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Abstract

Most causal discovery algorithms in the lit-
erature exploit an assumption usually re-
ferred to as the Causal Faithfulness or Sta-
bility Condition. In this paper, we high-
light two components of the condition used
in constraint-based algorithms, which we call
“Adjacency-Faithfulness” and “Orientation-
Faithfulness.” We point out that assum-
ing Adjacency-Faithfulness is true, it is pos-
sible to test the validity of Orientation-
Faithfulness. Motivated by this observa-
tion, we explore the consequence of making
only the Adjacency-Faithfulness assumption.
We show that the familiar PC algorithm
has to be modified to be correct under the
weaker, Adjacency-Faithfulness assumption.
The modified algorithm, called Conserva-
tive PC (CPC), checks whether Orientation-
Faithfulness holds in the orientation phase,
and if not, avoids drawing certain causal con-
clusions the PC algorithm would draw. How-
ever, if the stronger, standard causal Faith-
fulness condition actually obtains, the CPC
algorithm outputs the same pattern as the
PC algorithm does in the large sample limit.

We also present a simulation study show-
ing that the CPC algorithm runs almost as
fast as the PC algorithm, and outputs signifi-
cantly fewer false causal arrowheads than the
PC algorithm does on realistic sample sizes.

1 MOTIVATION: FAITHFULNESS

DECOMPOSED

Directed acyclic graphs (DAGs) can be interpreted
both probabilistically and causally. Under the causal
interpretation, a DAG G represents a causal structure
such that A is a direct cause of B just in case there

is a directed edge from A to B in G. Under the prob-
abilistic interpretation, a DAG G, also referred to as
a Bayesian network, represents a probability distribu-
tion P that satisfies the Markov Property: each vari-
able in G is independent of its non-descendants condi-
tional on its parents. The Causal Markov Condition
is a bridge principle linking the causal interpretation
of a DAG to the probabilistic interpretation.1

Causal Markov Condition: Given a set of variables
whose causal structure can be represented by a DAG
G, every variable is probabilistically independent of its
non-effects (non-descendants in G) conditional on its
direct causes (parents in G).

The assumption that the causal structure can be rep-
resented by a DAG entails that there is no causal feed-
back, and that no common cause of any pair of vari-
ables in the DAG is left out. All DAG-based causal
discovery algorithms assume the causal Markov condi-
tion, and most of them (e.g., those discussed in Pearl
2000, Spirtes et al. 2000, Heckerman et al. 1999)
also assume, if only implicitly, the converse principle,
known as the Causal Faithfulness or Stability Condi-
tion:

Causal Faithfulness Condition: Given a set of vari-
ables whose causal structure can be represented by a
DAG, no conditional independence holds unless en-
tailed by the Causal Markov Condition.

Conditional independence relations entailed by the
Markov condition are captured exactly by a graph-
ical criterion called d-separation (Neapolitan 2004),
defined as follows. Given a path p in a DAG, a non-
endpoint vertex V on p is called a collider if the two
edges incident to V on p are both into V (→ V ←),
otherwise V is called a non-collider on p.

Definition 1 (d-separation). In a DAG, a path p
between vertices A and B is active (d-connecting)
relative to a set of vertices C (A, B /∈ C) if

1For a more formal presentation of the notions men-
tioned in this section, see Spirtes et al. (2000).



i. every non-collider on p is not a member of C;

ii. every collider on p is an ancestor of some member
of C.

Two sets of variables A and B are said to be d-
separated by C if there is no active path between any
member of A and any member of B relative to C.

A well-known important result is that for any three
disjoint sets of variables A, B and C in a DAG G,
A and B are entailed (by the Markov condition) to
be independent conditional on C if and only if they
are d-separated by C in G. So the causal Faithfulness
condition can be rephrased as saying that for every
three disjoint sets of variables A,B and C, if A and
B are not d-separated by C in the causal DAG, then
A and B are not independent conditional on C.

