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Abstract

We present a translation of §§160–166 of Dedekind’s Supplement XI
to Dirichlet’s Vorlesungen über Zahlentheorie, which contain an investi-
gation of the subfields of C. In particular, Dedekind explores the lattice
structure of these subfields, by studying isomorphisms between them. He
also indicates how his ideas apply to Galois theory.

After a brief introduction, we summarize the translated excerpt, em-
phasizing its Galois-theoretic highlights. We then take issue with Kier-
nan’s characterization of Dedekind’s work in his extensive survey article
on the history of Galois theory; Dedekind has a nearly complete realiza-
tion of the modern “fundamental theorem of Galois theory” (for subfields
of C), in stark contrast to the picture presented by Kiernan at points.

We intend a sequel to this article of an historical and philosophical
nature. With that in mind, we have sought to make Dedekind’s text
accessible to as wide an audience as possible. Thus we include a fair
amount of background and exposition.

1 Introduction

Dirichlet’s Vorlesungen über Zahlentheorie [14] were based on his lectures on
number theory at the University of Göttingen; Dedekind edited the volume,
which was first published after Dirichlet’s 1859 death. Through the course of
four editions from 1863 to 1894, Dedekind added eleven substantial supplements
to the material; the subject of the present article is a treatment of fields and
Galois theory that appears in a portion of Supplement XI from 1894. Given the
protracted formation of the final version of the Vorlesungen, and at the hands
of someone as influential as Dedekind, it is no surprise that the finished work
∗The contents of this article are ultimately intended to be incorporated into a larger project.

The translation grew out of an historico-philosophical seminar on Galois theory led by Jeremy
Avigad of Carnegie Mellon and Ken Manders of the University of Pittsburgh. Avigad provided
comments on an early version, and Wilfried Sieg answered a handful of queries concerning the
translation itself.
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can be seen as something of a bridge between different eras in the development
of number theory (and perhaps of mathematics as a whole).

The first four chapters cover the basics of elementary number theory up
to Gauss’ results on quadratic forms from the 1801 Disquisitiones Arithmeti-
cae [17]. The fifth chapter – also the last before Dedekind’s supplements –
gives Dirichlet’s derivation of the class number formula for both real and imag-
inary quadratic fields. Another landmark result of Dirichlet’s can be found in
Dedekind’s Supplement VI:

Theorem (Dirichlet). If a, d are coprime, then the arithmetic progression

a, a+ d, a+ 2d, a+ 3d, . . .

contains infinitely many primes.

Dirichlet’s proof of this theorem involved the first significant application of an-
alytic methods to number theory.

So up to this point the volume already contains significant advances due to
Dirichlet in both algebraic and analytic number theory. But Dedekind’s sup-
plements also offer crucial advances of his own. There is his well-known theory
of ideal divisors for rings of integers in algebraic number fields, for instance;
Dedekind gave varying accounts of this theory through the course of the four
editions of the Vorlesungen, and elsewhere. The treatment of field theory in the
excerpt below is of undeniable importance as well, and it greatly embodies the
modern approach to Galois theory.

We summarize the translated excerpt in Section 2, and in Section 3 we
criticize – on the basis of our exposition – Kiernan’s analysis of Dedekind from
[19], arguing that Kiernan does not properly recognize the extent to which
Dedekind can be said to have realized the fundamental theorem of Galois theory.
Before proceeding further, however, let us finish this introduction by very briefly
recounting the fundamental theorem and some concepts undergirding it, in the
spirit of being relatively self-contained.

Consider the divisibility relation a | b which holds between positive integers
a, b if and only if a divides evenly into b. This relation partially orders Z+.
Moreover, any a, b ∈ Z+ have a greatest lower bound and a least upper bound in
this ordering, namely the greatest common factor and least common multiple,
respectively. Thus 〈Z+, |〉 is a paradigmatic example of a lattice.1 And given
any positive integer n, its collection of divisors form a sublattice of 〈Z+, |〉. (See
Figure 1.)

Given a group G, its collection Sub(G) of subgroups also forms a lattice
when it is equipped with the subgroup relation ≤. Similarly, the subfields of
a field B form a lattice under the subfield relation ⊆. And given a particular
subfield A of B – or to put it another way, given an extension B : A – the
collection Int(B : A) of intermediate fields is a sublattice of the aforementioned.
(Again, see Figure 1.) The fundamental theorem of Galois theory spells out a

1To be clear, a lattice is precisely a partially ordered set in which every two elements have
a greatest lower bound and a least upper bound.

2



C4(a)× C2(b)

C4(ab)C4(a)

C2(b)

C2(a2)

V4(a2, b)

{e}

C2(a2b)

1

2

4

3

6

12

C

Q

. . .

60

20
30

15
10

5

Figure 1: Examples of lattices. The divisors of 60, the subgroups of a particular
finite abelian group (with generators in parentheses), and the subfields of C
(which obviously cannot be drawn).

relationship between the lattice of intermediate fields of a (particular kind of)
field extension B : A and the lattice of subgroups of a corresponding group,
known today as the “Galois group” of the extension.

Suppose we have a field extension B : A. It is now well-known that B can
be viewed as a vector space over A; we call the extension finite if

[B : A] := dimension of B as an A-vector space

is finite. We call the extension B : A Galois if

Fix(AutA(B)) = A.

Here AutA(B) denotes the group of automorphisms of B which fix the field A,
and Fix(G) denotes the subfield of B that is fixed by any G ≤ Aut(B). This
AutA(B) is the aforementioned Galois group of B : A.

We can now state the fundamental theorem of Galois theory; we express it
(essentially) as in Hungerford’s standard graduate algebra text [18].

Theorem (Fundamental theorem of Galois theory). Suppose we have a field
extension B : A that is both finite and Galois. Then:

1. The map

G : 〈Int(B : A),⊆〉 −→ 〈Sub(AutA(B)),≥〉
K 7−→ AutK(B)

is an isomorphism of lattices, with inverse G 7→ Fix(G).

2. For each intermediate field K, the degree of the extension B : K equals
the order of its image under G :

[B : K] = |AutK(B)|.

3. B is Galois over every intermediate K, but K is Galois over A iff

AutK(B) C AutA(B), 2

2I.e. this is a normal subgroup.
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and in this case
AutA(B)
AutK(B)

∼= AutA(K).

2 Summary of the Excerpt

Here we give a summary of the translated excerpt, highlighting the results per-
taining directly to Galois theory. Along the way we relate Dedekind’s termi-
nology to that of today, expressing many of Dedekind’s notions and results in
modern terms. At the end of this section, we indicate the precise extent to
which Dedekind can be said to have formulated the fundamental theorem of
Galois theory.

§160. Dedekind begins with his definition of a “field,” which is more re-
stricted than the modern axiomatic definition; Dedekind’s fields are precisely
subfields of C, and henceforth in this section the locution “field” will always
mean a subfield of C. Thus, for Dedekind there is a largest field C which con-
tains all others, and a smallest field Q of rationals which is contained in all
others.

After this initial definition, Dedekind’s first step is to define when a field A
is a divisor of another field B (equivalently, B is a multiple of A). This amounts
to nothing more than A ⊆ B, and so in this context a Dedekindian divisor is,
in modern terms, a subfield, and a multiple is a field extension. Dedekind’s
use of the language of divisibility regarding extensions and subfields is not in-
significant. Recall that the divisibility relation on Z+ is a staple example of a
lattice; Dedekind’s use of divisibility terminology underscores his recognition of
the lattice structure on the subfields of C under the subfield relation.3

Given any collection {Ai}i∈I of subfields of C, their intersection is nonempty
since Q is contained in each of them. It is easy to check that

gcd{Ai}i∈I :=
⋂
i∈I

Ai

is itself a field, and is moreover the greatest common divisor of the Ai’s. That
is, it is a divisor (subfield) of each of them, and it contains in turn any other
common divisor. Building on this, Dedekind notes that for any collection of
numbers G ⊆ C, we have the field given as

gcd{M ⊇ G |M is a field} =
⋂
{M ⊇ G |M is a field}.4

Today we call this the field generated by G.
3Not long after publication of the fourth edition of the Vorlesungen, Dedekind laid the

groundwork for lattice theory as its own subject [10, 9]. The concept he termed a Dualgruppe
is exactly the modern notion of a lattice.

4He remarks that the set in this definition is nonempty, since C itself is certainly such an
M . It is by virtue of working in the enveloping surroundings of the lattice of subfields of C
that Dedekind is able to give this definition of the generated field as a greatest lower bound.
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Dedekind goes on to give an explicit description of the numbers in this field
as those which are rationally representable by the members of G, justifying the
following notation for the generated field: Q(g′, g′′, . . . ), where g′, g′′, . . . are
the members of G. He notes that, in Galois’ terms, Q(g′, g′′, . . . ) is the result of
adjoining the members of G to the field Q. And this generalizes to A(g′, g′′, . . . )
for any field A:

A(g′, g′′, . . . ) :=
⋂
{M ⊇ (A ∪G) |M is a field}.

Now given any collection {Ai}i∈I of fields, their product is defined to be the
field generated by the set of all their elements, i.e. the common extension

∏
i∈I

Ai :=
⋂{

M ⊇
⋃
i∈I

Ai |M is a field

}
.

Akin to the earlier terminology, Dedekind also calls the product the least com-
mon multiple of the fields Ai.

Thus Dedekind has shown that the subfields of C do indeed form a lattice. In
fact, he has shown more; any collection of subfields has a greatest lower bound
and a least upper bound, not just finite collections (which is all that is required
by the definition of a lattice). In modern terms, he has shown that we have a
complete lattice.

§161. Here Dedekind isolates the notion of a field isomorphism (or a per-
mutation in his terms) as a function π on a field A that preserves field structure
thus:

π(u+ v) = π(u) + π(v)
π(u− v) = π(u)− π(v)
π(uv) = π(u)π(v)
π(u/v) = π(u)/π(v)

for all u, v ∈ A.5 Dedekind goes on to show that the image π[A] of such a
homomorphism is again a field, and moreover that π is necessarily injective; so
all field homomorphisms are in fact monomorphisms, hence A is isomorphic to
π[A].6

Now suppose we have a collection Φ = {ϕi : Ai → Bi}i∈I of field isomor-
phisms. Dedekind calls a number a ∈

⋂
i∈I Ai one-valued, or two-valued, etc. in

Φ according to the number of distinct images a has under the permutations ϕi.
For instance, any q ∈ Q is one-valued in any Φ because all rationals are fixed
by any field isomorphism. Armed with this definition, Dedekind establishes the
following:

5As Dedekind realizes, an equivalent characterization is for π to satisfy the first and third
equations, plus the condition of not being constantly 0.

6Note that Dedekind’s way of speaking allows him to rarely mention the range (or,
codomain) of field isomorphisms. He will speak of a “permutation of A” without explicitly
designating the field to which it maps.
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Theorem (§161). Given a set Φ = {ϕi : A → Bi}i=1,...,n of distinct isomor-
phisms from the common field A, there are infinitely many a ∈ A which are
n-valued in Φ.

As a corollary, Dedekind observes that

Theorem (§161). Given a set Φ = {ϕi : A → Bi}i=1,...,n of distinct isomor-
phisms from the common field A, there exist n numbers a′, a′′, . . . , a(n) in A
for which ∣∣∣∣∣∣∣∣∣

ϕ1(a′) ϕ1(a′′) · · · ϕ1(a(n))
ϕ2(a′) ϕ2(a′′) · · · ϕ2(a(n))

...
...

. . .
...

ϕn(a′) ϕn(a′′) · · · ϕn(a(n))

∣∣∣∣∣∣∣∣∣ 6= 0.

This introduction of talk of determinants foreshadows the linear-algebraic
approach Dedekind takes in his proofs in §§164–5.

§162. In this section Dedekind merely defines the composition (or, in his
terms, the resultant) of field isomorphisms, and notes some easy consequences
such as the transitivity of isomorphism (or of conjugacy in his terms):

Theorem (§162). If A ∼= A′ and A′ ∼= A′′, then also A ∼= A′′.

§163. Dedekind presents one theorem in this section, and with it he begins
progress toward the fundamental theorem of Galois theory.

Theorem (§163). Let Π = {πi : Mi → Ni}i∈I be a collection of field isomor-
phisms. Then:

1. A := {a ∈
⋂

i∈I Mi | a is one-valued in Π} forms a field.

2. The πi’s all have a common restriction ψ to A.

3. ψ extends any common restriction of the πi’s.

