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Abstract 

The Trek Separation Theorem (Sullivant et al. 
2010) states necessary and sufficient conditions 
for a linear directed acyclic graphical model to 
entail for all possible values of its linear 
coefficients that the rank of various sub-matrices 
of the covariance matrix is less than or equal to 
n, for any given n. In this paper, I extend the 
Trek Separation Theorem in two ways: I prove 
that the same necessary and sufficient conditions 
apply even when the generating model is 
partially non-linear and contains some cycles. 
This justifies application of constraint-based 
causal search algorithms to data generated by a 
wider class of causal models that may contain 
non-linear and cyclic relations among the latent 
variables.  

1 INTRODUCTION 
In many cases, scientists are interested in inferring causal 
relations between variables that cannot be directly 
measured (e.g. intelligence, anxiety, or impulsiveness) by 
administering test surveys with measured “indicators” that 
indirectly measure the unmeasured or “latent” variables. 
In other cases, scientists are interested in estimating the 
values of the latent variables from the measured 
indicators. The variances of the estimates of the latent 
variables of interest can be reduced in various ways by 
employing multiple indicators for each latent variable. A 
model in which each latent variable of interest is 
measured by multiple indicators (which may also be 
caused by other latents of interest as well as the error 
variable) is called a multiple indicator model. Multiple 
indictor models are quite common in many disciplines 
such as educational research, psychology, political 
science, etc. (Bartholomew et al., 2002).  

Two major problems are how to use the values of the 
measured indicator variables to make reliable inferences 
about the causal relationships between the latent variables 
of interest, and to predict the values of the latent variables 
from the values of the measured indicators. A number of 
complications make both of these tasks very difficult: 

• Associations among indicators are often confounded 
by additional unknown latent common causes; 

• One indicator may directly affect other indicators 
(e.g. “anchoring effects”); 

• There are often a plethora of alternative causal 
models that are consistent with the data and with the 
prior knowledge of domain experts, often far too 
many models to test individually; 

• There may be non-linear dependencies among latent 
variables; 

• There may be feedback relationships among latent 
variables. 

The most common algorithms for using measured 
indicators to find causal relations among latent variables 
or to infer the values of the latent variables use some 
version of factor analysis. However, given the models 
with the features cited above, factor analytic algorithms, 
as well as the FindHidden algorithm of Elidan (2001) 
have been shown to perform poorly (Silva et al. 2006).  

One class of model search algorithms that have had some 
success dealing with some of the complications listed 
above is constraint-based search. A constraint-based 
search attempts to find the set of models that most closely 
match the measured constraints on a probability 
distribution that are entailed for all values of the free 
parameters (e.g. conditional independence constraints that 
are entailed by d-separation) with constraints that are 
judged to hold in the population (as determined by a 
statistical test).  

Although multiple indicator models rarely entail any 
conditional independence constraints among just the 
measured indicators, multiple indicator models often 



 

entail constraints on the rank of sub-matrices of the 
covariance matrix among the measured indicators (e.g. 
vanishing tetrad differences explained below), and there 
are searches based on these rank constraints that have 
desirable properties (Silva et al. 2006).  

Multiple indicator models are special cases of structural 
equation models, and the form of the equations can be 
represented by a directed graph (Pearl 2000, Spirtes et al. 
2001).  Under the assumption of linearity, the graphical 
structure representing the multiple indicator model can 
linearly entail constraints on the covariance matrix of the 
variables, that is, constraints that hold for all values of the 
free parameters (the linear coefficients associated with the 
edges, and the variances of the error terms). For example, 
a multiple indicator model represented by a graph with a 
single latent variable L that is the parent of measured 
indicators X, Y, Z, and W and contains no other edges, 
entails the vanishing tetrad difference (e.g. ρ(X,Y)ρ(Z,W) 
– ρ(X,Z)ρ(Y,W) = 0) for all values of the linear 
coefficients, which is equivalent to a constraint that the 
rank of a submatrix of the covariance matrix is less than 
or equal to 1. 

The Trek Separation Theorem (Sullivant et al. 2010) 
states necessary and sufficient conditions for a directed 
acyclic graph to linearly entail that the rank of various 
sub-matrices of the covariance matrix among the 
measured variables are less than or equal to n, for any n.  

The Trek Separation Theorem is one way to justify the 
correctness of the BuildPureClusters algorithm (Silva et 
al. 2006), that searches for the set of multiple indicator 
models that most closely match the set of vanishing tetrad 
differences judged to hold in the population by 
application of statistical tests to the sample data. 
BuildPureClusters is a pointwise consistent algorithm 
that, depending upon the input data, either outputs “Can’t 
tell” or an equivalence class of graphs that linearly entail 
the same set of vanishing tetrad differences and zero 
partial correlation constraints. The algorithm has been 
successfully applied to a number of data sets (Silva et al. 
2006, Jackson & Scheines 2005) 

However, there are a number of significant limitations on 
usefulness of the Trek Separation Theorem (and hence on 
the BuildPureClusters algorithm): 

• The Trek Separation Theorem does not apply to 
cyclic graphs (as in feedback models); 

• The Trek Separation Theorem does not apply if any 
of the causal relations between the variables are non-
linear.  

In this paper, I prove an extension of the trek separation 
theorem which gives necessary and sufficient conditions 
for a directed graph (cyclic or acyclic) that has some 
functions relating variables to other variables that are non-
linear, and in which there may be some feedback 
(represented by cyclic graphs) to entail that the rank of 
various sub-matrices of the covariance matrix are less 
than or equal to n, for any n. This theorem has at least two 

uses for causal discovery: it serves as the basis for 
proving that existing algorithms for the linear case can be 
reliably applied to partially non-linear or cyclic models 
(described in section 4), and it could be used in the 
development of new algorithms for causal inference 
among models in which measured indicators have 
multiple latent parents but have non-linear or cyclic 
relations among the latent parents. 