Two simple facts about d-separation are particularly
relevant to our purpose (see e.g. Neapolitan 2004, pp.
89 for proofs):

Proposition 1. Two variables are adjacent in a DAG
if and only if they are not d-separated by any subset of
other variables in the DAG.

Call a triple of variables 〈X, Y, Z〉 in a DAG an un-
shielded triple if X and Z are both adjacent to Y but
are not adjacent to each other.

Proposition 2. In a DAG, any unshielded triple
〈X, Y, Z〉 is a collider if and only if all sets that d-
separate X from Z do not contain Y ; it is a non-
collider if and only if all sets that d-separate X from
Z contain Y .

Below we focus on two implications of the Causal
Faithfulness Condition, easily derivable given Propo-
sitions 1 and 2. We call them Adjacency-Faithfulness
and Orientation-Faithfulness, respectively.

Implication 1 (Adjacency-Faithfulness). Given a
set of variables V whose causal structure can be repre-
sented by a DAG G, if two variables X, Y are adjacent
in G, then they are dependent conditional on any sub-
set of V\{X, Y }.

We call this condition Adjacency-Faithfulness for the
obvious reason that this is the part of the Faithfulness
condition that is used to justify the step of recover-
ing adjacencies in constraint-based algorithms. Gener-
ically, this step proceeds by searching for a condition-
ing set that renders two variables independent, and by
the causal Markov and Adjacency-Faithfulness condi-
tions, the two variables are not adjacent if and only if
such a conditioning set is found.

Implication 2 (Orientation-Faithfulness). Given
a set of variables V whose causal structure can be rep-

resented by a DAG G, let 〈X, Y, Z〉 be any unshielded
triple in G.

(O1) if X → Y ← Z, then X and Z are dependent
given any subset of V\{X, Z} that contains Y ;

(O2) otherwise, X and Z are dependent conditional on
any subset of V\{X, Z} that does not contain Y .

Orientation-Faithfulness obviously serves to justify the
step of identifying unshielded colliders (and unshielded
non-colliders). For any unshielded triple 〈X, Y, Z〉 re-
sulting from the adjacency step, a conditioning set
that renders X and Z independent must have been
found. The Orientation-Faithfulness condition then
implies that the triple is an unshielded collider if
and only if the conditioning set does not contain
Y . This is in fact what the familiar PC algorithm
checks. The rest of our paper is motivated by the fol-
lowing simple observation: assuming the Adjacency-
Faithfulness condition is true, we can in principle test
whether Orientation-Faithfulness fails of a particular
unshielded triple. Suppose we have a perfect oracle of
conditional independence relations, which is in princi-
ple available for many parametric families in the large
sample limit by performing statistical tests. Since the
Adjacency-Faithfulness is by assumption true, out of
the oracle one can construct correct adjacencies and
non-adjacencies, and thus correct unshielded triples in
the causal graph. For such an unshielded triple, say,
〈X, Y, Z〉, if there is a subset of V\{X, Z} containing
Y that renders X and Z independent and a subset
not containing Y that renders X and Z independent,
then Orientation-Faithfulness fails on this triple. This
failing condition can of course be verified by the oracle.

Note that this simple test of Orientation-Faithfulness
does not rely on knowing what the true causal DAG
is. The reason why this test works is that a distri-
bution that satisfies the Adjacency-Faithfulness with
respect to the true causal DAG but fails the above test
is not Orientation-Faithful to any DAG, and hence not
Orientation-Faithful to the true causal DAG.

This suggests that theoretically we can relax the stan-
dard causal Faithfulness assumption and still have
provably correct and informative causal discovery pro-
cedures. In fact, one main result we will establish in
this paper is that the PC algorithm, though incorrect
under the weaker, Adjacency-Faithfulness condition,
can be revised in such a way that the modified ver-
sion – that we call CPC (conservative PC) – is correct
given the Adjacency-Faithfulness condition, and is as
informative as the standard PC algorithm if the Causal
Faithfulness Condition actually obtains.