It is not hard to check that the set A is indeed a field, and the other parts
follow immediately. Dedekind calls this collection A of all numbers which are
one-valued in Π the field of Π, and he notes that the field of Π need not be
the full intersection of the Mi’s. (See Figure 2.) The notion of the field of Π
becomes the fixed field once we consider Galois-theoretic settings. Specifically,
there Π will be a set of automorphisms of a single field M that form a group,
and in that setting the field of Π is exactly the subfield of M which is fixed by
each member of Π. This is of course a central concept in the statement of the
fundamental theorem of Galois theory.

§164. With this section, linear algebra comes to the fore. Dedekind calls
a set of complex numbers ω1, . . . , ωn reducible over the field A if there are
a1, . . . , an ∈ A, not all = 0, such that

n∑
i=1

aiωi = 0.
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A = field of Π

Figure 2: The theorem from §163 pictured in the lattice of subfields of C.

Otherwise, they are irreducible over A. These are just the modern notions of
linear dependence and independence.7

Given an irreducible set ω1, . . . , ωn over A, Dedekind observes that the collec-
tion Ω of linear combinations

∑n
i=1 aiωi of the ωi’s using coefficients from A form

what he calls a family ; this is exactly the modern notion of an n-dimensional
A-vector space, with the ωi’s as basis.

Suppose now that we have two fields A and B, with ω1, . . . , ωn from B being
irreducible over A. Suppose further that any n+1 numbers from B are reducible
over A. Dedekind defines this scenario as B being finite and of degree n over A,
and denotes it thus:

(B,A) = n.

In this case, Dedekind shows that the collection Ω detailed above is in fact just
the product field AB.8

By virtue of his result VII in the section, Dedekind concludes a result which
shows, in particular, that finite extensions are algebraic:

Theorem. When (B,A) = n, every number in AB is algebraic9 over A, and
of degree ≤ n.

Dedekind also notes that adjoining a single n-th degree number to a field
results in an extension of the same degree:

7Dedekind himself mentions “dependent” and “independent” as alternative terminology
for “reducible” and “irreducible.”

8In particular, any finite extension B : A of degree n can be seen as an n-dimensional
A-vector space, since AB = B in this case. Dedekind’s notation (B,A) matches the modern
[B : A] exactly for a field extension B : A.

9An extension B : A is called algebraic if every b ∈ B is algebraic over A, i.e. there is some
polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

in A[x] of which b is a root. (There is a least n such that there is such a polynomial f with
degree n. We call this n the degree of b over A.)
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Theorem (§164, IX). If θ is algebraic of degree n over A, then (Q(θ), A) = n
(hence also (A(θ), A) = n) and the powers θn−1, . . . , θ, 1 form a basis for A(θ)
over A.

Later (§165, VI) Dedekind proves an important converse to the foregoing.
Namely, any finite extension of A is of the form A(θ) for some θ of degree n.
See below for more detail.

Finally, Dedekind establishes a result that specializes to the familiar tower
law for field extensions:

Theorem (§164, X). If B is finite over A and C is finite over AB, then BC
is finite over A, and in fact

(BC,A) = (C,AB)(B,A).

Corollary (Tower law). When A ⊆ B ⊆ C, we have

(C,A) = (C,B)(B,A).

§165. With this section, Dedekind ties together the developments of the
previous sections. The following theorem, which refines that of §163, is the pri-
mary result. For Galois theory, its importance lies in the fact that the theorem
proved in §166 depends upon it.

Theorem (§165, III). Suppose the field B is finite over A, and that ϕ is a
permutation of A. Let Π be the set of permutations of AB extending ϕ. Then:

1. |Π| = (B,A).

2. A is the field of Π.

3. ϕ is the remainder of Π.

For the rest of our summary, when dealing with some fields A,B with
(B,A) = n, we will restrict our attention to the case when B is in fact an
extension of A; this allows us to more clearly exposit the Galois-theoretic in-
terest.10 Furthermore, as Dedekind actually does, let us now consider the case
where the ϕ of the previous theorem is the identity on A. With our assumptions,
the theorem tells us that

The number of isomorphisms from B that fix A is equal to (B,A). (?)

Dedekind observes:

Theorem. Let A ⊆ B ⊆ C. The following are equivalent:

1. (B,A) is finite.

10Throughout, Dedekind works in the general setting where B need not be an extension.
With our restriction we get, e.g., to speak simply of B at points where Dedekind must speak
of the product AB.
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2. The lattice of intermediate fields between A and B is finite.

Dedekind quickly proves (2) from (1) using (?) and the tower law, and merely
remarks that the proof of (1) from (2) would be lengthy, but not difficult. This
equivalence is obviously a key step toward analyzing the structure of the lattice
of intermediate fields: when our extension is finite, so too is Int(B : A).

Let us note one more result from §165, which we pointed to earlier, namely:

Theorem (§165, VI). If B : A is an extension with [B : A] = n, then there are
infinitely many θ ∈ B of degree n over A, any one of which generates B when
adjoined to A:

B = A(θ).

In modern terms, this last part has Dedekind observing that any finite ex-
tension B : A is a simple one; that is, it is generated by a single element adjoined
to A. Note that this does not hold in general for the modern, more inclusive
notion of field; it is crucial that Dedekind’s fields are subfields of C. Here is the
relevant result for modern fields:

Theorem (Theorem of the primitive element). Any finite and separable11 field
extension is a simple extension. (The single generating addition is the “primitive
element” at hand.)

Dedekind is able to obtain his result because in fields of characteristic12 0
(as is the case with subfields of C) any finite extension is already separable.

§166. Dedekind calls a set of n permutations a group if it is closed under
composition. He observes that this implies that all the elements are in fact auto-
morphisms of a common field M , and that the identity automorphism is among
them. So in modern terms, Dedekind’s notion of being a group of permutations
corresponds precisely with the modern notion of being some subgroup of the
automorphism group Aut(M) of some field.

Given such a group Π of automorphisms of M , we know from (?) that
Dedekind’s notion of the field of Π just coincides with the modern notion of

11In any algebraic extension B : A, every b ∈ B has a(n essentially) unique minimal
polynomial fb(x) ∈ A[x]: the degree of fb is the degree of b over A, fb is monic, and fb(b) = 0.
We call an algebraic extension B : A separable if the minimal polynomial fb of any b ∈ B is
separable: each of its irreducible factors has no repeated roots in the algebraic closure A of A.

12For any ring R (such as any field), we can define its characteristic as follows. Consider
the ring homomorphism ϕ : Z→ R given by

0 7→ 0R

1 7→ 1R

n 7→ 1R + · · ·+ 1R| {z }
n

Either ϕ is injective, in which case ϕ[Z] ∼= Z, or it is not, in which case it can be shown that
ϕ[Z] ∼= Zm for some m, using the ring isomorphism theorem. In the former case we say that
R has characteristic 0; in the latter case we say that it has characteristic m. (As an example,
the order of any finite field is of the form pn, with p a prime; such a field has characteristic
p.)
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the fixed field Fix(Π) of Π. Doing nothing more than translating Dedekind’s
terminology into our modern terms, we can state Dedekind’s theorem from this
section thus:

Theorem (§166, I). Let M ⊆ C. For any finite subgroup Π ≤ Aut(M),

[M : Fix(Π)] = |Π|.

Let us note that Dedekind has isolated in the hypotheses for this theorem a
condition which is easily seen to be equivalent to the Galois condition:

Lemma. The following are equivalent:

1. M : A is a Galois extension.

2. A = Fix(Π) for some Π ≤ Aut(M).

Proof. (1) ⇒ (2). To say that M : A is Galois is just to say that A =
Fix(AutA(M)). But then of course M : A is of the appropriate form, setting
Π := AutA(M) ≤ Aut(M).

(2) ⇒ (1). We need to check that Fix(Π) = Fix(AutFix(Π)(M)). We cer-
tainly have

Fix(Π) ⊆ Fix(AutFix(Π)(M))

just from the definitions. Also straight from the definitions, it is clear that

Ψ ⊆ AutFix(Ψ)(M) (†)

for any Ψ ⊆ Aut(M). Furthermore, it is obvious that Fix is anti-monotonic in
the following sense:

Ψ ⊆ Ψ′ =⇒ Fix(Ψ) ⊇ Fix(Ψ′).

Simply plugging Π into (†) and applying this last fact yields

Fix(AutFix(Π)(M)) ⊆ Fix(Π),

and so Fix(Π) = Fix(AutFix(Π)(M)) as desired.

Thus Dedekind is working with a Galois extension in his theorem. This is
necessary in order to reach his conclusion since, as we will see, Dedekind can go
on to conclude the fundamental theorem of Galois theory from his Theorem I.
Moreover, we will see that Dedekind explicitly acknowledges the fact that his
extension meets the modern Galois criterion, though he does not spell out a
proof that it does.13

So how does Dedekind proceed from Theorem I? Immediately after his proof,
Dedekind continues (where his A is our Fix(Π), and his n is our [M : Fix(Π)] =
|Π|):

13Of course, we have just shown that a proof of their equivalence is quite trivial, and
certainly would have been for Dedekind.
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Now if a part of the group Π likewise forms a group Π′, which consists
of p permutations π′, then the field A′ of Π′ is a divisor of M and
a multiple of A, because each number one-valued in Π is also one-
valued in Π′, and at the same time n = pq, where p = (M,A′),
q = (A′, A).

The visual on the foregoing quote can be seen in Figure 3. Dedekind goes on:

{idM}

p = [M : Fix(Π′)]

q = [Fix(Π′) : Fix(Π)]

M

[Π : Π′] = |Π|/|Π′| = q

Fix(Π)

Fix(Π′)

Π

Π′

[Π′ : {idM}] = |Π′| = p

Figure 3: The initial correspondence indicated by Dedekind.

Conversely, if a field A′ is a divisor of M and a multiple of A, one
easily sees that the permutations of M which are multiples of the
identity permutation of A′ form a group Π′ contained in Π, and A′

is the field belonging to Π′. (my emphasis)

Note the last part; Dedekind is asserting precisely that Fix(AutA′(M)) = A′

for any Fix(Π) ⊆ A′ ⊆ M . In particular, he is explicitly recognizing that M :
Fix(Π) is a Galois extension, and that so too is M : A′ for any intermediate field
A′.14 Building on what went before, we can picture things as in Figure 4, and
we see how the maps Aut·(M) and Fix(·) are shaping up to be inverses as in the
statement of the fundamental theorem. Iteratively applying the correspondence
Dedekind has laid out, we see that the correspondence in fact holds for any chain
in the (finite) lattice Int(M : Fix(Π)). That is, any chain in Int(M : Fix(Π)) is
mirrored (upside down) in the lattice of subgroups of AutFix(Π)(M), with the
proper numerical relationships between indices. Moreover:

If, furthermore, Π′′ is likewise a group contained in Π, and A′′ is
the field belonging to it, then the permutations common to both
groups Π′, Π′′ again form a group; and the field belonging to it is
the product A′A′′.

From [this discussion] one recognizes that the complete determina-
tion of all these fields A′, A′′, . . . and the investigation of their mu-
tual relations is completely settled by the determination of all groups
Π′,Π′′, . . . contained in the group Π, and this task belongs to the
general theory of groups. (my emphasis)

14Cf. the third part of the statement of the fundamental theorem in our introduction.
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M

A′

Fix(Π)

[A′ : Fix(Π)] = q

[M : A′] = p

q

q

p

G

AutFix(Π)(M)

p

Fix({idM}) = M

Fix(AutFix(Π)(M)) = Fix(Π){idM}

Fix(AutA′(M)) = A′

Figure 4: The further correspondence indicated by Dedekind. (For shorthand
here we have set G := AutA′(M).)

With that first remark Dedekind paints a small part of the picture that the
entire lattice structure is preserved when going between intermediate fields of
M : Fix(Π) and subgroups of AutFix(Π)(M). He then immediately goes on
to simply assert that the one structure completely mirrors the other. In sum,
Dedekind has spelled out the bulk of the fundamental theorem of Galois theory
(for subfields of C):

Theorem (Dedekind’s fundamental theorem of Galois theory). Let A ⊆ B ⊆ C,
and suppose the extension B : A is finite and Galois. Then:

1. The map

G : 〈Int(B : A),⊆〉 −→ 〈Sub(AutA(B)),≥〉
K 7−→ AutK(B)

is an isomorphism of lattices, with inverse G 7→ Fix(G).

2. For each intermediate field K, the degree of the extension B : K equals
the order of its image under G :

[B : K] = |AutK(B)|.

