simulated as follows. For each data set, a DAG is chosen uniformly
from the set of graphs with a particular number of nodes and edges. For sparse
graphs, options for 10 nodes and 10 edges (Table 1), 50 nodes and 50 edges (Table
2),and 100 nodes and 100 edges (Table 3) are considered. For denser graphs,

3 GES restricted to a certain set of edges may in principle not return all of the edges
given to it. This does not happen in the current comparison. Nevertheless, edges that
are not returned are added as undirected edges to the output pattern, so no
additional false negative counts are incurred.

options for 10 nodes and 20 edges (Tables 4 for n = 1000 and 7 for n = 5000), 50
nodes and 50 edges (Tables 5 for n = 1000 and 8 for n = 5000), and 100 nodes and
200 edges (Tables 6 for n = 1000 and 9 for n = 5000) are considered. The
simulations are all random linear structural equation models with linear coefficients
chosen randomly from the set (-1.5,-0.05) U (0.05, 1.5). Errors are counted as
follows. False positive adjacencies (Adj FP) are counted as adjacencies in the
discovered graph that do not appear in the DAG used to generate the data. False
negative adjacencies (Adj FN) are adjacencies that are in the randomly generated
DAG but not in the discovered graph. Directional errors (DE) are counted as the
number of directed edges in the discovered graph that are not so directed in the
pattern of the randomly chosen DAG. These are adjacencies that may either be
directed oppositely or not directed in the pattern of the randomly chosen DAG.
Bidirected errors (BID) are counted as the number of bidirected edges that appear
in the discovered graph; these are all errors, since the pattern of the randomly
chosen DAG does not contain bidirected edges; each is counted once.

In all cases, random graphs are chosen with a maximum degree of 6 . In search, for
JPC and JCPC, a maximum degree of 8 is assumed, along with a maximum
descendant path length of 15. The latter is intended to avoid prolonged searches for
possible descendants of possible common colliders of variables.

For all constraint-based algorithms (JPC, JPC-small, PC, CPC, MMHC), the Fisher Z
independence test was used with alpha = 0.001. In the case of GES, to speed up the
search and to reduce the number of false positive adjacencies, a discount penalty
equal to the number of edges in the true graph is applied (Ramsey et al. 2010). In
each table, algorithms are removed from consideration if they do not return in
under 10 minutes.

Tables 1-3 show that JCPC and JPC are both low in average total error for small
sparse graphs, of 10 nodes and 10 edges, 50 nodes and 50 edges, and 100 nodes and
100 edges, respectively. CPC runs a close third for 10 nodes, 10 edge graphs, but as
the number of nodes and edges increases, JPC dominates all other algorithms
considered. JPC-small—that is, JPC using the smaller sepsets (Sepset2) is shown in
all three tables to have inferior performance to JPC, the difference becoming more
pronounced as the number of nodes and edges increases. MMHC shows excellent
false positive error rate, but total error is kept high by a high false negative error
rate. GES, by contrast, shows excellent false negative error rate, but total error is
kept high by a high false positive error rate, that in fact needs to be kept in check by
applying a high penalty discount for larger models. PC, CPC, JPC, JPC-small, and JCPC
are all liable to producing bidirected edges in the fact of conflicting conditional
independence information. All bidirected edges are orientation errors, since the
pattern of the randomly chosen DAG for each run does not contain any bidirected
edges. JCPC controls these the best out of these algorithms, with JPC second and CPC
third. In all, for sparse models, out of these options, JCPC is the algorithm of choice,
with JPC a close second.

10

Table 1: Simulation results for graphs with 10 nodes and 10 edges, n = 1000. All numbers are average
error rates over 30 runs. Columns are as indicated in the text. GES uses a penalty discount of 10, equal to

the expected number of edges. ‘Time’ is average time over 30 runs in milliseconds.

Algorithm Adj FP Adj FN DE BID TOTAL | Time*
JPC 0.27 0.27 0.87 0.07 1.47 32
JPC-small 0.10 0.37 0.23 0.60 1.30 16
JCPC 0.17 0.30 0.50 0.00 0.97 37
PC 0.10 0.80 0.87 1.33 3.10 5
CPC 0.07 0.80 0.33 0.07 1.27 6
GES 0.73 0.60 1.50 0.00 2.83 51
MMHC 0.03 1.00 1.70 0.00 2.73 21

Table 2: Simulation results for graphs with 50 nodes and 50 edges, n = 1000. All numbers are average
error rates over 30 runs. Columns are as indicated in the text. GES uses a penalty discount of 50, equal to

the expected number of edges. Time’ is average time over 30 runs in milliseconds.