In addition to the theoretical demonstration, we will
present a simulation study comparing the CPC algo-



rithm and the PC algorithm. The results show that
the CPC algorithm runs almost as fast as the PC al-
gorithm, which is known for its computational fea-
sibility. More importantly, even when the standard
Causal Faithfulness Condition holds, the CPC algo-
rithm turns out to be more accurate on realistic sample
sizes than the PC algorithm in that it outputs signif-
icantly fewer false causal arrowheads and (almost) as
many true causal arrowheads.

2 HOW PC ALGORITHM ERRS

Before we present our modification of the PC al-
gorithm, it is helpful to explain how the PC algo-
rithm can make mistakes under the causal Markov and
Adjacency-Faithfulness conditions. The relevant de-
tails of the PC algorithm are reproduced below, where
we use ADJ(G, X) to denote the set of nodes adjacent
to X in a graph G:

PC Algorithm

S1 Form the complete undirected graph U on the set
of variables V;

S2 n = 0
repeat

For each pair of variables X and Y that
are adjacent in (the current) U such that
ADJ(U, X)\{Y } or ADJ(U, Y )\{X} has at
least n elements, check through the sub-
sets of ADJ(U, X)\{Y } and the subsets of
ADJ(U, Y )\{X} that have exactly n vari-
ables. If a subset S is found conditional on
which X and Y are independent, remove the
edge between X and Y in U , and record S as
Sepset(X, Y );

n = n + 1;

until for each ordered pair of adjacent variables X
and Y , ADJ(U, X)\{Y } has less than n elements.

S3 Let P be the graph resulting from step S2. For
each unshielded triple 〈A, B, C〉 in P , orient it as
A→ B ← C iff B is not in Sepset(A, C).

S4 Execute the orientation rules given in Meek 1995.2

If the input to the PC algorithm is a sample from a
population distribution that is faithful to some DAG,
then in the large sample limit, the output of the PC
algorithm can be interpreted as a set of DAGs, all of

2Details of the Meek orientation rules do not matter for
the purposes of this paper. The rules are also described in
Neapolitan 2004, pp. 542.

which are d-separation equivalent (that is, they im-
ply exactly the same d-separation relations). The d-
separation equivalence class of DAGs output by the
PC algorithm (and the score-based GES algorithm as
well) is represented by a graphical object called a pat-
tern, or a PDAG (Chickering 2002). A pattern is a
mixture of directed and undirected edges. A DAG is
represented by a pattern if it contains the same adja-
cencies as the pattern, every directed edge A → B in
the pattern is oriented as A → B in the DAG, and if
the DAG contains an unshielded collider, then so does
the pattern. The output of the PC algorithm is correct
given the Causal Markov and Faithfulness Conditions
and a perfect conditional independence oracle (such as
statistical tests in the large sample limit) in the sense
that the true causal DAG is among the DAGs repre-
sented by the output pattern. The output of the PC
algorithm is complete in the sense that if an edge A
→ B occurs in every DAG in the d-separation equiva-
lence class represented by the output pattern, then it
is oriented as A → B in the output pattern. (Meek
1995, Spirtes et al. 2000).

Two specific features of PC are worth noting. First, in
S2, the adjacency step, the PC algorithm essentially
searches for a conditioning set for each pair of variables
that renders them independent, which we henceforth
call a screen-off conditioning set. But it does this with
two additional tricks: (1) it starts with the condition-
ing set of size 0 (i.e., the empty set) and gradually
increases the size of the conditioning set; and (2) it
confines the search of a screen-off conditioning set for
two variables to within the potential parents – i.e., the
currently adjacent nodes – of the two variables, and
thus systematically narrows down the space of possi-
ble screen-off sets as the search goes on. These two
tricks increase both computational and statistical ef-
ficiency in most real cases, and we will keep this step
intact in our modification.