3. B is Galois over every intermediate field K.

3 An Historical Point

Emil Artin [1] is generally credited with the formulation of the fundamental
theorem of Galois theory. There is nothing wrong with such an attribution; he
was the first to state and prove the result in its modern form for the general
notion of field, and to make it the prominent centerpiece of a presentation of
Galois theory. Furthermore, the fact that Artin owed a great debt to Dedekind’s
work is not unrecognized. In large part, this debt is recognized in Kiernan’s
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extensive survey article [19] on the history and development of Galois theory;
nonetheless, we will take issue with the exact characterization of Dedekind’s
work found therein.

Kiernan’s paper proceeds largely chronologically, tracing advances made
from the times of Vandermonde and Lagrange up through those of Artin. Along
the way, Kiernan has a section on the development of field theory in the hands
of Kronecker and Dedekind; this includes an exposition of our chosen excerpt
from Supplement XI. What is puzzling in Kiernan’s analysis is that his char-
acterization of Dedekind’s contribution to the fundamental theorem of Galois
theory is different in the section on field theory than it is in his section on Artin.
We examine the latter first.

Here is (a very superficial reworking of) Artin’s statement of the fundamental
theorem of Galois theory.15

Theorem (Artin). Consider a field extension B : A, where B is the splitting
field of some separable polynomial p ∈ A[x]. Then:

1. The map

G : 〈Int(B : A),⊆〉 −→ 〈Sub(AutA(B)),≥〉
K 7−→ AutK(B)

is an isomorphism of lattices, with inverse G 7→ Fix(G).

2. For each intermediate field K, the degree of the extension B : K equals
the order of its image under G :

[B : K] = |AutK(B)|.

3. B is Galois over every intermediate K, but K is Galois over A iff

AutK(B) C AutA(B),

and in this case
AutA(B)
AutK(B)

∼= AutA(K).

This should look familiar of course; in fact, Artin’s hypothesis is yet another
equivalent way of saying that B : A is a finite Galois extension,16 and so the
content is exactly the same as what we quoted from Hungerford’s text earlier.
Given our foregoing summary, it is clear that this is just the generalization of
Dedekind’s result to arbitrary fields (plus the last bit about when intermedi-
ate extensions K : A are Galois). Kiernan acknowledges, “Much of [Artin’s]

15We have simply reworded things for the sake of comparing Artin’s statement with those
given above. Note also that we use the terminology laid out in the introduction, rather than
Artin’s. For instance, Artin uses the term “normal extension” for what we call a finite Galois
extension.

16Artin includes in his theorem a proof that his kind of extension is Galois.
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work was prefigured in the presentations of Dedekind and Weber” (144). For
instance, he points out that Artin’s linear-algebraic approach comes directly
from Dedekind, as does his analogue to Dedekind’s Theorem III from §165 (and
even its proof). In fact, Kiernan goes so far as to say that Artin’s work “[pop-
ularizes] a presentation almost identical with that offered by Dedekind in the
1890’s” (149, my emphasis). As the reader might guess, we agree with this
sentiment.

Now let us see what Kiernan has to say directly about Dedekind’s work in the
earlier section of the survey. Here too Kiernan already begins to acknowledge
that Artin owes a significant debt to Dedekind. For instance, he writes that
“[the theorem from §163] was to be of use to Artin in his reformulation of
Galois Theory” (130). He adds furthermore: “Many results developed here by
Dedekind on the interpretation of an extension field as a vector space over the
ground field were later used by Artin in his formulation of Galois Theory” (131).
Yet at the end of Kiernan’s take on Dedekind, he states Theorem I from §166,
sketches its proof, and then continues:

Dedekind remarks almost offhandedly that if Π′ is a subgroup of
Π, then there exists a field A′, A ⊂ A′ ⊂ M , which belongs to Π′,
that is, every automorphism of M in Π′ keeps A′ fixed. Further, the
degrees are related, he says, by

(M,A′)(A′, A) = (M,A).

This result, when applied to Galois Theory, will be one of the key
points in Artin’s development. But for Dedekind it remains merely
a remark which he considers as so obvious from his previous de-
velopment that he offers no proof at all at this point, nor does he
formalize it as a theorem. (132)

There is much that is wrong with what Kiernan writes here. First of all, the
field A′ is just the “field of Π′” whose existence is proved (straightforwardly) in
the theorem from §163. Secondly, Dedekind established the tower law already in
§164, as we observed. More to the point, the facts Kiernan isolates here are just
supporting facts which Dedekind uses to lay out the correspondence between
the lattices in question. Kiernan makes no mention of the correspondence which
Dedekind explains, or the fact that Dedekind indicates a complete reduction
of questions about the lattice Int(M : A) to questions about the lattice of
subgroups of AutA(M).

The quoted passage is the last thing Kiernan writes about Dedekind’s text,
leaving the impression that Dedekind says nothing more, and that it is only
with Artin that we get something resembling the modern fundamental theorem
of Galois theory. It should be clear from our summary that this is quite an
injustice. Now some of Kiernan’s statements above could be fairly applied to
Dedekind’s recognition of the fundamental theorem (though, as we noted, that
is not what Kiernan actually did): Dedekind does not “formalize” this as a
theorem (in the sense of offsetting it and giving it a number, say), and he does
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not offer a detailed, full proof of everything.17 But we believe it is plain to see
that Dedekind had full cognizance of the structure of the fundamental theorem
of Galois theory, that he gave voice to the statement we provide above, and that
he more than outlined a proof.

To further drive home how off base Kiernan’s characterization of Dedekind’s
contribution is, let us note that Dedekind even gives another characterization of
just when a finite extension is Galois. Specifically, at the end of §166 Dedekind
looks at the general case when [B : A] = n and isolates a criterion that guar-
antees the assumption of his Theorem I, i.e. that B : A is Galois. In §165,
Dedekind has introduced the notion of the “norm” (with respect to A) of a field
B that is finite over A.18 Let (B,A) = n; we then know from (?) that there are
exactly n isomorphisms π1, . . . , πn from B which extend idA; note that these πi

need not be automorphisms, and can instead map B onto some other field. Set
Bi := πi[B], and without loss of generality let π1 := idB . The norm of B with
respect to A is then just the product NormA(B) := B1B2 · · ·Bn. (See Figure 5.)
Dedekind calls B a normal field over A if B is its own norm: NormA(B) = B.19

A

B2

Bn

NormA(B)

B = B1
. . .

Figure 5: The norm of B with respect to A.

As Dedekind observes, it is easy to see that when B is normal over A, the col-
lection Π of isomorphisms extending idA is in fact a group. If NormA(B) = B,
then clearly all Bi = B, and so Π consists only of automorphisms of B. Of
course, they are precisely the ones fixing A, so Π is just the group AutA(B).
Moreover, it is clear from III in §165 that A is the field of AutA(B), i.e. that
A = Fix(AutA(B)) and we have a Galois extension.

To sum up, Artin’s formulation of the fundamental theorem of Galois the-
ory is a direct generalization of Dedekind’s result for subfields of C. Dedekind’s

17Then again, the other point Kiernan made is also no doubt right: Dedekind probably
considered the matters obvious given his build-up to them. Moreover, Dedekind’s Supplement
XI is primarily concerned with algebraic number theory, and not Galois theory per se, further
justifying a somewhat sketchy treatment of the matter.

18Recall that we are currently making the slightly simplifying assumption that B actually
extends A in our discussion.

19We mentioned in footnote 15 that what we call a finite Galois extension, Artin calls
a normal extension. Kiernan correctly points out the equivalence between being finite and
Galois on the one hand, or satisfying the normality condition we are currently defining on the
other hand. However, Kiernan attributes this notion to Weber.
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notion of field isomorphism, his viewing field extensions as vector spaces, his
characterizations of finite and Galois extensions, even his methods of proof
generalize to the wider setting of arbitrary fields. In the end, Dedekind’s struc-
turalist tendencies got the concepts “right” and Emmy Noether’s oft-quoted
line applies well to the fundamental theorem of Galois theory: “Es steht schon
bei Dedekind.”20 To reiterate, we are not saying anything earth-shattering
here. Dedekind’s contribution is generally well understood, and is even strongly
asserted by Kiernan himself at points; we merely wanted to address the mis-
characterization found in part of [19].

4 Notes on the Translation

Stillwell produced an English translation of the Vorlesungen [15], but it does
not include Supplements X and XI. Avigad [2] has translated the 1871 version
of Supplement X, which features a treatment of ideal theory, providing copious
notes and a generous introduction which offers both historical and technical
insights.21

As far as I know, there is no extant English translation of Supplement XI
available. The excerpt below consists merely of §§160-166, which is but a small
portion of the full §§159-187 comprising the entire supplement. Let us note a
few things about our text itself:

1. In the original text, Dedekind’s footnotes are not numbered; here we have
numbered them, but with roman numerals in order to contrast with our
own, which of course are numbered with arabic numerals.

2. Textual emphasis in the original is always achieved via expanded spacing
between characters. We have instead generally used italics to emphasize
text. Exceptions are names, which we emphasize with Small Caps, and
theorems, which we emphasize with sans-serif font.

3. We have not altered Dedekind’s notation, except for altering the appear-
ance of ellipses at some points.

4. Regarding the language itself of the translation, we have aimed primarily
for ease of readability in the English, and have not focused too much
attention on trying to faithfully capture Dedekind’s style of writing in
German.22 That said, we use words such as “thereat,” “commodious”
and “protuberant” in our translation both because they seem to be faithful
choices, and because they sound (to these ears) not too out of place for
something written in 1894.

20“It’s already in Dedekind.”
21Dedekind later produced substantially different versions of ideal theory; there is the 1877

version [6] (translated from the French by Stillwell [11]), and the 1894 version from the final
edition of the Vorlesungen. See Avigad’s [3] for further details and discussion.

22In any case, we are simply not equipped linguistically to gauge success in such an endeavor.
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5. The § titles we use are from the table of contents of the third volume of
Dedekind’s collected works. We note that where the term “finite fields”
appears in the titles of §§164-5, the term “endlich Körper” is indeed used
in the German edition. It should be clear, but we remark anyway, that
the term is being used to refer to one field being finite over another, e.g.
(B,A) = n, and has nothing to do with actual finite fields (in the modern
sense).
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5 Dedekind’s Supplement XI: §§160-166
§ 160. Number fields

In order to achieve this goal,23 we must investigate in particular the most
important foundations of today’s algebra, and this is the concern of the follow-
ing paragraphs. The starting point of our investigation is the aforementioned
definition:

A system A of real or complex numbers a is a field i [Körper] if the sums,
differences, products and quotients of any two of the numbers a are themselves
in the system A.

We can express this same idea by saying that the numbers of a field reproduce
themselves under the rational operations (addition, subtraction, multiplication,
division). Here we take it as self-evident that the number zero can never be
the denominator of a quotient; therefore we also always presuppose that a field
contains at least one number different from zero, because otherwise one could
not speak at all about quotients within the system.

Obviously the system R of all rational numbers forms a field, and this is
the simplest or, as we can also say, the smallest field, because it is completely
contained in every other field A. Indeed, if one selects an arbitrary non-zero
number a from A, then the quotient of this number a with itself, i.e. the number
1, is likewise in A according to the definition of a field, and also all whole rational
numbers by repeated addition and subtraction of this number, and from here
all rational numbers are formed by division, so that R is completely contained
in A.

Each particular irrational root θ of a quadratic equation with rational coeffi-
cients produces, as already noted in §159, a particular quadratic field, which we
will denote by R(θ); it consists of all numbers of the form x+ yθ, where x and
y range over all rational numbers. One can easily see that there are infinitely
many different quadratic fields R(θ), although one and the same field can always
be produced by infinitely many different numbers θ.

The system Z of all real and complex numbers is likewise a field, and is surely
the largest imaginable, because every other field is contained in it. Between the

iCf. §159 of the second edition of this work (1871). This name should, just as in the
natural sciences, in geometry and in the life of human society, designate here too a system
which posesses a certain completeness, perfection, closure, whereby it appears as an organic
whole, a natural unit. At first, in my Göttingen lectures (1857 to 1858), I had used the name
rational domain [rationales Gebiet] for this same concept, but this is less commodious. The
concept essentially coincides with that which Kronecker has called a domain of rationality
[Rationalitätsbereich] (Grundzüge einer arithmetischen Theorie der algebraischen Größen.
1882) [20]. Cf. also Theorie der algebraischen Funktionen einer Veränderlichen written by
H. Weber and myself (Crelle’s Journal, Bd. 92, 1882) [12].