In section 2, I describe multiple indicator models and the 
Trek Separation Theorem in more detail. In section 3, I 
state an extension of the trek separation theorem that 
applies to graphs that may have cyclic and non-linear 
relationships among some variables. In section 4, I 
discuss the issue of the extent to which it is to be expected 
that rank constraints on the covariance matrix might hold, 
or approximately hold, in the population even if they are 
not entailed by the model to hold for all values of the free 
parameters of the model. In section 5, I describe open 
research questions.  The Appendix contains the proofs. 

2 STRUCTURAL EQUATION MODELS 
In what follows, random variables are in italics, and sets 
of random variables are in boldface.. 

In a structural equation model (SEM) the random 
variables are divided into two disjoint sets, the substantive 
variables (typically the variables of interest) and the error 
variables (summarizing all other variables that have a 
causal influence on the substantive variables) (Bollen, 
1989). Corresponding to each substantive random 
variable V is a unique error term εV. A fixed parameter 
SEM S has two parts <φ , θ>, where φ  is a set of equations 
in which each substantive random variable V is written as 
a function of other substantive random variables and a 
unique error variable, together with θ , the joint 
distributions over the error variables. An example of a 
linear SEM is the case where φ  contains the pair of linear 
equations X =  3L + εX, and L = εL, and θ  is a standardized 
Gaussian distribution over εX and εL and εX and εL are 
independent. Together φ  and θ  determine a joint 
distribution over the substantive variables in S, which will 
be referred to as the distribution entailed by S. 

A free parameter linear SEM model replaces some of the 
real numbers in the equations in φ with real-valued 
variables and a set of possible values for those variables, 
e.g. X = aX,L L + εX, where aX,L can take on any real value. 
In addition, a free parameter SEM can replace the 
particular distribution over εX and εL with a parametric 
family of distributions, e.g. the bi-variate Gaussian 
distributions with zero covariance. The free parameter 
SEM also has two parts <Φ , Θ>, where Φ  contains the 
set of equations with free parameters and the set of values 
the free parameters are allowed to take, and Θ  is a family 
of distributions over the error variables.  

In general, I will assume that there is a finite set of free 
parameters, and all allowed values of the free parameters 
lead to fixed parameter SEMs that have a reduced form 



 

(i.e. each substantive variable X can be expressed as a 
function of the error variables of X and the error variables 
of its ancestors), all variances and partial variances among 
the substantive variables are finite and positive, and there 
are no deterministic relations among the measured 
variables. 

The path diagram of a SEM with jointly independent 
errors is a directed graph, written with the conventions 
that it contains an edge B → A if and only if B is a non-
trivial argument of the equation for A. The error variables 
are not included in the path diagram. A fixed-parameter 
acyclic structural equation model (without double-headed 
arrows) is an instance of a Bayesian Network <G, P(V)>, 
where the path diagram is G, and P(V) is the joint 
distribution over the variables in G entailed by the set of 
equations and the joint distribution over the error 
variables (Pearl, 2000; Spirtes et al. 2001). It has been 
shown that when a directed cyclic graph is used to 
represent non-linear structural equations, then d-
separation between A and B conditional on C does not 
entail the corresponding conditional independence. Even 
in non-linear cyclic structural equation models, if A and B 
are d-separated conditional on the empty set, then A and 
B are entailed to be independent (Spirtes, 1995), and that 
is the only feature of cyclic graphs that the proofs below 
depend upon. 

A polynomial equation Q on the entries of a covariance 
(or correlation) matrix C holds when C is a solution to Q. 
A polynomial Q is entailed by a free parameter SEM 
when all values of the free parameters entail covariance 
matrices that are solutions to Q. 

For example, a vanishing tetrad difference among {X,W} 
and {Y,Z}, which holds if ρ(X,Y)ρ(Z,W) – ρ(X,Z)ρ(Y,W) 
= 0, is entailed by a free parameter SEM S in which X, Y, 
Z, and W are all children of just one latent variable L since 
any value of the free parameters in S entails a covariance 
matrix that is a solution to ρ(X,Y)ρ(Z,W) – ρ(X,Z)ρ(Y,W) 
= 0. 

The following definitions are illustrated in Figure 1. A 
trek in G from I to J is an ordered pair of directed paths 
(P1; P2) where P1 has sink I, P2 has sink J, and both P1 
and P2 have the same source k (e.g. (<L1,X1>;<L1,X2>). 
The common source k is called the top of the trek, 
denoted top(P1; P2) (e.g. top(<L1,X1>;<L1,X2>) is L1). 
Note that one or both of P1 and P2 may consist of a single 
vertex, i.e., a path with no edges. A trek (P1; P2) is simple 
if the only common vertex between P1 and P2 is the 
common source top(P1; P2). Let A, B, be two disjoint 
subsets of vertices V in G. Let T(A,B) and S(A,B) denote 
the sets of all treks and all simple treks from a member of 
A to a member of B, respectively. For example, if A = 
{X1} and B = {X2}, S(A,B) = {(<L1,X1>;<L1,X2>); 
(<L2,X1>;<L2,X2>)}. 