Secondly, in S3 the PC algorithm uses a very simple
rule to identify unshielded colliders or non-colliders.
For any unshielded triple 〈X, Y, Z〉, it simply checks
whether or not Y is contained in the screen-off set
for X and Z found in the adjacency stage. Now
if we assume the causal Markov and Adjacency-
Faithfulness conditions are true, the adjacencies (and
non-adjacencies) resulting from the adjacency stage
are asymptotically correct. However, these two
conditions do not imply the truth of Orientation-
Faithfulness, and when the latter fails, the PC algo-
rithm will err even in the large sample limit.

Consider the simplest example A → B → C where
A⊥⊥C and A⊥⊥C|B. This is the case when, for exam-
ple, causation fails to be transitive, an issue of great
interest to philosophers of causality. In this situation



the causal Markov and Adjacency-Faithfulness condi-
tions are both satisfied, but Orientation-Faithfulness
is not true of the triple 〈A, B, C〉. Now, given the
correct conditional independence oracle, the PC al-
gorithm would remove the edge between A and C in
S2 because A⊥⊥C, and later in S3 orient the triple as
A → B ← C because B is not in the screen-off set
found in S2, i.e., the empty set. Simple as it is, the
example suffices to establish that the PC algorithm is
not asymptotically correct3 under the causal Markov
and Adjacency-Faithfulness assumptions.

3 CONSERVATIVE PC

It is not hard, however, to modify the PC algorithm to
retain correctness under the weaker assumption. In-
deed a predecessor of the PC algorithm, called the
SGS algorithm (Spirtes et al. 2000), is almost correct.
The SGS algorithm decides whether an unshielded
triple 〈X, Y, Z〉 is a collider or a non-collider by lit-
erally checking whether (O1) or (O2) in the statement
of Orientation-Faithfulness is true. Theoretically all
it lacks is a clause that acknowledges the failure of
Orientation-Faithfulness when neither (O1) nor (O2)
passes the check. Practically, however, the SGS al-
gorithm is a terribly inefficient algorithm. Computa-
tionally, it is best case exponential because it has to
check dependence between X and Z conditional on
every subset of V\{X, Z}. Statistically, tests of in-
dependence conditional on large sets of variables have
very low power, and are likely to lead to errors. In ad-
dition,the sheer number of conditional independence
tests makes it exceedingly likely that some of them
will err, and we suspect that almost every unshielded
triple will be marked as unfaithful if we run the SGS
algorithms on more than a few variables.

Fortunately, the main idea of the PC algorithm comes
to the rescue. A correct algorithm does not have
to check every subset of V\{X, Z} in order to test
whether 〈X, Y, Z〉 is a collider, a non-collider, or an
unfaithful triple. It only needs to check subsets of the
variables that are potential parents of X and Z. This
trick, as we shall show shortly, is theoretically valid,
and turns out to work well in simulations.

The CPC algorithm replaces S3 in PC with the follow-
ing S3’, and otherwise remains the same.

S3’ Let P be the graph resulting from step 1. For each
unshielded triple 〈A, B, C〉, check all subsets of
A’s potential parents and of C’s potential parents:

3By ”asymptotically correct” we mean the probability
of the output containing an error converges to zero in the
large sample limit, no matter what the true probability
distribution is.

(a) If B is NOT in any such set conditional on
which A and C are independent, orient A −
B −−C as A→ B ← C;

(b) if B is in all such sets conditional on which
A and C are independent, leave A−−B −−C
as it is, i.e., a non-collider;

(c) otherwise, mark the triple as “unfaithful” by
underlining the triple, A−−B−− C.

(In S4, The orientation rules that are applied to un-
shielded non-colliders in the PC algorithm are, of
course, applied only to unshielded non-colliders in the
CPC algorithm; in particular they are not applied to
triples that are marked as unfaithful.)