23At the tail end of the previous (and initial) section of Supplement XI, Dedekind indicates
that his ultimate purpose will be to extend Kummer’s use [21] of ideal numbers for the
purpose of factorization in cyclotomic fields (which come from the consideration of equations
of the form xn − 1 = 0). Dedekind wants to do the same for domains “arising from an
arbitrary algebraic equation” and to develop “the foundations of a general number theory
which subsumes all special cases without exception.”
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two extremes R and Z lies the field which consists of all reals numbers, both
rational and irrational.

As can already be seen from the examples given above, one very often wants
to express the fact that all numbers of a field D also belong to another field
M ; in such a case we say for the sake of brevity that D is a divisor [Divisor] of
M , or that M is a multiple [Multiplum] of D. Thus every field is a divisor and
multiple of itself, and if each of the two fields A, B is a divisor of the other then
they are identical, which is written A = B. If D is a divisor of M , but different
from M , then we call D a proper divisor of M , and M a proper multiple of D.
If A is a divisor of B, and B a divisor of C, then A is also a divisor of C. The
field R is a common divisor, and the field Z a common multiple, of all fields.

From given fields we can now form new fields according to certain rules;
in the following we consider two such field constructions, namely those of the
greatest common divisor and the least common multiple, or product.

If A and B are two arbitrary fields, then the collection D which consists of
all numbers u, v, . . . belonging to both fields is again a field, because the sums,
differences, products and quotients of u, v, . . . are contained in both A and B,
thus also in D. This field D is a common divisor of A and B, and is called the
greatest common divisor of A and B. If A is a divisor of B, then D = A, and
vice versa.

This notion can be directly transferred to a system of more than two, even
infinitely many, fields A, B, . . . ; the collection of those numbers belonging to
all of these fields is again a field, and is called their greatest common divisor.

The second kind of field construction is based on the following, likewise
very simple consideration. If a certain system G of numbers g is given, whose
cardinality [Anzahl] can be finite or infinite, then there is always a field M ′ (e.g.
the field Z defined above) which contains all of these numbers g; the greatest
common divisor M of all such fields M ′ is itself such a field, and moreover is
the smallest such. It is important, in and of itself, to provide a clear picture
of the field M , which is completely determined by the system G, via a simple
construction, for which we may assume that G does not consist only of the
number zero. First M must contain any number h which is either a number g
itself or a product of severalii factors g; these numbers h reproduce themselves
under multiplication. Then M must contain any number k which is either
a number h itself or a sum of several numbers h; these numbers k, among
which the numbers g are also found, reproduce themselves under addition and
multiplication. Furthermore M must contain any difference l of two arbitrary
numbers k; these numbers l reproduce themselves under addition, subtraction
and multiplication, and among them we find all numbers k = (k+k)−k. Finally
M must also contain any quotient m of two arbitrary numbers l; these numbers
m reproduce themselves under all four rational operations and obviously form
the field M , because among them is found every number l = ll : l, thus also
every number k, h, g. In this way it has resulted that every number m of
this field M is obtainable by a finite number of rational operations on the

iiHere, and also later, this should always designate a finite number of things.
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numbers g′, g′′ . . . of the given system G; such numbers m are called rationally
representable by the system G; the field M is the collection of all these numbers
m and can appropriately be designated by R(G) or R(g′, g′′ . . . ). Following a
mode of expression which is due to Galois we also want to say, the field M
results from the field R of rational numbers by adjunction [Adjunktion] of the
system G of numbers g′, g′′ . . . ; more generally, if A is any field, we designate
with A(g′, g′′ . . . ) the field obtained by adjunction of the numbers g′, g′′ . . . to
A, i.e. the smallest field which contains, besides the numbers of the field A, the
numbers g′, g′′ . . . as well.

Now if we have any system of fields A, B, . . . , and we let the system G
consist of all and only those numbers g that are contained in at least one of
these fields, then the field M which consists of all numbers m that are rationally
representable by these numbers g is a common multiple of A, B, . . . , and is
moreover the smallest, because according to the above every other M ′ is a
multiple of M . For the sake of brevity we will also call the field M the product of
the factors A, B, . . . and will denote it by AB . . . , in which expression the order
of the factors is unimportant; for it is obvious that AB = BA, (AB)C = A(BC),
etc. If one applies this construction of the field M to the case of two fields A, B,
then the system G consists of all the numbers a of the field A and all numbers
b of the field B, the numbers h are products ab, the numbers k and l are sums
of such products, and therefore the product AB consists of all quotients of the
form

m =
a′1b
′
1 + a′2b

′
2 + · · ·+ a′rb

′
r

a1b1 + a2b2 + · · ·+ asbs
.

The fact that A is a divisor of B can be conveniently expressed by AB = B,
and it is always the case that AA = A.

§ 161. Permutations of a field

In mathematics and in other sciences it happens very often that, given a
system A of things or elements a, each particular element a is replaced according
to a certain rule by a corresponding element a′ (which may or may not be
contained in A); such a law is often termed a substitution, and one says that
by this substitution the element a transforms into the element a′, and likewise
that the system A transforms into the system A′ of elements a′.iii This way
of speaking becomes somewhat more comfortable and more descriptive if one
understands this substitution, as we want to do, as a mapping [Abbildung] of the
system A, and accordingly calls a′ the image [Bild] of a, likewise A′ the image
of A. For the sake of clarity it is often necessary to use a particular symbol in

iiiIt was stated already in the third edition of this work (1879, note on p.470) that this
faculty of the mind, to compare a thing a with a thing a′, or to apply a to a′, or to let a
correspond to an a′, without which no thought at all is possible, also grounds the entire science
of numbers. The execution of these ideas has since been published in my paper “Was sind
und was sollen die Zahlen?” (Braunschweig 1888) [8]; the system of notation for mappings
and their compositions applied thereat deviates slightly from that used here, in a superficial
way. [Trans. – The notational deviation mentioned is that Dedekind uses today’s preferred
notation for functions, e.g. ϕ(a) rather than aϕ, in his monograph on arithmetic.]
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order to differentiate such a mapping-rule from others, e.g. ϕ; given this, we
also want to designate the image a′, into which a transforms under ϕ, by aϕ;
furthermore if T is a part of A, i.e. a system of elements t all of which belong
to A, then Tϕ is to mean the system which consists of the images tϕ of all the
elements t; therefore Aϕ is identical to the A′ above.

We now apply this notion to an arbitrary number field A, considering how-
ever only such substitutions ϕ by which each number a contained in A trans-
forms into another number a′ = aϕ. In this general setting, such substitutions
still would not be of any interest; we ask rather whether it is possible to map the
numbers a of the field A into numbers a′ in such a way that all rational relations
holding between the numbers a transfer completely to the images a′; or in other
words, we require that if a number t is derived from arbitrary numbers u, v,
w . . . of the field A by means of rational operations–which number t likewise
belongs to the field A–then these same rational operations applied to the images
u′, v′, w′ . . . always yields the image t′ of the number t. We call a substitution
or mapping ϕ which is distinguished above all by this property a permutation
[Permutation] of the field A. Since each rational operation is composed of a
finite number of simple additions, subtractions, multiplications and divisions,
it is then clear that the mapping ϕ is a permutation if and only if for any two
numbers u, v in A the following four basic rules hold:

(u+ v)′ = u′ + v′ (1)
(u− v)′ = u′ − v′ (2)

(uv)′ = u′v′ (3)(u
v

)′
=

u′

v′
. (4)

Of these characteristic, i.e. necessary and sufficient, conditions for a permuta-
tion the last obviously requires that the images a′ do not all vanish; conversely,
if a mapping ϕ under which each number a of the field A maps to a number
a′ possesses this property and also obeys the laws (1) and (3), then the laws
(2) and (4) follow from this, as we now want to prove, and therefore ϕ is a
permutation of the field A. Indeed, equation (2) follows directly from equation
(1) if, as is obviously permitted, one replaces the arbitrary number u of the field
A by the number (u − v) which is likewise contained in A; if v 6= 0, one may
likewise replace u in (3) by the quotient u/v, whereby

u′ =
(u
v

)′
v′

results; now were v′ = 0, then the images u′ of all numbers u contained in A
would vanish, which however stands in contradiction with our explicit condition;
therefore the image v′ of each non-zero number v is likewise non-zero, and thus
law (4) holds, which was to be proven.

Furthermore, it follows that the system A′, into which a permutation ϕ
transforms the field A, is itself a field. If one considers the fact that A′ consists
of all and only those numbers u′, v′, . . . which are images of numbers u, v . . .
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from the field A, and that according to (1) every non-zero number v′ of the
system A′ is the image of a non-zero number from the field A, it then follows
that the sums, differences, products and quotients of any two numbers u′, v′

from A′ are likewise contained in A′, because according to the conditions (1)-(4)
they are all images of numbers from the field A; therefore A′ is a field, which
was to be proven.

We notice then that any two numbers u, v of the field A which are distinct
from one another also have images u′, v′ which are distinct from one anotheriv

because otherwise according to (2) the image of the non-zero number (u − v)
would vanish, which, as we have already proved above, is not possible. Therefore
each particular number a′ contained in the field A′ is the image of only one
completely determined number a of the field A, and it follows that one can
oppose the permutation ϕ, under which A maps into A′, with a mapping of
A′ denoted by ϕ−1, under which each determined number a′ contained in A′

transforms into this particular number a of the field A; this mapping ϕ−1,
however, is certainly a permutation of the field A′; because if u′, v′ denote two
arbitrary numbers of the field A′, and u, v denote the appropriate numbers of
the field A, then according to (1) and (3) the numbers u′ + v′ and u′v′ of the
field A′ transform under ϕ−1 into the numbers u + v and uv, which was to
be shown. In addition it is clear that the field A′ transforms under ϕ−1 into
the entire field A, rather than a proper divisor of A; because each number a
contained in A is really the image produced by the permutation ϕ−1 of some
number a′ contained in A′. We want to call each of these two permutations ϕ
and ϕ−1 the converse or inverse of the other, the two fields A and A′ should be
called conjugate fields, and two numbers a and a′ corresponding to one another
should be called conjugate numbers.

That mapping of a field A under which each of its numbers transforms into
itself obviously meets the sufficient conditions (1), (2), (3), (4) and is therefore
a permutation; we want to call it the identity permutation of A. From here it
is seen that every field is conjugate to itself.

The field J or R(i) considered in §159 possesses besides the identity yet
another permutation, under which each number x+yi contained in it transforms
into the conjugate number x − yi. This same permutation obtains, if x, y are
not limited to rational numbers but rather denote arbitrary real numbers, also
for the field Z consisting of all numbers.

We have seen in the previous section that every field A also contains all ra-
tional numbers; now if ϕ is again an arbitrary permutation of A, and one applies
condition (4) to the case u = v, then it follows that 1′ = 1, and considering the
conditions (1), (2), (3), (4) it follows from here that each rational number of the
field A, because it results from a finite number of simple rational operations on
the number 1, maps to itself under the permutation ϕ. The field R of rational
numbers therefore has no permutation other than the identity.

If ϕ is a permutation of the field A, then we want to say conversely that A
ivTherefore, in the terminology used in §3 of the text cited above, any permutation of a

field is a similar [ähnliche] or distinct [deutliche] mapping of it; A and A′ are similar systems.
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belongs to ϕ or is the field belonging to ϕ, or for the sake of brevity we also want
to call A the field of the permutation ϕ, while Aϕ is called the field produced by
ϕ.

We will indicate by ϕ = ψ that ϕ and ψ are only different symbols for one and
the same field-permutation; thus it lies herein that ϕ and ψ are permutations
of the same field A, and that aϕ = aψ holds for each number a contained in A.
If one of these two conditions is not fulfilled, we call ϕ and ψ distinct.

If Φ denotes a system of permutations of any fields, then we want to call a
number contained in all of these fields (thus also in their greatest common divi-
sor) one-valued, two-valued etc. with respect to Φ or in Φ, according to whether
the number of distinct values to which it maps under all these permutations
is 1, 2 etc. From the foregoing, therefore, every rational number is one-valued
with respect to any system Φ; the following theorem is just as important:

If Φ is a system of n distinct permutations ϕ1, ϕ2, . . . , ϕn of the same field A,
then there exist in the latter infinitely many numbers which are n-valued in Φ.