For two sets of variables A and B, and a covariance or 
correlation matrix over a set of variables V containing A 
and B, let cov(A, B) be the sub-matrix of Σ  that contains 

the rows in A and columns in B. For example, if A = {X1, 
X2, X3}, and B = {X4, X5, X10}, then  

                    X4               X5                 X10

cov(A,B) =
X1

X2

X3

ρ(X1,X4 ) ρ(X1,X5 ) ρ(X1,X10 )
ρ(X2,X4 ) ρ(X2,X5 ) ρ(X2,X10 )
ρ(X3,X4 ) ρ(X3,X5 ) ρ(X3,X10 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
Figure 1: A Multiple Indicator Model 

In the case where A and B both have size 3, if the rank of 
the matrix is less than or equal to 2, the determinant of 
cov(A,B) = 0. In that case the matrix is said to satisfy a 
sextad constraint. An example of a sextad constraint is 

Det
ρ(X1,X4 ) ρ(X1,X5 ) ρ(X1,X10 )
ρ(X2,X4 ) ρ(X2,X5 ) ρ(X2,X10 )
ρ(X3,X4 ) ρ(X3,X5 ) ρ(X3,X10 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0

 

Let A, B, CA, and CB be four subsets of the set V of 
vertices in G, which need not be disjoint. The pair 
(CA;CB) trek separates (or t-separates) A from B if for 
every trek (P1; P2) from a vertex in A to a vertex in B, 
either P1 contains a vertex in CA or P2 contains a vertex in 
CB; CA and CB are choke sets for A and B. For example, 
({L1}; {L2}), ({L1, L2}; ∅), and (∅; {L1,L2}) all t-separate 
A from B in this example. 

Theorem 1 (Trek Separation Theorem): For all 
directed acyclic graphs (path diagrams) G, the sub-matrix 
cov(A,B) has rank less than or equal to r for all 
covariance matrices of  linear SEMs with path diagram G, 
if and only if there exist subsets CA, CB ⊂ V(G) with #CA 
+ #CB ≤ r such that (CA; CB) t-separates A from B (where 
#CA is the number of variables in CA, and V(G) is the set 
of vertices in G). (Sullivant et al., 2010) 

Since the rank of cov(A, B) is less than or equal to r, if 
CA ∩ CB = ∅, #A = #B = 3, #CA + #CB = 2, and (CA; CB) 
t-separates A from B, then G entails a sextad constraint 
among the variables in A and B. For example, in Figure 1, 
({L1, L2};{ }) trek separates {X1, X2, X3} from {X4, X5, 
X10}, and hence  

rank
ρ(X1,X4 ) ρ(X1,X5 ) ρ(X1,X10 )
ρ(X2,X4 ) ρ(X2,X5 ) ρ(X2,X10 )
ρ(X3,X4 ) ρ(X3,X5 ) ρ(X3,X10 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
≤ #CA + #CB = 2

 



 

which in turn entails that the determinant of the matrix is 
zero for all values of the free parameters in a linear SEM.  

3 AN EXTENSION OF THE TREK 
SEPARATION THEOREM 

The Trek Separation Theorem can be extended by 
weakening the assumptions that the graph be linear 
everywhere and acyclic everywhere. The exact definition 
of linear acyclicity (or LA for short) below a choke set is 
somewhat complex (and is given below), but roughly a 
directed graphical model is LA below sets (CA; CB) for A 
and B respectively, if there are no directed cycles between 
CA and A or CB and B, and for every vertex V on any 
directed path P from CA to A, V is a linear function of its 
parents along P plus an arbitrary function of the parents 
not along P (including the error variables); and similarly 
for CB and B. For example in Figure 1, let the sets CA and 
CB for A = {X1, X2, X3}, and B = {X4, X5, X10} be CA = 
{L1, L2} and CB = ∅. Linear acyclicity below the sets CA, 
CB, for A, B requires that for i = 1…3, Xi = ai,1 L1 + ai,2 L2 
+ fi(εi), where εi is the error term for Xi, and fi is an 
arbitrary measurable function. (Since CB = ∅, linear 
acyclicity below the set CB is trivially true). Note that 
there can be non-linear and/or cyclic relationships 
between any of the latent variables.   

More formally, let D(CA,A,G) be the set of vertices on 
directed paths in G from CA to A except for the members 
of CA (but including members of A\CA). If S is a fixed-
parameter SEM <φ,θ> with path diagram G, S is LA 
below the sets CA, CB for A, B iff for each member of W 
= D(CA,A,G) ∪ D(CB,B,G), 

(i) Vext = V ∪ {εX: X ∈W};  

(ii) no member of W lies on a cycle; 

(iii) Gext is a directed graph over Vext with sub-graph G, 
together with an edge from εX to X for each X ∈W, 

(iv) for each X ∈ D(CA,A,Gext),  

X = aX ,V
V∈Parents(X ,Gext )∩(D(CA ,A,Gext )∪CA )

∑ V +

fX (Parents(X,Gext ) \ (D(CA ,Α,Gext )∪CA )) (1)
  

and for each X ∈ D(CB,B,Gext),  

X = aX ,V
V∈Parents(X ,Gext )∩(D(CB ,B,Gext )∪CB )

∑ V +

gX (Parents(X,Gext ) \ (D(CB,B,Gext )∪CB ))  (2)
 

Note that D(CA,A,G) = D(CA,A,Gext) for any A and CA 
that do not contain an error variable. 

Theorem 2 (Extended Trek Separation Theorem): 
Suppose G is a directed graph containing CA, A, CB, and 
B, and (CA;CB) t-separates A and B in G. Then for all 
covariance matrices entailed by a fixed parameter 
structural equation model S with path diagram G that is 
LA below the sets CA and CB for A and B, 

rank(cov(A,B)) ≤ #CA + #CB. 

The converse of Theorem 2 is basically guaranteed by the 
“only-if” clause of Theorem 1. 

Theorem 3: For all directed graphs G, if there does not 
exist a pair of sets C’A, C’B, such that (C’A; C’B) t-
separates A and B and #C’A + #C’B ≤ r, then for any CA, 
CB there is a fixed parameter structural equation model S 
with path diagram G that is LA below the sets (CA; CB) 
for A and B that entails rank(cov(A,B)) > r. 