The output of the CPC algorithm can also be inter-
preted as a set of DAGs. If the input to the CPC
algorithm is a sample from a distribution that satisfies
the Markov and Adjacency-Faithfulness Assumptions,
in the large sample limit, the output is an extended
pattern, or e-pattern for short. An e-pattern contains
a mixture of undirected and directed edges, as well
as underlinings for unshielded triples that are unfaith-
ful. A DAG is represented by an e-pattern if it has
the same adjacencies as the e-pattern, every directed
edge A → B in the e-pattern is oriented as A → B in
the DAG, and every unshielded collider in the DAG
is either an unshielded collider or a marked unfaithful
triple in the e-pattern. These rules allow that an un-
faithful triple in the e-pattern can be oriented as either
a collider or a non-collider in a DAG represented by
the e-pattern.

The set of DAGs represented by an e-pattern may
not be d-separation equivalent, if the e-pattern con-
tains an unfaithful triple. For example, if A causes
B, and B causes C, but the causation is not tran-
sitive (i.e. I(A, C|B) and I(A, C)), the resulting e-
pattern is A−−B−−C, because it is an unfaithful triple.
The set of DAGs represented by A−−B−−C contains
A → B → C, A ← B → C, A ← B ← C, and
A → B ← C. The latter DAG is not d-separation
equivalent to the first three DAGs. Note that in this
case the true distribution lies in the intersection of
sets of distributions represented by non- d-separation
equivalent DAGs. The intersection would be ruled out
as impossible by the standard Faithfulness assump-
tion.

At this point it should be clear why the modified PC
algorithm is labeled “conservative”: it is more cau-
tious than the PC algorithm in drawing unambiguous
conclusions about causal orientations. A typical out-
put of the CPC algorithm is shown in Figure 1. The
conservativeness is of course what is needed to make
the algorithm correct under the causal Markov and
Adjacency-Faithfulness assumptions.



Figure 1: A typical output for CPC. Underlining
(which in the figure looks like “crossing”) indicates un-
faithful unshielded triples discovered by the algorithm.

Theorem 1 (Correctness of CPC). Under the
causal Markov and Adjacency-Faithfulness assump-
tions, the CPC algorithm is correct in the sense that
given a perfect conditional independence oracle, the al-
gorithm returns an e-pattern that represents the true
causal DAG.

Proof. Suppose the true causal graph is G, and all
conditional independence judgments are correct. The
Markov and Adjacency-Faithfulness assumptions im-
ply that the undirected graph P resulting from step
S2 has the same adjacencies as G does (Spirtes et al.
2000). Now consider step S3′. If S3′(a) obtains, then
A → B ← C must be a subgraph of G, because oth-
erwise by the Markov assumption, either A’s parents
or C’s parents d-separate A and C, which means that
there is a subset S of either A’s potential parents or
C’s potential parents containing B such that A⊥⊥C|S,
contradicting the antecedent in S3′(a). If S3′(b) ob-
tains, then A → B ← C cannot be a subgraph of
G (and hence the triple must be an unshielded non-
collider), because otherwise by the Markov assump-
tion, there must be a subset S of either A’s potential
parents or C’s potential parents not containing B such
that A⊥⊥C|S, contradicting the antecedent in S3′(b).
So neither S3′(a) nor S3′(b) will introduce an orienta-
tion error. It follows that every unshielded collider in
G is either an unshielded collider or a marked triple
in P . Trivially S3′(c) does not produce an orienta-
tion error, and it has been proven (in e.g., Meek 1995)
that S4 will not produce any, which implies that every
directed edge in P is also in G.

The theorem entails that the output e-pattern (1) has
the same adjacencies as the true causal DAG; and (2)
all arrowheads and unshielded non-colliders in the e-
pattern are also in the true causal DAG. Theorem 1,
together with the consistency of statistical tests of in-
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dependence, entails that the probability of the output
containing an error approaches zero as the sample size
approaches infinity.