In order to prove this, we want to write briefly tϕr = tr, when t denotes an
arbitrary number in A. If n = 2, then the theorem is understood immediately
from above. If n > 2, then we may assume that a number a in A has already been
found, which maps under the n− 1 permutations ϕ2, ϕ3 . . . ϕn to just as many
distinct numbers a2, a3 . . . an. Now if a1 is likewise distinct from all of these
numbers, then the number a satisfies the property expressed by the theorem. In
the alternate case, if e.g. a1 = a2, one selects from A another number b, which
maps under ϕ1, ϕ2 to two different numbers b1, b2, and considers all numbers of
the form y = ax + b, which are produced by arbitrary rational numbers x and
thus themselves belong to the field A; since, from the foregoing, x maps to itself
under any permutation, then generally from rules (1) and (3) yr = arx + br,
thus also

yr − ys = (ar − as)x+ (br − bs),

where r, s denotes any combination of two distinct numbers from the range
1, 2 . . . n. For the combination r = 1, s = 2 it follows that the numbers y1, y2

[stets voneinander verschieden ausfallen], however the rational number x may be
selected, because a1 = a2, but b1 is different from b2. For each of the remaining
combinations r, s, ar is different from as, and thus it follows that there is either
none or only one rational number x for which yr = y2; if one excludes these
possibly existing numbers x which, running through all combinations, certainly
number < 1

2n(n − 1), then any other rational number x certainly produces a
number y which transforms into n distinct numbers y1, y2, . . . , yn under the n
permutations, which was to be proven.

From here we draw yet another important consequence. By a very well-
known theorem of determinant theory, to which we will return later (in §167),
the product of all of those differences yr − ys in which r < s is equal to the
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determinant ∣∣∣∣∣∣∣∣∣
yn−1

1 yn−2
1 · · · y1 1

yn−1
2 yn−2

2 · · · y2 1
...

...
. . .

...
...

yn−1
n yn−2

n · · · yn 1

∣∣∣∣∣∣∣∣∣
whose elements are the powers (yr)n−s, where r and s range independently
through all values 1, 2, . . . , n. This determinant is therefore nonzero in our case.
Since now yr = yϕr and it follows from condition (3) that (yr)n−s = (yn−s)ϕr,
then setting yn−s = a(s) one gets the theorem:

If the n permutations ϕ1, ϕ2, . . . , ϕn of the same field A are all distinct, then
there is a system of n numbers a′, a′′, . . . , a(n) in A such that the determinant
formed from the elements a(s)ϕr does not vanish.

§ 162. Resultants of permutations

After these considerations, which refer to permutations of one and the same
field, we turn to the compositionv [Zusammensetzung] of two permutations ϕ,
ψ, which however is possible only if ψ is a permutation whose domain is the field
Aϕ that is the range of ϕ; following the notation’s lead one may appropriately
call ψ a right neighbor of ϕ, and ϕ a left neighbor of ψ. Each particular number
a from the field A maps under the permutation ϕ into a particular number aϕ
of the field Aϕ, and this maps under ψ into a particular number (aϕ)ψ; one
can thereby define a mapping π of the field A by setting aπ = (aϕ)ψ generally.
If one now considers conditions (1) and (3) of the previous section applied first
to ϕ, then also to ψ, the reader will easily find that it follows that these same
conditions hold also for this mapping π, and that the images aπ obviously do not
all vanish (because e.g. 1π = 1), so π is a permutation whose domain is the field
A. We call this the resultant [Resultante] of the components ϕ, ψ and denote it
by the symbol ϕψ, in which the influence of the left or first component ϕ on the
right or second component ψ is well distinguished by the position. Given the
above, the definition of this resultant ϕψ consists in that the image produced
from any number a contained in A is

a(ϕψ) = (aϕ)ψ;

one can therefore omit the parentheses without hesitation and denote the image
briefly by aϕψ. Just as easily one can see that, if T is any part of A, the
two systems T (ϕψ) and (Tϕ)ψ are completely identical and can therefore be
denoted briefly by Tϕψ. From this the following theorem follows immediately:

If two fields A, A′′ are conjugate to a third field A′, then they are also conjugate
to each other.

Because according to the hypothesis there is a permutation ϕ of A, and a
permutation ψ of A′, for which Aϕ = A′, and A′ψ = A′′; therefore A(ϕψ) =
(Aϕ)ψ = A′ψ = A′′, which was to be proven.

vThis is only a special case of the composition of mappings of arbitrary systems; see the
conclusion in §2 of my text cited above, though the notation is different there.
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Having described the composition of neighboring permutations in detail, we
still highlight the following important theorems involving the notion, whose
proofs the reader will find easy.

If ϕ is a permutation of the field A, then ϕϕ−1 is the identity permutation
of A. If ψ is a right neighbor of ϕ, then ψ−1 is a left neighbor of ϕ−1, and
(ϕψ)−1 = ψ−1ϕ−1. If, furthermore, ψ1 is likewise a right neighbor of ϕ, and
ϕ1 a left neighbor of ψ, then it follows from ϕψ = ϕψ1 that ψ = ψ1, and from
ϕψ = ϕ1ψ that ϕ = ϕ1. If, in addition, the permutation χ is a right neighbor
of ψ, then (ϕψ)χ = ϕ(ψχ), and one can therefore briefly denote the resultant
by ϕψχ; from here there follows, if one applies the same method of proof as
in §2, the completely determinate meaning of the resultant ϕ1ϕ2 . . . ϕn−1ϕn of
n components ϕ1, ϕ2 . . . ϕn−1, ϕn, each of which is a right neighbor of the
preceding one; since the components may not be transposed with one another,
and each can always be combined only with the immediately proceeding one
in order to form a resultant, the number of distinct methods of producing this
resultant is = (n− 1)(n− 2) · · · 2 · 1.

§ 163. Multiples and divisors of permutations

Besides the composition of neighboring permutations just described, we still
have to consider now the equally important relations which obtain between the
permutations of a field and those of its divisors. If the field A is a divisor of
the field M , and π is a permutation of the latter, then a completely determined
mapping ϕ of A is contained in π, under which for each number a contained in A
(thus also contained in M) the image aϕ = aπ, and it is clear from the basic rules
in §161 that this mapping ϕ is a permutation of A; we want to call it the divisor
of π relative to A, and likewise π is a multiple of ϕ. Obviously ϕ−1 is at the
same time a divisor of π−1. If A = M , then naturally also ϕ = π; in every other
case, i.e. if A is a proper divisor of M , one must strictly differentiate ϕ from π.vi

If π is itself a divisor of a permutation ρ, then clearly ϕ is also a divisor of ρ.
If π is the identity permutation of M , then ϕ is the identity permutation of A.
The only permutation of the field R of rational numbers (namely the identity)
is (according to §161) a common divisor of all field-permutations. Generally the
following fundamental theorem applies:

If Π denotes any system of permutations π of arbitrary fields M , then the
collection A of all numbers a that are one-valued in Π forms a field, which is a
common divisor of the fields M ; the permutations π all have one and the same
divisor ϕ relative to A, and every common divisor ψ of the permutations π is a
divisor of this permutation ϕ.

Since the essence of a number a that is one-valued in Π resides (according
to §161) in the fact that the images aπ corresponding to all the permutations π
have one and the same value, it therefore follows from the basic rules (in §161)
that the sums, differences, products and quotients of any two such one-valued
numbers u, v are likewise one-valued in Π; thus A is a field. If one further
defines the mapping ϕ of A, in which one sets aϕ = aπ, then ϕ is obviously

viThis distinction carried no weight in §2 of the text cited above.

25



the divisor with respect to A of each individual permutation π. Finally, if a
permutation ψ of a field B is a common divisor of the permutations π, and b is
an arbitrary number in B, then bψ must agree with each of the images bπ, i.e.
b is a one-valued number in Π; thus B is a divisor of A, and at the same time
ψ is a divisor of ϕ, which was to be proven.

Since this field A, which is a common divisor (although by no means always
the greatest common divisor) of the fields M , is completely determined by the
system Π, we want to say that A belongs to Π or it is the field belonging to Π, or
we want to call A for short the field of the system Π, and one immediately sees
that this way of speaking agrees completely with that of §161 in the case that Π
consists of only one permutation. The permutation ϕ can without hesistation
be called the greatest common divisor of the permutations π; for the sake of
brevity however we want to call ϕ also the remainder [Rest] of the system Π,
or of the permutations π. –

The situation with respect to the existence of a common multiple of given
permutations is completely different; because it is clear e.g., that two distinct
permutations of one and the same field certainly have no common multiple. A
very important distinction is based hereupon: the permutations ϕ, ψ, . . . should
be called compatible [einig] (harmonious) or incompatible, according to whether
they share a common multiple or not. If we restrict ourselves to the considera-
tion of two compatible permutations ϕ, ψ of the fields A, B, and designate with
ρ a common multiple of ϕ, ψ, then the field belonging to ρ is a common multi-
ple of A, B and thus also of AB; further, if a denotes any number in A, b any
number in B, and π the divisor of ρ with respect to AB, then aϕ = aρ = aπ,
bψ = bρ = bπ, and therefore π is likewise a common multiple of ϕ, ψ. Now
since any particular number m of the field AB is (according to §160) rationally
representable by a finite set of numbers a, b, and the image mπ is representable
in the same way (according to the basic rules of any permutation) by the images
aπ, bπ, hence it can be derived from the numbers aϕ, bψ, it follows that the
permutation π of the product AB is completely determined by the permuta-
tions ϕ, ψ of the factors A, B, hence it is entirely independent of the choice of
the above permutation ρ. This permutation π, which is thus a divisor of any
common multiple ρ of the permutations ϕ, ψ, can therefore be called their least
common multiple or more briefly their unionvii [Union].

Conversely, if π denotes a permutation of a product AB, and ϕ,ψ denote
the divisors with respect to A, B of π, then these permutations ϕ,ψ are ob-
viously compatible, and π is their union. At the same time it is clear that
(AB)π = (Aπ)(Bπ) = (Aϕ)(Bψ), and that π−1 is the union of ϕ−1, ψ−1. If in
addition ϕ1, ψ1 are two compatible permutations of the fields Aϕ,Bψ, and π1

is their union, then one easily discerns that the resultants ϕϕ1, ψψ1 are likewise
compatible, and that the resultant ππ1 is their union.

From these considerations, which hold just as well for systems of more than
viiI would prefer the word product [Produkt], if the same were not already used in this sense

by some writers for the composition of substitutions, for which I have chosen the equally
common name resultant above (§ 162). [Trans. – Dedekind himself uses “product” precisely
for the composition of substitutions in his 1857–8 Galois theory lectures.]
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two, indeed of infinitely many, compatible permutations, at last we reach the
following concept. A system of arbitrary (compatible or incompatible) permu-
tations

ϕ1, ϕ2, ϕ3 . . .

and a system of corresponding permutations

ϕ′1, ϕ
′
2, ϕ
′
3 . . .

should be called conjugate systems if any two corresponding members ϕr, ϕ
′
r are

permutations of one and the same field Ar, and if at the same time the resulting
permutations

ϕ−1
1 ϕ′1, ϕ

−1
2 ϕ′2, ϕ

−1
3 , ϕ′3 . . .

are compatible. From the foregoing there arises immediately the theorem that
two systems conjugate with a third are also conjugate with one another. The
benefit which these and the previously developed concepts provide would, ad-
mittedly, become clearly recognizable only during a thorough, particularized
account of algebra.

§ 164. Irreducible systems, finite fields

For the detailed investigation of the relationship between different fields–and
herein lies the real subject of today’s algebra–the following conceptviii provides
the most general, and at the same time the simplest, foundation:

A system T of m numbers ω1, ω2, . . . , ωm is called reducible [reduzibel] over
the field A, if there are m numbers a1, a2, . . . , am in A which meet the condition

a1ω1 + a2ω2 + · · ·+ amωm = 0

and which do not all vanish; in the opposite case the system T is called irre-
ducible over A. According to whether the former or latter case occurs, we will
also say that the m numbers ω1, ω2, . . . , ωm are dependent [abhängig] on, or
independent of, each other (over A).

If A is a divisor of the field B, then clearly each system reducible over A is
also reducible over B, and every system irreducible over B is also irreducible over
A. In the remarks that follow next, however, all systems T will be considered
relative to one and the same field A, and it will therefore be alright to leave this
relationship unmentioned.

Each irreducible system consists of several numbers distinct from one another
and from zero, and a system consisting of only one number is irreducible if, and
only if, this number is non-zero.

A reducible or irreducible system retains this character if the numbers are
all multiplied by a common non-zero factor.
viiiCf. Dirichlet: Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen

nebst einigen Anwendungen auf die Theorie der Zahlen. (Berliner Monatsberichte, April
1842, or Dirichlet’s collected works, vol. 1, p. 633 [13].)
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If one or more numbers are added to a reducible system, then the system
remains reducible; each part of an irreducible system is irreducible.