In order to use the Extended Trek Separation theorems, it 
is necessary to have statistical tests of when rank 
constraints hold, or equivalently, when the corresponding 
determinants are zero. Drton & Olkin (2008) describe a 
statistical test of the rank constraints, that assumes a 
Normal distribution; however, in practice even when the 
distributions is non-Normal, the test often performs well. 
The Wishart test for vanishing tetrad constraints is a 
special case of this test (and was used in all of the 
simulations performed.)  

There is also a much slower, but asymptotically 
distribution-free statistical test of rank constraints based 
on the test developed by Bollen and Ting (Bollen & Ting, 
1993). 

4 FAITHFULNESS 
Let a distribution P be linearly rank-faithful to a directed 
acyclic graph G if every rank-constraint on a sub-
covariance matrix that holds in P is entailed by every 
free-parameter linear structural equation model with path 
diagram equal to G.  

If a distribution is linearly rank-faithful to its causal 
graph, then it is possible to use the rank-constraints 
among the observed variables to draw conclusions about 
the t-separation structure of the causal graph by using the 
Trek Separation Theorem to identify latent choke sets. 
For example, given a quartet of variables V = {X1, X2, X3, 
X4}, if for every partition of V into two sets of equal size 
(e.g. A = {X1, X2}, B = {X3, X4}) the rank of cov(A,B) is 
1, this indicates that there are sets CA with one member 
and CB = ∅ such that (CA;CB) t-separates(A;B). By 
combining this with other rank constraints and partial 
correlation constraints, it is possible to conclude, e.g. that 
X1, X2, X3 and X4 have a single latent common cause 
(Silva et al. 2006)  

In practice, there is no oracle that states whether a given 
rank constraint holds in a population, so statistical tests of 
rank constraints are substituted for an oracle. But is the 
assumption of linear rank-faithfulness reasonable? One 
justification for the assumption of rank-faithfulness is that 
the Trek Separation Theorem entails that if there is no 
pair of sets CA and CB such that # CA + # CA ≤ r, and A 
and B are t-separated by (CA;CB) then the rank of 
cov(A,B) is not linearly entailed to be ≤ r for all values of 
the free parameters of a free parameter structural equation 



 

model with path diagram G. Moreover, since cov(A,B) is 
a linear function of the covariance matrix among the 
latents and the covariance matrix of the error terms, and 
the rank is not linearly entailed to be of rank r or less, it 
follows that the set of values of free parameters for which 
rank(cov(A,B)) ≤ r is of Lebesgue measure 0. This fact 
can be used to demonstrate the pointwise consistency of 
algorithms that rely on statistical tests of rank-constraints 
(Silva et al. 2006) under the assumption of linear rank-
faithfulness. 

This does not settle the practicality of such algorithms on 
reasonable sample sizes. Since statistical tests of the rank 
constraints are used to determine whether or not a rank-
constraint holds in a population, if the relevant 
determinants that determine rank are very close to, but not 
exactly equal to zero, any algorithm relying on statistical 
tests of rank could be incorrect with high probability 
unless the sample sizes were unrealistically large. This 
can occur for example, when some of the correlations 
between observed indicators are either very close to zero 
or very close to 1. Nevertheless, simulation tests and real 
applications are positive evidence that BuildPureClusters 
works at reasonable sample sizes. For a further discussion 
of faithfulness assumptions see Spirtes et al. (2001), 
Robins et al. (2003), Kalisch & Buhlmann (2007), and 
Uhler et al. (2012). 

The concept of linear rank faithfulness can be extended in 
the following way. If Φ  is a set of functions that contains 
the linear functions as a special case, a distribution P is 
<Φ , Θ>-LA below the sets CA, CB for A, B rank faithful 
to a directed graph G if every rank constraint that holds in 
P is entailed to hold by every free parameter SEM <Φ , 
Θ> with path diagram G that is LA below the sets CA, CB 
for A, B.  

Suppose in what follows that a given free parameter 
structural equation model S = <Φ , Θ> is LA below the 
sets (CA; CB) for A, B, and that for each equation X = f(Y) 
in Φ  not required to be linear by definition, a linear 
equation with any value of the coefficients 

                             X = aX ,Y
Y∈Y
∑ Y   

is the result of a substitution of some value for the free 
parameters in S. For example, if X = a1Y + a2Y2, then for 
any value of a1, X = a1Y is the result of setting the free 
parameter a2 to zero. In contrast, if Φ contained only X = 
a2Y2, the correlations between X and Y would be forced to 
be zero for all a2, which in general could lead to rank 
constraints holding for all values of the free parameters 
even without the corresponding t-separation relations 
holding in G. 

If all of the variables in Φ are analytic functions, 
whenever the set of solutions to an analytic function is not 
the entire space of values, the set of solutions has 
Lebesgue measure 0 (Kilmer et al. 1996). So the same 
kind of argument for faithfulness in the LA-below-the-

choke-set case can be made as in the linear case, as long 
as Φ contains all LA functions among the part of the 
graph that is not below the choke sets as a special case. 

This still leaves the question of whether there are 
common “almost” violations of rank faithfulness that 
could only be discovered with enormous sample sizes (i.e. 
the relevant determinants are very close to zero).  

In order to illustrate one use of the extension of the Trek 
Separation Theorem and to do a preliminary test of the 
extent to which the introduction of non-linearity makes 
the problem of almost violations of the assumption of 
rank-faithfulness more common, I performed a simulation 
study of the Silva et al. BuildPureClusters Algorithm, 
using both linear models, and LA-below the choke set 
models.  