Algorithm Adj FP Adj FN DE BID TOTAL Time
JPC 0.23 1.00 0.97 0.03 2.23 636
JPC-small 2.60 2.13 1.20 1.97 7.90 541
JCPC 0.33 1.30 0.27 0.00 1.90 1022
PC 1.33 6.43 2.40 4.87 15.03 92
CPC 1.33 6.43 0.43 0.07 8.27 102
GES 2.30 8.77 2.67 0.00 13.73 2024
MMHC 0.67 7.50 2.17 0.00 10.33 277

Table 3: Simulation results for graphs with 100 nodes and 100 edges, n = 1000. All numbers are average
error rates over 30 runs. Columns are as indicated in the text. GES uses a penalty discount of 100, equal
to the expected number of edges. Time’ is average time over 30 runs in milliseconds.

Algorithm Adj FP Adj FN DE BID TOTAL | Time
JPC 1.73 3.80 3.37 0.07 8.97 | 4532
JPC-small 5.53 7.37 2.77 423 19.90 | 4047
JCPC 1.07 3.50 0.60 0.00 517 6198
PC 1.60 13.53 5.57 9.23 29.93 927
CPC 1.57 13.67 0.50 0.17 15.90 972
GES 1.13 43.67 1.27 0.00 46.07 | 12252
MMHC 0.97 16.00 2.40 0.00 1937 | 1290

For denser models, with twice the number of edges as nodes, as shown in Table 4
for 1000 cases, for smaller models all of the algorithms being compared come back
(and converge, for JPC-small); JPC has the lowest total error, with JCPC second, JPC-

4Time is shown in milliseconds. All runs were done on a MacBook Pro laptop, 2.8

GHz Intel Core 2 Duo, 4 GB, using Java 6.

11

small third, and others with higher total error. In this case, JPC actually has the
lowest adjacency false positive rate as well, and the lowest false negative rate. In
Table 5, for models with 50 nodes and 100 edges, JPC again has the lowest total
error, lowest adjacency false and negative error rates, out of the algorithms
compared. In Table 6, even though the total error rate for JPC is not small (65.6333),
the next lowest total error rate is 135.4000 for MMHC. Nevertheless, these JPC
results are not really usable, at this sample size, for this large dense model.

For the 5000-case examples, in Table 7 for 1000 cases, for smaller models, all of the
algorithms being compared come back (and converge, for JPC-small); JPC again has
the lowest total error, this time quite low, with JCPC second, JPC-small third, and
others with higher total error. In this case, JPC actually has the lowest adjacency
false positive rate as well, and the lowest false negative rate. In Table 8, for models
with 50 nodes and 100 edges, JPC again has the lowest total error, lowest adjacency
false and negative error rates, out of the algorithms compared. In Table 8, the total
error rate for JPC is much smaller than for Table 6 (24.5667), the next lowest total
error rate is 138.233 for MMHC, considerably higher. The JPC results in these cases
are generally usable. The comparison of Tables 4-6 to Tables 7-9 illustrates rapid
convergence of the algorithm with a moderate increase sample size. In addition, it is
notable that JPC performs better than JCPC for these denser models.

Table 4: Simulation results for graphs with 10 nodes and 20 edges, n = 1000. All numbers are average
error rates over 30 runs. Columns are as indicated in the text.

Algorithm Adj FP Adj FN DE BID | TOTAL| Time
JPC 1.57 3.80 413 120] 1070| 347
JPC-small 4.00 5.13 3.43 417] 1673 | 288
JCPC 1.23 6.73 3.17 0.00] 11.13]| 1030
PC 2.13 9.63 2.27 530| 19.33 5
CPC 2.07 9.53 2.43 097] 15.00 9
GES 4.63 7.27 4.93 0.00] 16.83 88
MMHC 1.37 9.80 3.17 0.00] 1433 21

Table 5: Simulation results for graphs with 50 nodes and 100 edges, n = 1000. All numbers are average
error rates over 30 runs. Columns are as indicated in the text.