The following application of the concept is of special interest. We say that
a number θ is algebraic [algebraisch] over the field A, if it is the root of a finite
algebraic equation of the form

θn + a1θ
n−1 + · · ·+ an−1θ + an = 0,

whose coefficients ar belong to the field A. We can express this same property
by saying that the n+ 1 powers θn, θn−1, . . . , θ, 1 form a reducible system over
A. Among all positive exponents for which this reducibility holds, there must
be a least n such that the system of n powers θn−1, . . . , θ, 1 is irreducible, but
becomes reducible by adding θn; we want to call this natural number n the degree
[Grad] of the number θ over A, and we say for short that θ is an (algebraic)
number of nth degree over A. If n = 1 then θ is obviously contained in A, and
conversely every number in the field A is algebraic of the first degree over A.

If we return now to the general case and assume that the above system
of m numbers ω1, ω2, . . . , ωm (which do not all vanish) is reducible, then
there is obviously a part of this system, which may consist of the n numbers
ω1, ω2, . . . , ωn for instance, that is irreducible, while each of the m−n remaining
number ωn+1, ωn+2, . . . , ωm forms a reducible system with that part. We now
want to generally denote by ω each number that is dependent on the numbers
ω1, ω2, . . . , ωn, i.e. which forms a reducible system with these numbers; it is clear
that every such number ω can always (and only in a single way) be represented
in the form

ω = h1ω1 + h2ω2 + · · ·+ hnωn, (1)

where the coefficients h1, h2, . . . , hn denote numbers of the field A, and that
conversely each number representable in this form is dependent on then n num-
bers ω1, ω2, . . . , ωn. We call the collection Ω of all of these numbers ω a family
[Schar] (over A); the system of n determinate numbers ω1, ω2, . . . , ωn is called
an (irreducible) basis [Basis] of the family Ω, and these n numbers ωr are them-
selves called the members or elements of this basis. To each number ω contained
in Ω there belong n completely determined numbers h1, h2, . . . , hn of the field A,
which arise in the representation (1) of ω and should be called the coordinates
of ω relative to this basis. The characteristic properties of such a family Ω are
the following:

I. The numbers in Ω reproduce themselves by addition and subtraction, i.e. the
sums and differences of any two such numbers are likewise numbers in Ω.

II. Any product of a number in Ω and a number in A is a number in Ω.
III. There exist n numbers in Ω independent of each other, but any n+ 1 such

numbers are dependent.
Only the second part of this last property requires still further justification,

and we may assume that it has already been proven for each similar family
whose basis consists of less than n members. If one now takes n + 1 arbitrary
numbers α, α1, α2, . . . , αn from Ω, then in the case that one of them is zero, e.g.
α = 0, they are certainly dependent on each other; in the opposite case we may
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suppose, e.g. that the first coordinate of the number α does not vanish; then
one can obviously determine n numbers in such a way that the first coordinate
of each of the n numbers

α1 + c1α, α2 + c2α, . . . , αn + cnα

vanishes;ix these n numbers then belong to a family, whose basis consists of only
n− 1 numbers ω2, ω3, . . . , ωn, and are therefore dependent on each other; there
are therefore n numbers a1, a2, . . . , an in A, which do not all vanish, and which
satisfy the condition

a1(α1 + c1α) + a2(α2 + c2α) + · · ·+ an(αn + cnα) = 0,

and therefore the sum a = a1c1 + a2c2 + · · · + ancn is contained in A, then it
follows from this that the n+ 1 numbers α, α1, α2, . . . , αn really are dependent
on each other, which was to be proven.

Conversely, if a number system Ω possesses the above three properties I,
II, III, then it follows from the latter that, after one has selected n numbers
ω1, ω2, . . . , ωn from Ω that are independent of each other, each number ω con-
tained in Ω is certainly of the form (1); then it follows from II and I that each
number ω of the form (1) belongs to the system Ω. Thus these three properties
really are characteristic for the family Ω consisting of all numbers ω of the form
(1).

At the same time it is clear from this that each irreducible system consisting
of n such numbers ω can likewise be seen and used as a basis for Ω; with each
transition from one basis to another there is obviously an associated transfor-
mation of the coordinates of all numbers ω, similar to analytic geometry. The
following important theorem, which we will often need to use, although only
later, refers to the selection of such a basis.

IV. An arbitrary system of n numbers of the family Ω is reducible or irreducible,
respectively, according to whether the determinant formed out of its coordinates is
zero or not.

In order to prove this, we consider an arbitrary system of n numbers α1, α2,
. . . , αn contained in Ω, which thus are of the form

αr = ar,1ω1 + ar,2ω2 + · · ·+ ar,nωn,

and denote by a the determinant formed out of the coordinates ar,s. Now if
these n numbers αr form a reducible system, then there are n numbers x1, x2,
. . . , xn in A which do not all vanish and which satisfy the condition

x1α1 + x2α2 + · · ·+ xnαn = 0;

if one replaces herein the n numbers αr with the protuberant expressions then,
because the n numbers ωs are independent of each other, the n sums

a1,sx1 + a2,sx2 + · · ·+ an,sxn

ixIn the case n = 1 the statement is already proven from this alone.
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contained in A must be = 0, and as is well known it follows from this that each
of the products ax1, ax2, . . . , axn, and thus also a itself, vanishes. If however
the n numbers αr form an irreducible system, thus also a new basis for Ω, then
the n numbers ωs are representable in the form

ωs = b1,sα1 + b2,sα2 + · · ·+ bn,sαn,

where again all coefficients br,s, whose determinant we denote by b, are contained
in A. If one substitutes these representations of the numbers ωs in the above
expression for αr, then it follows that each of the n2 sums

ar,1bs,1 + ar,2bs,2 + · · ·+ ar,nbs,n

contained in A is either = 1 or = 0, according to whether r, s are the same
or different; by the well known theorem on the multiplication of determinants
it follows from here that ab = 1, and therefore a is nonzero, which was to be
proven.–

We turn now to the important question: When is such a family Ω, charac-
terized by the properties I, II, III, a field? If this should be the case, then all
products ωrωs of two elements from the basis must likewise be contained in Ω,
hence

ωrωs = ar,s
1 ω1 + ar,s

2 ω2 + · · ·+ ar,s
n ωn,

where all coefficients ar,s
m denote numbers of the field A.x If these conditions

are fulfilled then (according to I) it is clear that the numbers ω of the family
Ω reproduce themselves not only by addition and subtraction, but also by mul-
tiplication; furthermore if α is an arbitrary, but non-zero, number in Ω, then
the n products αωr certainly form an irreducible system, and they are likewise
contained in Ω, so they can serve as a new basis for Ω; therefore each number
ω is also representable in the form:

ω = α(k1ω1 + k2ω2 + · · ·+ knωn),

where the n new coordinates kr again belong to the field A, and therefore any
quotient of two numbers ω, α of the family Ω is also a number in Ω. We have
therefore obtained the following theorem:

V. The necessary and sufficient conditions for a family Ω to be a field consist
in the fact that all products of two elements of a basis for Ω are again contained in
Ω.

We now call each basis of the family Ω also a basis of the field Ω over A.
Since this field Ω certainly contains the number 1, there follows from II the
theorem:

VI. If the family Ω is a field, then A is a divisor of Ω.

xAccording to the general laws ωrωs = ωsωr and (ωrωs)ωt = ωr(ωsωt), these coefficients
must fulfill certain conditions, which however we need pursue no further here. Cf. §159 of
the second edition (1871) of this work and my essay: Zur Theorie der aus n Haupteinheiten
gebildeten komplexen Größen (Nachrichten von der Göttinger Ges. d. W. 1885, S. 141) [7].

30



Since, furthermore, if ω denotes an arbitrary number of this field Ω, all
powers ω2, ω3, . . . are also contained in Ω, then according to III the n + 1
numbers ωn, ωn−1, . . . , ω, 1 certainly form a reducible system, which we can
express thus:

VII. If the family Ω is a field, then every number in it is algebraic over A and
of degree at most n.

We now consider two fields A,B and assume there exist n numbers ω1, ω2,
. . . , ωn in B which form an irreducible system over A, but any system of n+ 1
numbers of the field B is reducible; since any part of an irreducible system is
likewise irreducible, there can only be one such number n; in this case we say
that the field B is finite and of degree n over A, and we denote this by the
equationxi

(B,A) = n.

First it is clear that the case n = 1 arises when and only when B is a divisor of
A; the two equations

(B,A) = 1, AB = A

are therefore equivalent. For an arbitrary degree n it follows that B is contained
in the family Ω, which consists of all numbers ω of the form (1), and thus
all products ωrωs in B are also contained in Ω, so Ω is (by V, VI) a field,
and moreover a multiple of AB; since furthermore each number ω is formed
rationally from numbers hr of the field A and numbers ωr of the field B and is
thus contained in AB, it then follows that Ω is also a divisor of AB, therefore
Ω = AB. We can thus state the following theorem:

VIII. If B is a field of nth degree over A then

(AB,A) = (B,A) = n (2)

as well, and every system of n numbers in B or AB that is irreducible over A forms
a basis of the family AB over A.

At the same time it follows (from VII) that all numbers in AB, thus also all
numbers in B, are algebraic over A, and of degree at most n; the fact that there
also exist numbers of the nth degree in B could now be proven of course, but
because this will result automatically later (in §165, VI) we want to do without
it for now and prove only the following converse:

IX. If θ is an algebraic number of nth degree over A, and B is the field R(θ)
which consists of all numbers rationally representable by θ, whereby AB = A(θ),
then (B,A) = n and the n powers θn−1, θn−2, . . . , θ, 1 form a basis for A(θ) over
A.

For this we consider the family Ω of all numbers ω of the form

ω = h1θ
n−1 + h2θ

n−2 + · · ·+ hn−1θ + hn,

xiI have first used the symbol (B,A) with this meaning on p.21 of the book reviews in
volume 18 of Schlömilch’s Zeitschrift für Mathematik und Physik (1873) [5]. [Trans. – This is
a review of Bachmann’s published lectures on the relations between circle division and number
theory [4].]
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whose coordinates hr are arbitrary numbers in A. Since (by hypothesis) the
power θn is contained in Ω, the same holds (by II, I) of h1θ

n and of each
product ωθ, thus also of all higher powers θn+1, θn+2, . . . ; therefore all products
of any two members of the basis are likewise contained in Ω, and so Ω is (by
V) a field. Since this field Ω is a multiple of A and contains the number θ, it is
also a multiple of A(θ) and therefore = A(θ), because conversely each number
ω is certainly contained in A(θ). The field A(θ) or AB is therefore of degree n
over A, and thus the same holds of B also, which was to be proven.

Here we attach the following remarks. If t is a variable and we denote
by F (t), f(t), f1(t), f2(t), . . . exclusively such polynomial functions of t whose
coefficients are contained in the field A, then the sums, differences, products of
the same are likewise such functions, and by division of f1(t) by f(t) there arises
an identity of the form f1(t) = f(t)f2(t) + F (t), where the remainder F (t) is of
lower degree than f(t), or is identically = 0 if f1(t) is divisible by f(t). Now if
θ has the same meaning as in the preceding theorem, then there is one and only
one function of nth degree

f(t) = tn + a1t
n−1 + · · ·+ an−1t+ an, (3)

which has the same roots as t−θ and therefore is completely determined by the
number θ (and A). If one designates with F (t) any function whose degree is < n,
then F (θ) = 0 only if F (t) = 0 identically. Therefore if f1(θ) = 0, then f1(t)
must be divisible by f(t). The function f(t) itself can be divisible by no function
F (t), because from f(t) = F (t)F1(t) and f(θ) = 0 either F (θ) = 0 or F1(θ) = 0
would follow, which is impossible. Such a function f(t), whose coefficients are
contained in A, and which is divisble by no similar function of lesser degree, is
called irreducible or a prime function [Primfunktion] over A, and likewise the
equation f(θ) = 0 is called irreducible. The field A(θ) consists of all numbers ω
of the form F (θ), and each such number ω can also be represented in the form
F (θ) only in a single way.

Here we move on to the consideration of three fields A,B,C and establish
the following theorem:xii

X. If B is finite over A and C is finite over AB, then also BC is finite over A,
and

(BC,A) = (C,AB)(B,A). (4)

Setting (B,A) = n and (C,AB) = p, if the n numbers ωr in B form an
irreducible system over A and the p numbers τs in C form an irreducible system
over AB, then the np products ωrτs form, as one can easily see, an irreducible
basis for the field ABC over A, which was to be proven.