The BuildPureClusters Algorithm (Silva et al. 2006) takes 
as input sample data and attempts to find a subset S of the 
measured indicators such no two members of S have a 
directed edge between them, no member of S has more 
than one latent parent, and the measured variables in S are 
partitioned into clusters, where each member of a cluster 
is the child of the same latent parent. (This is useful for 
determining which measured variables are measuring 
which latent variables, and is input to the MIMBuild 
algorithm that searches for the causal structure among the 
latent variables.) BuildPureClusters uses tests of 
vanishing tetrad differences to select and cluster the 
variables (which are equivalent to tests of whether various 
2 × 2 submatrices of the covariance matrix have rank 1.) 
Not all of the rank tests that BuildPureClusters uses in 
general are also entailed for the case where the 
relationships between the latents are non-linear (which is 
not the same as LA below the choke sets), but all of the 
ones that it uses for this particular study are entailed in the 
non-linear case. 

Figure 2 illustrates a model that contains an impure 
measurement model because of the X1 → X6 edge and 
because X10 has two latent parents (indicated by the red 
arrows) while Figure 3 illustrates that if X6 and X10 are 
removed, the resulting model has a pure measurement 
model. Thus correct output for Figure 2 would either be 
{X1, X2, X3, X4, X5} and {X7, X8, X9} or {X2, X3, X4, X5} 
and {X6, X7, X8, X9}. 

The model in the simulation contained 5 latent variables 
(L1 through L5), each with 5 measured children (X1 
through X25), with L2 through L5 children of L1.  It also 
contained edges X1 → X6, X15 → X19, L3 → X10, and L4 → 
X21, which introduced impurities. The input to the 
algorithm in each case was raw data at one of 3 sample 
sizes, 100, 500, and 1000. Each variable is a linear 
function of its parents plus a unique error term, where the 
linear coefficients were chosen uniformly from the range 
0.5 to 2.0, and the error terms were independent standard 
Gaussian. Each latent variable Li (i = 2…5) was equal to 
aL1 + bcL1

3 + εi, where a was chosen uniformly from 0.25 
to 1.0, c was chosen uniformly from 0.5 to 2.0, and the 



 

degree of non-linearity was varied by setting b to each of 
the values 0.0, 0.01, 0.02, 0.03, and 0.05 in turn. The 
degree of non-linearity of the relationship between the 
measured variables was measured by the median p-value 
of the White test of non-linearity between each pair of 
measured variables (which is 0.5 for linear relationships). 

 
Figure 2: Impure Measurement Model 

 
Figure 3: Pure Measurement Submodel 

In order to avoid detectible cases of almost unfaithful 
rank constraints, if the correlation matrix of the observed 
indicators contained correlations close to zero (less than 
0.09) or close to 1 (greater than .9) the data was rejected. 
(In actual practice, instead of rejecting the data a user 
could simply search for a subset of variables that did not 
contain extreme correlations.) The simulation set the p-
value used in the algorithm to 0.01 for every case, and the 
TETRAD IV implementation was used 
(http://www.phil.cmu.edu/projects/tetrad/current.html). 

The correctness of the output of BuildPureClusters was 
measured in three ways:  

1. How many clusters the algorithm found (which 
was a maximum of 5 in each case). 

2. How far a given output cluster was from being a 
pure cluster. I set Purity for a given output cluster 
to Purity = (Size of largest pure subcluster 
contained in output cluster)/(size of output cluster). 
For example, if the output cluster for data 
generated by the a model had 7 variables {X1, X2, 
X3, X4, X5, X6, X9}, and X1 – X6 were all children of 
latent variable L1, and X9 was a child of latent 
variable L2, X9 would have to be removed in order 
to make the output cluster pure (leaving 6 
variables), so Purity for the output cluster would be 
equal to 6/7. 

3. The percentage of the largest pure actual 
subclusters included in the output.  I set Fraction 
size = (Size of the output cluster)/(size of the 
largest actual pure subcluster containing it).  For 
example, if a model has an actual pure subcluster 
of size 8 (e.g. X1 – X8) and if the output contained a 
corresponding subcluster of size 6 (e.g. X1 – X6) 
then Fraction size for the output cluster is 6/8. (If 
the output contained only four subclusters instead 
of the potential five subclusters, I calculated this 
only for the subclusters that were actually output. 

 

100 data sets were generated at each sample size, for both 
the linear and non-linear case. Then the BuildPureClusters 
algorithm was applied to each data set, using the Wishart 
test of vanishing tetrad differences. The Wishart test 
assumes the variables have joint Gaussian distributions, 
which is true in the linear Gaussian case but not the non-
linear case.  

Size Cubic Cluster 
Number 

Average 
Purity 

Average 
Fraction 

Median 
White 

100 0.00 3.89 .909 .782 .500 
100 0.01 4.26 .930 .792 .414 
100 0.02 4.32 .931 .806 .291 
100 0.03 4.26 .935 .809 .285 
100 0.05 4.29 .937 .809 .241 
500 0.00 4.34 .957 .820 .508 
500 0.01 4.41 .953 .813 .349 
500 0.02 4.34 .950 .813 .119 
500 0.03 4.29 .954 .813 .088 
500 0.05 4.48 .957 .829 .0001 
1000 0.00 4.78 .930 .900 .510 
1000 0.01 4.91 .953 .926 .288 
1000 0.02 4.55 .924 .909 .030 
1000 0.03 4.31 .912 .899 .017 
1000 0.05 4.52 .956 .831 4.43e-10 

Table 1: Output of First Simulation Study 

The results of the simulation test are summarized in Table 
1, where each row gives values for 100 runs of a given 
kind. The columns in order give the sample size, the value 
of the b coefficient, the average number of clusters, 
average Purity, average Fraction size, and median p-value 
of a White test of non-linearity applied to each pair of 
measured variables. The maximum correct number of 
clusters is 5, the maximum average Purity is 1, and the 
maximum average Fraction is 1.  