Algorithm Adj FP Adj FN DE BID | TOTAL | Time
JPC 4.47 10.93 9.07 1.67 26.13 | 17285
JPC-small 45.27 38.50 9.63 54.30 | 147.70 | 25005
PC 14.37 50.60 8.17 23.70 96.83 168
CPC 15.00 50.70 4.77 1.27 71.73 205
GES 11.67 60.00 10.27 0.00 81.93 | 4029
MMHC 5.37 54.37 8.67 0.00 68.40 894

12

Table 6: Simulation results for graphs with 100 nodes and 200 edges, n = 1000. All numbers are average
error rates over 30 runs. Columns are as indicated in the text. JPC-small, JCPC, and GES have been
removed from consideration because they do not return in under 10 minutes.

Algorithm | Adj FP Adj FN DE BID TOTAL
JPC 13.5000 35.7000 14.9000 1.5333 65.6333
PC 34.7333 109.2667 | 12.3333 43.3333 199.6667
CPC 34.9000 109.6000 | 7.3667 1.6000 153.4667
MMHC 10.9000 116.5667 | 7.9333 0.0000 135.4000

Table 7: Simulation results for graphs with 10 nodes and 20 edges, n = 5000. All numbers are average
error rates over 30 runs. Columns are as indicated in the text.

Algorithm Adj FP Adj FN DE BID | TOTAL | Time
JPC 0.90 2.07 1.90 1.43 6.30 239
JPC-small 3.10 2.90 3.17 4.10 13.27 79
JCPC 1.30 4.27 1.77 0.00 7.33 | 1285
PC 2.43 6.80 2.57 6.67 18.47 7
CPC 2.50 7.00 243 1.53 13.47 15
GES 7.13 3.40 6.43 0.00 16.97 172
MMHC 1.63 7.53 3.77 0.00 12.93 33

Table 8: Simulation results for graphs with 50 nodes and 100 edges, n = 5000. All numbers are average

error rates over 30 runs. Columns are as indicated in the text. JCPC has been removed from

consideration because it does not return in under 10 minutes.

Algorithm Adj FP Adj FN DE BID TOTAL Time
JPC 1.67 2.23 2.53 1.63 8.07 15077
JPC-small 49.13 32.53 7.73 60.60 150.00 38369
PC 21.63 45.10 6.90 39.80 113.43 249
CPC 21.63 45.13 6.10 4.07 76.93 326
GES 29.33 32.07 14.27 0.00 75.67 21801
MMHC 8.00 50.63 8.83 0.00 67.47 3700

Table 9: Simulation results for graphs with 100 nodes and 200 edges, n = 5000. All numbers are average

error rates over 30 runs. Columns are as indicated in the text. JCPC has been removed from

consideration because it does not return in under 10 minutes.

Algorithm Adj FP Adj FN DE BID TOTAL Time
JPC 4.50 6.90 4.50 1.50 17.40 99710
JPC-small 106.87 69.60 13.73 131.30 321.50 177988
PC 40.10 90.20 11.37 70.53 212.20 1728
CPC 40.03 90.43 9.63 5.87 145.97 1956
GES 38.97 78.87 19.40 0.00 137.23 191479
MMHC 12.17 101.23 13.63 0.00 127.03 33167

13

References

Chickering, D. M. (2002). Optimal Structure Identification with Greedy Search.
Journal of Machine Learning Research, 3:507-554.

Meek, C. (1995). Causal Inference and Causal Explanation with Background
Knowledge. Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, 403-411. Morgan Kaufmann.

Pearl,]. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Representation and Reasoning Series (2nd printing ed.). San Francisco:
Morgan Kaufmann.

Ramsey,]. P. Spirtes, and . Zhang (2006). Adjacency-Faithfulness and Conservative
Causal Inference. Proceedings of the 22" Conference on Uncertainty in Artificial
Intelligence, 401-408. Oregon: AUAI Press.

Spirtes, P., C. Glymour, and R. Scheines (2000). Causation, Prediction, and Search.
MIT Press.

Tsamardinos, I., L. Brown, and C. Aliferis (2006). The Max-min Hill-Climbing
Bayesian Network Structure Learning Algorithm. Machine Learning 65(1):31-78.