Most frequently the case arises where B is a multiple of A and at the same
time a divisor of C, thus AB = B, BC = C, and therefore

(C,A) = (C,B)(B,A). (5)

In addition it follows from the theorem X that each product of two or more fields
finite over A is again such a field. Now if θ, η are two algebraic numbers over

xiiCf. the preceding citation.
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A, then (by IX) the fields R(θ), R(η) are finite over A, and thus the same holds
of their product R(θ, η); therefore the sum, difference, product and quotient of
θ, η contained in the latter are also algebraic over A, and thus the totality of all
numbers algebraic over A is a field.

It is expedient to settle on a meaning for the symbol (B,A), and set (B,A) =
0,xiii if B is not finite over A. Thereby one obtains, as the reader will easily
find, that the theorems contained in the two equations (2), (4) hold for arbitrary
fields A,B,C without any qualification. If one now exchanges the latter with
one another, then one obtains certain reciprocities and other relations, e.g.

(B,C)(C,A)(A,B) = (C,B)(A,C)(B,A), (6)

whose deeper meaning, however, can only be recognized through the following
investigations.

§ 165. Permutations of finite fields

We now connect the concepts explained in the preceding sections with one
another and suppose the field A is a divisor of the fieldM , and π is a permutation
of the latter; for the sake of brevity, if ω is any number in M we denote by ω′

the conjugate number ωπ. Now if the m numbers ω1, ω2, . . . , ωm contained in
M form a reducible system T over A, thus there are m numbers a1, a2, . . . , am

in A which satisfy the condition

a1ω1 + a2ω2 + · · ·+ amωm = 0

and which do not all vanish, then because 0′ = 0,

a′1ω
′
1 + a′2ω

′
2 + · · ·+ a′mω

′
m = 0

also follows from this, and since a non-zero number a in A always gives rise to
a non-zero number a′ in Aπ, the system Tπ contained in Mπ which consists of
the m numbers ω′1, ω′2, . . . , ω′m is reducible over Aπ. Furthermore, since each
number ω′ of the field Mπ transforms into a number ω of the field M under the
inverse permutation π−1, then conversely the system T is certainly reducible
over A if the system Tπ is reducible over Aπ. We can thus state the following
theorem:

I. If the field M is a multiple of the field A, and π is a permutation of M , then
for a system T contained in M , the system Tπ is reducible or irreducible according
to whether T is reducible or irreducible, respectively.

If we apply this to the case where M is the product of the two fields A,B,
then there follows immediately the theorem:

II. If π is a permutation of the product AB of the two fields A,B, then

(B,A) = (Bπ,Aπ).

We build on this for the proof of the following fundamental theorem:
xiiiIf one prefers it, then one may set (B,A) =∞, which has essentially the same success.

33



III. If the field B is finite over A and ϕ is a permutation of A, then the degree
(B,A) is the number of distinct permutations π of the product AB which are
multiples of ϕ. At the same time, A is the field and ϕ is the remainder of the
system Π of these permutations π.

This is immediately clear for the case (B,A) = 1, because then B is a divisor
of A, hence AB = A, therefore π = ϕ necessarily. In order to prove it generally,
we apply complete induction; we assume that it has already been proven for all
cases where the degree (B,A) is < n, and demonstrate that it then holds for
(B,A) = n also.

Here we must distinguish two cases, the first of which occurs if there is
a third field K which is simultaneously a proper divisor of AB and a proper
multiple of A. If we set (AB,K) = p, (K,A) = q, then (according to Theorems
VIII and X in §164) n = (B,A) = (AB,A) = (AB,K)(K,A) = pq, and since K
is distinct from AB and A, each of the two degrees p, q is > 1 and therefore also
< n. Thus, given our assumption there exist q and only q distinct permutations

χ1, χ2, . . . , χq

of the field AK = K which are multiples of ϕ, and if χr is any one of these
permutations, there then exist p and only p distinct permutations

πr,1, . . . , πr,2, . . . , πr,p

of the field ABK = AB which are multiples of χr, and each of these per-
mutations πr,s is (according to §163) simultaneously a multiple of ϕ. Since,
furthermore, each permutation π of the field AB which is a multiple of ϕ always
gives rise to one and only one permutation χ of K which is a divisor of π and
thus likewise a multiple of ϕ, the n permutations πr,s given above, which corre-
spond to the q values r and the p values s, are all distinct from one another, and
except for these n permutations πr,s there could be no other permutation π of
AB which is a multiple of ϕ. In this case, therefore, our statement concerning
the number of permutations π is proven.

In the opposite second case, where there exists no field K with the above-
mentioned property, we choose from B (or as well from AB) a number θ not
contained in A, which is possible because n > 1, hence B is not a divisor of A.
Then the field A(θ) produced from A by the adjunction of θ must be = AB,
because it is simultaneously a divisor of AB and a multiple of A, but is distinct
from A, and the number θ which is algebraic over A is (according to IX in § 164)
certainly of degree n = (B,A); the field A(θ) consists of all numbers α of the
form

α = F (θ) = x1θ
n−1 + x2θ

n−2 + · · ·+ xn−1θ + xn, (1)

where the n coefficients or coordinates x denote arbitrary numbers in A, and
surely each number α is so representable in only one unique way, because the n
powers θn−1, . . . , θ, 1 form an irreducible system over A. The number θ is the
root of a particular equation

f(θ) = θn + a1θ
n−1 + a2θ

n−2 + · · ·+ an−1θ + an = 0 (2)
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which is irreducible over A, whose coefficients ar are at the same time the
coordinates of the number – θn.xiv

We now seek all potentially existing permutations π of this field A(θ) which
are multiples of the given permutation ϕ of the field A. For the sake of simplicity,
if x denotes an arbitrary number in A, we set the number produced from x by
ϕ as

xϕ = x′; (3)

then, because π should be a multiple of ϕ, it must be that

xπ = x′ (4)

as well, and since all numbers α of the field AB are formed rationally from num-
bers x and the unique number θ, the permutation π is completely determined
once θπ is also known; if, for the sake of brevity, we set this number as

θπ = η, (5)

then it follows from (1) and (2) that each number α represented in the form (1)
transforms into the appropriate number

απ = F(η) = x′1η
n−1 + x′2η

n−2 + · · ·+ x′n−1η + x′n (6)

under π, and that η must be a root of the particular equation

f(η) = ηn + a′1η
n−1 + a′2η

n−2 + · · ·+ a′n−1η + a′n = 0. (7)

Conversely, if η denotes a particular root of this equation (7), then since each
number α of the field A(θ) is always representable in a unique way in the form
(1), a mapping π of this field is completely determined via rule (6), which
subsumes (4) and (5) as special cases, and we now want to prove that this very
same is actually a permutation. To this end we need (according to § 161) only
to show that for any two numbers α, β of the field AB the rules

(α+ β)π = απ + βπ (8)
(αβ)π = (απ)(βπ) (9)

both hold. If one designates with yr the coordinates of β, then xr +yr are those
of α+β; now since ϕ is a permutation of A, hence (xr + yr)′ = x′r + y′r, rule (8)
results immediately from (6). Since the same naturally holds also for sums of
more than two members, and since each number β is a sum of products whose
factors are either = θ or contained in A, one easily recognizes that rule (9) need
only be proven for the two cases where β is either an arbitrary number y of the
field A or is = θ. Now since the coordinates yxr of the product αy transforms
into (yxr)′ = y′x′r under the permutation ϕ, the first case (αy)π = (απ)y′

follows from (6), and likewise the second case (αθ)π = (απ)η follows easily, if

xivIt is good to note that all of the following holds for any such field A(θ) which arises from
a number θ of degree n.
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one considers that according to (2), (6), (7) it is also the case that (θn)π = ηn.
With this the proof is delivered, that each root η of the equation (7) actually
gives rises to a permutation π of the field AB which is defined by (6) and is a
multiple of ϕ.xv

At the same time it follows from theorem I that the n powers ηn−1, . . . , η,
1 form an irreducible system over the field Aπ = Aϕ. Now according to the
fundamental theorem of algebra first proved by Gauss there generally exist n
distinct roots η of the equation (7), and it is known that there are less than n
only if at least one of these numbers η simultaneously satisfies the condition

f′(η) = nηn−1 + (n− 1)a′1η
n−2 + (n− 2)a′2η

n−3 + · · ·+ a′n−1 = 0;

since this contradicts the irreducibility just proven, however, the equation (7)
actually has n distinct roots η, and thus there are exactly n distinct permuta-
tions π of the field AB which are multiples of ϕ, which was to be proven.

Having herewith proved theorem III generally, insofar as it involves the
number of permutations π, we can also easily deal with its last part. For if K
denotes the field of the system Π, and χ denotes the remainder, then K consists
(according to § 163) of all numbers one-valued in Π, hence is a multiple of A
and divisor of AB, and its permutation χ is a multiple of ϕ; if one again sets
(AB,K) = p, (K,A) = q, then n = pq, and according to the part of the theorem
already proved, p is the exact number of distinct permutations of AB which are
multiples of χ; but the n permutations π are certainly situated among these,
and thus p ≥ n, therefore p = n, q = 1, K = A, χ = ϕ, which was to be proven.
–

Now that the fundamental theorem III has been proven completely, we first
remark that the divisors ψ with respect to B of the n permutations π are
likewise distinct from one another, because conversely (according to §163) every
permutation π of the product AB is completely determined by its divisors ϕ,ψ
with respect to A,B. The field of the system Ψ of these n permutations ψ
compatible with ϕ is, as is immediately clear, the greatest common divisor D
of A,B, and the remainder of Ψ is the divisor of ϕ with respect to D.

If, furthermore, ϕ′ is likewise a permutation of A, hence ϕ−1ϕ′ is a permu-
tation of Aϕ, and Π′ is the system of these n permutations π′ of AB which are
multiples of ϕ′, then if π denotes a particular permutation in Π, the n permu-
tations π−1π′ of the field (AB)π are distinct and at the same time multiples of
ϕ−1ϕ′ (from §163), and since the field (AB)π is of degree n over Aϕ according
to II, as a result of III there could be no permutation of (AB)π which is at the
same time a multiple of ϕ−1ϕ′, other than these n permutations π−1π′ under
which (AB)π transforms into the n fields (AB)π′; thus Aϕ is the field and ϕ−1ϕ′

is the remainder of the system π−1Π′. –
xvIf f(t), F (t), f1(t) . . . denote (as in §164) polynomial functions of the variable t whose

coefficients c are contained in A, and if the functions f(t), F(t), f1(t) . . . result from replacing
each coefficient c with c′ = cϕ, then because ϕ is a permutation of A, the identities F(t) +
F1(t) = F2(t), F(t)F1(t) = f(t)f1(t) + F3(t) always follow from the identities F (t) + F1(t) =
F2(t), F (t)F1(t) = f(t)f1(t)+F3(t). Herein lies manifest a proof of rules (8) and (9), of which
that given above in the text is only a circumlocution.
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Henceforth we want to consider only the special case in which ϕ is the iden-
tity permutation of A; then the identity permutations of AB,B are obviously
also contained in the systems Π,Ψ; A is the collection of all numbers in AB
which map to themselves under every permutation π, and just the same D is
the collection of all numbers in B which map to themselves under every permu-
tation ψ. Now if T denotes an arbitrary sequence of n numbers ω1, ω2, . . . , ωn

contained in AB, and π1, π2, . . . , πn are the permutations in Π in a particu-
lar ordered sequence, then we want to set the determinant formed from the n2

elements ωrπs ∣∣∣∣∣∣∣∣∣
ω1π1, ω2π1, . . . , ωnπ1

ω1π2, ω2π2, . . . , ωnπ2

...
...

. . .
...

ω1πn, ω2πn, . . . , ωnπn

∣∣∣∣∣∣∣∣∣ = (T ) (10)

and for brevity call it the determinant of the system T . Then the following
theorem holds:

IV. The necessary and sufficient condition for the system T to be irreducible
over A and thus form a basis of AB is that the determinant (T ) does not vanish;
and the quotient of any two such determinants (T ) is contained in A.