The results of the simulation study (Table 1) indicate that 
at least with respect to vanishing tetrad differences, the 
BuildPureClusters algorithm performs about as well in the 
nonlinear and the linear case using the Wishart test. There 
is no systematic advantage of linear over non-linear or 
vice-versa, and the results are generally close in both 
cases. Hence, in this limited test, the non-linearity that 
was introduced did not make the problem of almost 
unfaithful rank constraints much worse in terms of the 
output. 

A simulation study of the extent to which violation of the 
assumption that the observed variables are linearly related 
to their latent parents affects the performance of the 
BuildPureClusters algorithm was also performed. The 
input to the algorithm in each case was raw data at one of 
2 sample sizes, 100 and 1000. The latent variables were 
simulated in the same was as in the previously described 
simulation. Each measured variable was set equal to (1 – 
d)eLi + dfLi

3 + εi (where Li is the parent of the measured 
variable in the graph), e and f were independently selected 



 

from a uniform distribution between 0.5 and 2.0, and the 
degree of non-linearity of the relationship between the 
measured and the latents was varied by setting d to either 
0.01 or 0.05 in turn. The error terms were independent 
standard Gaussians. The results are shown in Table 2, 
where the second column reports the values both of b (the 
first number, from the equation for the relationships 
between the latents) and d (the second number, from the 
equations relating the measured variables to their latent 
parent.)  

As with the previously described simulation, the result of 
making the relationships between the latents non-linear 
does not have any systematic effect on the performance of 
the BuildPureClusters Algorithm However, as the 
nonlinearity of the relationship between the measured 
variables and their latent parents increases, the output 
becomes much less informative (as evidenced by the large 
decreases in the Number of Clusters, and the Average 
Fraction), but is generally not incorrect (as evidenced by 
the small decreases in the Average Purity).  When the 
assumption of linear relationships between the measured 
and latent variables is violated, the algorithm actually 
performs better at smaller sample sizes, presumably 
because at larger sample sizes even small deviations from 
the assumption lead to rejection of the rank constraints. 

Sample 
Size 

Cubic Number 
of 

Clusters 

Average 
Purity 

Average 
Fraction 

Median 
White 

100 0:.01 3.42 .909 .755 .302 
100 0:.05 2.65 .874 .668 .205 
100 .05:.01 2.65 .903 .754 .346 
100 .05:.05 3.23 .902 .679 .212 
1000 0:.01 2.21 .942 .713 .019 
1000 0:.05 0.72 .868 .344 6.1e-4 

1000 .05:.01 3.22 .942 .749 .106 
1000 .05:.05 1.20 .895 .305 6.9e-4 

Table 2: Output of Second Simulation Study 

5 OPEN QUESTIONS 
In this paper I have proved that the necessary and 
sufficient conditions for a class of rank constraints on 
submatrices of a covariance matrix to be implied by a 
linear model can be extended to models that contains 
some non-linear and/or cyclic relationships. This shows 
that existing algorithms that use these rank constraints to 
search for causal models can be reliably applied to a much 
wider class of models, as long a rank-faithfulness 
condition holds. I also argued that the same kind of 
considerations that argue for rank-faithfulness in linear 
models can be extended to some kinds of non-linear 
structure equation models. 

In order to make full use of this theorem, it would be very 
helpful to have a computationally feasible test of when 
two models are equivalent with respect to rank constraints 

of a given kind assuming they are both LA below their 
choke sets. Nor is it known how to graphically represent 
the features that each member of such an equivalence 
class has in common. In addition, the question of the 
extent to which almost violations of faithfulness are made 
worse by different classes of non-linear functional 
relationships among variables also needs to be more fully 
investigated. 

6 APPENDIX 
The proof of Theorem 2 requires the following two 
lemmas. 

Lemma 1: Suppose that CA ≠ ∅, A = ΛACA + f (Ε A ) , and 

cov(f (Ε A ),B) = 0 , where ΛA is a #A by #CA matrix of 
real numbers. Then rank(cov(A,B)) ≤ #CA.  
Proof.  

cov(A,B) = cov(ΛACA + f(ΕA),B) = cov(ΛACA,B) + 
cov(f(ΕA),B) = ΛAcov(CA,B). Hence rank(cov(A,B) = 
rank(ΛAcov(CA,B)). It follows that 

rank(cov(CA ,B)) ≤min(#CA , #B) ≤ #CA
rank(ΛA ) ≤min(#CA , #A) ≤ #CA
rank(ΛA cov(CA ,B)) ≤
min(rank(ΛA ),rank(cov(CA ,B))) ≤
min(#CA , #CA ) ≤ #CA

 

Q.E.D.

 
Next consider the case where A is a linear function of CA 
plus a function of a set of variables ΕA, B is a linear 
function of CB plus a function of a set of variables ΕB, 
and all of the variables in ΕA are uncorrelated with all of 
the variables in ΕB.

 
Lemma 2: Suppose that CA ≠ ∅, CB ≠ ∅, #CA  = p, #CB  
= q, #A = r, #B = s, A = ΛACA+ f(ΕA), cov(f(ΕA), g(ΕB) = 
0, B = ΛBCB+ f(ΕB). Then rank(cov(A,B)) ≤ #CA + #CB.  
Proof.  

cov(A,B) = cov(ΛACA + f (Ε A ),Λ BCB + g(Ε B )) =
cov(ΛACA ,Λ BCB + g(Ε B )) + cov(f (Ε A ),Λ BCB ) +
cov(f (Ε A ),g(Ε B )) =
ΛA cov(CA ,Λ BCB + g(Ε B )) + cov(f (Ε A ),CB )Λ B

T

 

rank(cov(CA ,Λ BCB + g(Ε B ))) ≤ min(p, s) ≤ p
rank(ΛA ) ≤ min(r, p) ≤ p

 

rank(ΛA cov(CA ,Λ BCB + g(Ε B ))) ≤
min(rank(ΛA ), rank(cov(CA ,Λ BCB + g(Ε B ))) ≤
min(p, p) ≤ p
rank(cov(f (Ε A ),CB )) ≤ min(r,q) ≤ q
rank(Λ B ) ≤ min(q, s) ≤ q
rank(cov( f (Ε A ),CB ))Λ B

T ) ≤ min(q,q) ≤ q

. 

 

It follows that the sum of two matrices of the same 



 

number of rows and columns is at most #CA+#CB. Q.E.D.  
Theorem 2: Suppose G is a directed graph containing CA, 
A, CB, and B, and (CA; CB) t-separates A and B in G. 
Then for all covariance matrices entailed by a fixed 
parameter structural equation model S with path diagram 
G that is LA below the sets CA and CB for A and B, 
rank(cov(A,B)) ≤ #CA + #CB. 

Proof. In the proof, the graphical relations all refer to Gext, 
so the graphical arguments will be dropped when 
referring to parents and directed paths. I will prove the 
theorem by showing that t-separation of A and B by (CA; 
CB) entails that A can be written as a linear function of CA 
plus a function of a set of variables ΕA, that B can be 
written as a linear function of CB plus a function of a set 
of variables ΕB, and that all of the variables in ΕA are 
uncorrelated with all of the variables in ΕB. Then applying 
Lemmas 1 and/or 2 proves the theorem. 

Case 1: If CA  = CB  = ∅, then there are no treks between 
A and B. Hence A and B are jointly independent. It 
follows that cov(A,B) = 0, which is of rank 0 = #CA+#CB  
Case 2: CA  ≠ ∅. I will show that for each Ai ∈A,  

Ai = ai,V
V∈CA
∑ V + fi (Ε i )

 

where each member of Ei is not in D(CA ,A) ∪ CA  and is 
an ancestor of Ai via some (possibly single-vertex) path 
that does not intersect CA. 

Case 2a: Ai ∈CA . Set Ai = 1 × Ai, Ei = ∅ , and fi(Ei) = 0. 
Since Ai is in CA, Ai is a linear function of CA, and 
trivially each member of Ei is not in D(CA ,A) ∪ CA  and 
is an ancestor of Ai via some (possibly single-vertex) path 
that does not intersect CA . 
Case 2b: Ai ∉CA . 
Case 2b(i): D(CA, Ai) = ∅. Set Ei = {Ai}, fi(Ei)  = Ai.  By 
assumption, each member of Ei is not in D(CA ,A) ∪ CA  
and is an ancestor of Ai via some (possibly single-vertex) 
path that does not intersect CA . 
Case 2bii: D(CA, Ai) ≠ ∅. The longest directed path from 
CA to Ai is of finite length. Let R = {V ∈ Parents(Ai) ∩ 
(D(CA) ∪ CA)}. By the assumption of LA below the 
choke sets CA, CB, for A, B, 

Ai = ai ,V
R

∑ V + fi (Parents(Ai ) \ (D(CA ,A)∪CA ))  

The algorithms in this section of the proof are illustrated 
in Figure 4 and Figure 5 (where only the relevant error 
variables are shown in the graph). For each vertex in R, 
substitute the r.h.s of equation 1 in for V. Continue 
substitutions until no more substitutions based on 
equation 1 can be made. The proof is by induction on the 
number of substitutions. 

Let Vi = Parents(Ai) ∩ D(CA, A) ∪ CA), fi
1 = fi and

Ε i

1 = Parents(Ai ) \ (D(CA ,A)∪CA ) at stage 1 of equation 1. 

Every member of Ε i

1 is not in D(CA, A) ∪ CA  by 

definition. An edge from any member of Ε i

1 to Ai 
constitutes a path to Ai that does not intersect CA.  

Suppose for an induction hypothesis that after n 
substitutions,  

Ai = a
i ,V

n

V∈Vn

∑ V + fi
n (Ε i

n ) + a
i ,X

n X  

whereVn ⊆ D(CA ,Α)∪CA , X ∈D(CA ,A)∩Vn , there is 
no member of  Vn whose longest path to Ai is shorter than 
the longest path from X to Ai, and each member of Ε i

n is 
not a member of D(CA ,A) ∪ CA  but is an ancestor of Ai 
via a directed path that does not intersect CA. The 
superscripts represent which substitution the superscripted 
term first appeared in. If no such X exists (because Ai is 
expressed as a function of members of CA and variables 
that are not on paths from CA to A), the algorithm is done. 