For if T is irreducible, then every number α in the family AB can be repre-
sented in the form

α = x1ω1 + x2ω2 + · · ·+ xnωn, (11)

where the numbers xr denote the coordinates of α contained in A, and conse-
quently

απs = x1(ω1πs) + x2(ω2πs) + · · ·+ xn(ωnπs). (12)

at the same time.
Now if U is a system of n such numbers α1, α2, . . . , αn, and ar,s is the sth

coordinate of αr, then

αr = ar,1ω1 + ar,2ω2 + · · ·+ ar,nωn

αrπs = ar,1(ω1πs) + ar,2(ω2πs) + · · ·+ ar,n(ωnπs) (13)

and as a result of the well-known theorem of determinant-theory

(U) = a(T ), (14)

where a denotes the determinant

a =

∣∣∣∣∣∣∣∣∣
a1,1, a1,2, . . . , a1,n

a2,1, a2,2, . . . , a2,n

...
...

. . .
...

an,1, an,2, . . . , an,n

∣∣∣∣∣∣∣∣∣ (15)

formed from the coordinates ar,s, and thus is contained in A. Now since, accord-
ing to an earlier theorem (at the end of § 161), there certainly exists a system
U in AB whose determinant (U) does not vanish, it follows from (14) that (T )
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is non-zero.xvi If, on the other hand, T is reducible, then there exist n numbers
xr in A which do not all vanish, for which however the sum α in (11), hence
also all n sums απs in (12), do vanish, and from here it is known that (T ) = 0
as well, which was to be proven.

By the norm with respect to A of the field B we mean the product P of the
n conjugate fields Bπ or Bψ, into which B transforms under the n permutations
ψ of the system Ψ; since the identity permutation of B is found among these,
the norm P is always a multiple of B. Obviously AP is at the same time the
norm of AB, because Aπ = A, hence (AB)π = A(Bψ), and from the proof of
the foregoing theorem the following easily results:

V. If P is the norm of the field B over A, and Q is the greatest common divisor
of P and A, then (B,A) = (B,Q).

For if one selects from B a system T of n numbers ω1, ω2, . . . , ωn which
is irreducible over A, then every number α of the field B is representable in
the form (11); now since the determinant (T ) does not vanish, and since all
numbers απ, ωrπ appearing in (12) are contained in P , the same holds of the
coordinates xr, which therefore certainly belong to the field Q; the system T ,
which is irreducible over A and hence also over Q, thence becomes reducible over
Q by the addition of any number α contained in B, and therefore (B,Q) = n,
which was to be proven.

If, furthermore, θ denotes an arbitrary number in AB, and T denotes the
system of n powers θn−1, θn−2, . . . , θ, 1, then the determinant (T ) is, as we have
already observed earlier (at the end of § 161), the product of all the differences
θπr − θπs where r < s, and therefore the system T is irreducible over A if and
only if θ is an n-valued number in Π; now since every number contained in
AB is (according to § 164, VIII) algebraic over A and at most of degree n, it
follows from here that every n-valued number θ, and no other, is of degree n.
Furthermore, since the system Ψ consists of n distinct permutations ψ of the
field B, there exist (according to §161) infinitely many numbers θ which are
n-valued in Ψ, hence also in Π, and we can thus state the following theorem:

VI. If B is a field of nth degree over A, then there also exist infinitely many
numbers θ of degree n over A in B, and at the same time A(θ) = AB.

Conversely, if a field B consists only of numbers which are algebraic over
A, and whose degrees do not exceed a finite height, then it follows without
difficulty from the preceding theorems that B is finite over A. Another, likewise
characteristic, criterion for this finiteness is that the number of all the distinct
fields K which are simultaneously multiples of A and divisors of AB is finite.
Here, however, we want to elaborate on only the one part of this theorem,
[indem] we again suppose that B is of degree n over A and designate with
Π the system of n permutations π of AB which are multiples of the identity
permutation ϕ of A; if ones sets (AB,K) = p, (K,A) = q, then n = pq and
K is (according to VI) of the form A(α), where α denotes a number of degree
q contained in K, hence also in AB, and conversely every number α in AB
produces such a field K = A(α). Now there are (according to III) q distinct

xviCompare this with theorem IV in §164.
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permutations χ ofK which are multiples of ϕ, and under which α transforms into
q distinct values αχ; each particular such permutation χ is again the remainder
of a system Π′ of p permutations π′ which produce one and the same value
απ′ = αχ, and the system Π consists of these q complexes Π′. Now since,
conversely, K is completely determined (according to §163) as the field belonging
to every single complex Π′, it follows easily that the number of such fields K is
finite, because a finite system Π also has only a finite number of parts Π′. – For
the sake of brevity we must forego the proof of the converse, which admittedly
is not difficult, but does require several lemmas.

Now the complete determination of all these fields K and the investigation of
their mutual relations forms the most important task of algebra, whose solution
began with Lagrangexvii and finally was brought to a systematic conclusion
by Galoisxviii through the theory of groups. Although we cannot expand upon
the latter ourselves, we still want to indicate from our standpoint what this
reduction consists in.

§ 166. Groups of permutations

A system Π of n different field permutations π is called a group [Gruppe] if
any one can be composed with any other, and the resultant is always contained
in Π.

From this definition it follows first that the permutations π contained in a
group Π all refer to one and the same field, and that this field M maps into itself
under each permutation π. If, furthermore, π′ denotes a particular one of these
n permutations, while we let π range over all of them, then the n resultants ππ′

are (according to §162) all distinct, and therefore their complex is identical to
Π; there exists therefore, if π′, π′′ are two particular permutations, always one
and only one permutation π which meets the condition ππ′ = π′′. If one takes
π′ = π′′, it then follows that the identity permutation on M is also contained in
Π. The following fundamental theorem is based on these properties of a group:

I. If a group Π consists of n distinct permutations π of the field M , and if A is
the field of Π, then (M,A) = n, and the remainder of Π is the identity permutation
of A.

In order to prove this, we select (according to §161) a system of n numbers
αr from M in such a way that the determinants formed from the n2 numbers
αrπ do not vanish; then, if ω denotes any determinate number in M , there exists
one and only one system of n numbers xr which satisfy the n linear equations

ωπ = x1(α1π) + x2(α2π) + · · ·+ xn(αnπ); (1)

since all numbers ωπ, απ appearing here are contained in M , the same also holds
for these n numbers xr, and consequently, if π′ denotes a particular permutation
xviiRéflexions sur la résolution algébrique des équations (Mém. de l’Acad. de Berlin, 1770,

1771. – Œuvres de L. Tome III) [22].
xviiiSur les conditions de résolubilité des équations par radicaux (Liouvilles Journal, t. XI,
1846) [16].
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in Π, there arises from the above system (1) the following:

ωππ′ = (x1π
′)(α1ππ

′) + (x2π
′)(α2ππ

′) + · · ·+ (xnπ
′)(αnππ

′),

which, because ππ′ ranges over the whole system Π while π does, can also be
represented in the form

ωπ = (x1π
′)(α1π) + (x2π

′)(α2π) + · · ·+ (xnπ
′)(αnπ);

in concert with (1) it results from here that xrπ
′ = xr, and therefore the n

numbers xr are contained in the field A, which (according to §163) consists of
all numbers that are one-valued in Π. Since the identity permutation of M is
found among the permutations π, it follows from (1) that every number ω of
the field M is representable in the form

ω = x1α1 + x2α2 + · · ·+ xnαn,

where the coefficients xr belong to the field A; hence M is finite over A, namely
(M,A) ≤ n; since there exist n distinct permutations π of M which are multiples
of the identity permutation of A, it follows (from §165, III) that (M,A) = n,
and that the system of the n numbers αr is irreducible over A, which was to be
proven.

Now if a part of the group Π likewise forms a group Π′, which consists of
p permutations π′, then the field A′ of Π′ is a divisor of M and a multiple of
A, because each number one-valued in Π is also one-valued in Π′, and at the
same time n = pq, where p = (M,A′), q = (A′, A); when π denotes a particular
permutation in Π but π′ ranges over all permutations of the group Π′, if one
further designates by Π′π the complex of the p resultants π′π, and by ϕ′ the
remainder of Π′π, then the group Π consists of q distinct complexes Π′π, whose
remainders ϕ′ agree with those q permutations of the field A′ which are multiples
of the identity permutation of A. Conversely, if a field A′ is a divisor of M and
a multiple of A, one easily sees that the permutations of M which are multiples
of the identity permutation of A′ form a group Π′ contained in Π, and A′ is
the field belonging to Π′. If, furthermore, Π′′ is likewise a group contained in
Π, and A′′ is the field belonging to it, then the permutations common to both
groups Π′, Π′′ again form a group; and the field belonging to it is the product
A′A′′.

From this one recognizes that the complete determination of all these fields
A′, A′′, . . . and the investigation of their mutual relations is completely settled
by the determination of all groups Π′,Π′′, . . . contained in the group Π, and
this task belongs to the generalxix theory of groups.

Now the general case (§165), where (B,A) = n > 0, and where it is a
matter of the classification of all fields K which are simultaneously multiples
of A and divisors of AB, is easily reduced to the foregoing. If ϕ again denotes
the identity permutation of A, and Π the system of n permutations π of AB
xixAlready in my Göttingen lectures (1857-1858) I taught this theory as applying to groups

Π of arbitrary elements π.
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which are multiples of ϕ, then we have already noted that the norm of B, i.e.
the product P of the n fields Bπ, is a multiple of B. If now P = B, so B
is its own norm, we should call B a normal field [Normalkörper] over A; this
case occurs if and onlyxx if all fields Bπ are identical with B, and obviously
AB is also normal over A then. If now the latter is the case–which, as we
still want to note, can also occur without B being normal over A–, then one
can easily convince himself that Π is a group, and that everything said above
about the field M holds for this field AB. But if AB (and hence also B) is not
normal over A, nevertheless the norm P of B, and hence also AP , is normal
over A; namely if χ is a particular permutation of AP , to be precise a multiple
of ϕ, then the divisors of χ with respect to the n fields ABπ are (according to
§165) of the form π−1π′, where π′ ranges over all permutations contained in Π
simultaneously with π,xxi and thus (AP )χ = AP , i.e. AP (and likewise P as
well) is normal over A, the system X of all permutations χ is a group, ϕ is their
remainder, and the principles above hold for the field M = AP .

From here, incidentally, there follows as well the important theorem that,
if ω denotes an arbitrary number contained in AB, any number derived from
the n numbers ωπ in a rational and symmetric way is certainly contained in A,
because it is obviously one-valued in X.

xxAt first, admittedly, there follows only that each field Bπ must be a divisor of B; however,
since (according to §164) each number ω in B is algebraic over A, and since the numbers of
the infinite range ω, ω′ = ωπ, ω′′ = ω′π, ω′′′ = ω′′π, . . . are contained in B and are roots of
one and the same irreducible (over A) equation, repetitions of the form ω(r) = ω(r+s), where
s > 0, must occur among them, and since α = β always follows from απ = βπ, it follows that
ω = ω(s), and thus every number ω contained in B is also contained in Bπ, hence Bπ = B. –
In order to set this consideration in the right light, we still note the following. If τ , τ ′ are two
arbitrary transcendental, i.e. non-algebraic, numbers over A, then the field A(τ) transforms
into A(τ ′) under infinitely many permutations which are multiples of the identity permutation
of A, and among these there is a single π for which τπ = τ ′; if one now takes e.g. τ ′ = τ2,
then it is readily apparent that the field A(τ2) conjugate to A(τ) is a proper divisor of A(τ).
xxiFor if one selects an arbitrary n-valued number θ from AB, then the n distinct numbers
θπ contained in AP must also map into n distinct images θπ′ under the permutation χ
(according to §161); the permutation χ thus produces a certain permutation [Vertauschung]
of the n values among themselves.
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[10] , Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen
Teiler, in Gesammelte mathematische Werke, vol. II, Chelsea, 1968,
pp. 103–148. 4

[11] , Theory of Algebraic Integers, Cambridge University Press, 2004.
Translation of [6] by John Stillwell. 16

[12] R. Dedekind and H. Weber, Theorie der algebraischen Funktionen einer
Veränderlichen, Journal für die reine und angewandte Mathematik, 92
(1882), pp. 181–290. 18

[13] P. G. L. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von
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Journal de Mathématiques Pures et Appliquées, 11 (1846), pp. 417–444. 39

[17] C. F. Gauss, Disquisitiones Arithmeticae, Yale University Press, 1965.
English translation by Arthur A. Clarke. 2

[18] T. W. Hungerford, Algebra, Springer, 1974. 3

[19] B. M. Kiernan, The development of Galois theory from Lagrange to Artin,
Archive for History of Exact Sciences, 8 (1971), pp. 40–154. 2, 13, 16
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