 

Figure 4: Illustration of base stage of substitutions 

Otherwise, Let R = Parents(X) ∩ D(CA, A) ∪ CA. 
Substitute the r.h.s. of  

X = aX ,V
V∈R

∑ V + fX (Parents(X ) \ (D(CA ,A)∪CA )  

in for X in the equation. After the substitution,   

Ai = ai ,V
n

V∈Vn

∑ V + fi
n (Ε i

n ) +

a
i ,X

n aX ,V
V∈Vn

∑ V + fx (Parents(X ) \ (D(CA ,A)∪CA ))
⎛
⎝⎜

⎞
⎠⎟

 

= a
i ,V

n

V∈Vn

∑ V + a
i ,X

n aX ,V
V∈R

∑ V⎛
⎝⎜

⎞
⎠⎟ +

fi
n (Ε i

n ) + a
i ,X

n f (Parents(X ) \ (D(CA ,A)∪CA )) =

 

 X2 = 3 X1 + f2(ε2,X6)    X4 = 0.6 L1 + f4(ε4) 
X1 = 2 L1 + f1(ε1)         X5 = 0.9 L1 + f5(ε5) 
X3 = 0.8 L1 + f3(ε3) 
A = {X2, X3}  B = {X4, X5} CA = {L1} CB = ∅ 
D(CA, A) = {X1, X2, X3} D(CB, B) = ∅ 



 

a
i ,V

n+1

V∈Vn+1

∑ V + fi
n+1 (Ε i

n+1 )

Vn+1 = (Vn ∪ (Parents(X )∩ (D(CA ,A)∪CA ))) \ X
, 

Ε i

n+1 = Ε i

n ∪ (Parents(X ) \ (D(CA ,A)∪CA )),  
a

i ,V

n+1 = a
i ,X

n aX ,V  for parents of X  
fi
n+1 (E i

n+1 ) = fi
n (E i

n ) +

ai,X fX
n (Parents(X ) \ (D(CA,A)∪CA ))

 

Figure 5 contains an illustration of the substitutions for 
the example shown in Figure 4.  
Each member of Ε i

n+1 ∩ Ε i

n  is not on a directed path from 
CA to A but is an ancestor of Ai via a path that does not 
intersect CA by the induction assumption. Ε A '

n+1 \ Ε A '

n ⊆

Parents(X ) \ (D(CA ,A)∪CA )  and hence not a member 

of D(CA ,A)∪CA . Because X is expanded by substitution 
only if it is not in CA, and occurs on the r.h.s only by 
substituting in for variables not in CA, X is an ancestor of 
Ai via a directed path that does not intersect CA; hence 
each member of Parents(X ) \ (D(CA ,A)∪CA )  is an 
ancestor of Ai via a directed path that doesn’t intersect CA. 

 

Figure 5: Illustration of substitutions 

After a finite number of substitutions, all of the members 
of Vn are members of CA, and no more substitutions are 
done. At that stage, by induction,  

Ai = ai ,V
V∈CA

∑ V + f (Ε i )  

where Ε i ∩ (D(CA ,A)∪CA ) = ∅ , but each member of Εi 
is an ancestor of Ai via some path that does not intersect 
CA .  

Case 2b(ii): D(CA, Ai) ≠ ∅.	   This	   case	   now divides into 
two subcases, CB  = ∅ or CB  ≠ ∅. First consider the case 
where CB  = ∅. Let ΕA be the union of all of the Εi.	  For 
each X ∈ Ε i, if there is a trek T between X and B, then it 
intersects CA on the X side, since otherwise (CA; ∅) does 
not t-separate A and B. It follows then that there is a 
directed path from CA to X, and X is on a directed path 

from CA to A, contrary to what was proved about each 
member of EA. Hence there is no trek between X and B. It 
follows that EA is independent of B, and hence f(EA) is 
independent of B, and cov(f(EA),B) = 0. Then by Lemma 
1, rank(cov(A,B)) ≤ #CA .	  
Now suppose CB  ≠ ∅. Similarly to the case for A, for 
each Bi in B, 

Bi = bi ,V
V∈CB

∑ V + gi (Ε i )  

where each member of Ei is not in D(CB ,B)∪CB , but is 
an ancestor of Bi via some path that does not intersect CB. 

I will now show that for any two members X and Y of EA 
and EB respectively, cov(X,Y) = 0. By the construction of 
EA and EB, there is a directed paths P1 from X to some Ai 
that does not intersect CA, and a directed path P2 from Y 
to some Bj that does not intersect CB . If X = Y, then there 
is a trek between A and B that does not intersect CA on 
the A side or CB on the B side, contrary to the assumption 
that (CA;CB) t-separates A and B. Similarly, if X ≠ Y, but 
there is a trek T between X and Y, it either intersects CA  
on the X side or CB  on the Y side, since otherwise 
(CA;CB) does not t-separate A and B. But if T intersects 
CA on the X side or CB on the Y side, then there is a 
directed path from CA to X or CB to Y, in which case X is 
on a directed path from CA to A, or Y is on a directed path 
from CB to B, contrary to what was shown about EA and 
EB. Hence there is no trek between X and Y and X ≠ Y. It 
follows that EA is independent of EB, and for any 
functions f and g, f(EA) is independent of g(EB). Hence 
cov(f(EA), g(EB)) = 0. By Lemma 2, rank(cov(A,B)) ≤ 
#CA + #CB. Q.E.D. 

Theorem 3: For all directed graphs G, if there does not 
exist a pair of sets C’A, C’B, such that (C’A; C’B) t-
separates A and B and #C’A + #C’B ≤ r, then for any CA, 
CB there is a fixed parameter structural equation model S 
with path diagram G that is LA below the sets (CA; CB) 
for A and B that entails rank(cov(A,B)) > r. 

Proof. G can always be made acyclic by setting the 
coefficients of edges occurring in cycles to zero. By the 
Trek Separation Theorem, there is a fixed parameter 
linear structural equation model S’ with path diagram G in 
which rank(cov(A,B)) > r. By definition, S’ is LA below 
the sets CA, CB for any CA, CB. Q.E.D. 
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X2 = 3 X1 + f2(ε2,X6)   V1 = {X1} 
 

Substitute r.h.s of equation for X1 in for X1, in 
equation for X2 
X2 = 3 X1 + f2(ε2,X6) = 3 (2 L1 + f1(ε1)) + f2(ε2,X6) =  
6 L1 + 3 f1(ε1)) + f2(ε2,X6) 
V2 = {L1} 
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