Note that a triple A→ B←C or A−−B→C may oc-
cur in cases where the triple was initially marked as
unfaithful, but all later orientation rules provided fur-
ther consistent orientation information. In those cases,
the underlining serves no purpose (as ambiguity con-
cerning collider vs. non-collider is already dissolved)
and can be removed. The remaining triples marked
unfaithful by the CPC algorithm in the large sample
limit are truly ambiguous in that either a collider or
a non-collider is compatible with the conditional in-
dependence judgments. We conjecture but cannot yet
prove that the CPC algorithm is complete in the sense
that for every undirected edge in an e-pattern output
by the CPC algorithm, there is a DAG represented
by the e-pattern that orients the edge in one direc-
tion and another DAG represented by the e-pattern
that orients the edge in the other direction. Finally,
it is obvious that asymptotically the CPC algorithm
and the PC algorithm produce the same output if the
standard Faithfulness assumption actually obtains.

4 SIMULATION RESULTS

The theoretical superiority of the CPC algorithm over
the PC algorithm may not necessarily cash out in prac-
tice if the situations where the Adjacency-Faithfulness
but not the Orientation-Faithfulness holds do not arise
often. We will not try to make an argument to the
contrary here, even though we believe such an argu-



ment can be made. Instead we wish to show that
the CPC algorithm in practice performs better than
the PC algorithm, regardless of whether Orientation-
Faithfulness holds or not. That is, even when the data
are generated from a distribution Markov and Faithful
to the true causal graph, it pays to be conservative on
realistic sample sizes. One possible rationale for this
is that even though PC is correct in the large sam-
ple limit if Orientation-Faithfulness is not violated,
it is very liable to error on realistic sample sizes if
Orientation-Unfaithfulness is almost violated. Almost
violations of Orientation-Faithfulness can arise in sev-
eral ways – for example, when a triple chain is al-
most non-transitive, or more generally, when one of
the edges in an unshielded triple is very weak4.

The simulations illustrate that the extra independence
checks invoked in the CPC algorithms do not ren-
der CPC significantly slower than PC and that CPC
is more accurate than PC in terms of arrow orienta-
tions. The explanation for the first point is that the
main computational expense of the PC algorithm oc-
curs in the adjacency stage; the number of indepen-
dence checks added in CPC for orientation is small by
comparison. The second point suggests that the PC
algorithm too often infers that unshielded triples are
colliders, and the CPC algorithm provides the right
antidote to this by means of the extra checks it per-
forms. Again, we expect that the CPC algorithm will
do particularly better than the PC algorithm when the
distribution generated is close-to-unfaithful to the true
graph – a situation pointed out by several authors as
a major obstacle to reliable causal inference (Robins
et al. 2003, Zhang and Spirtes 2003).

To illustrate these points, the following simulations
were performed on linear Gaussian models, with vari-
ations for sparser and denser graphs, with dimensions
(numbers of variables) ranging from 5 to 100 variables.
For the sparser case, for each dimension d from 5 to 100
in increments of 5, five random graphs were selected
uniformly from the space of DAGs with at most d edges
and with a maximum degree of 10. For each such
graph, a random structural equation model was con-
structed by selecting edge coefficients randomly 0.95
of the time uniformly from [−1.5,−0.5]∪ [0.5, 1.5] and
0.05 of the time uniformly from [−0.001, 0.001]. (Se-
lection from the range [−0.001, 0.001] guarantees the
presence of weak edges, which in turn often lead to al-

4Intuitively, almost violations of Orientation-
Faithfulness refer to situations where two variables,
though entailed to be dependent conditional on some
variables by the Orientation-Faithfulness condition, are
close to conditionally independent. How to quantify the
“closeness” and just how close is close enough to cause
trouble depend on distributional assumptions and sample
sizes.
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Figure 3: Average count of arrow false positives

most violations of faithfulness.) For each such model,
a random data set of 1000 cases was simulated, to
which PC and CPC were applied with significance level
α = 0.05 for each hypothesis test of conditional inde-
pendence, tested using Fisher’s Z transformation of
partial correlation. The output was compared to the
pattern of the true DAG (the true pattern), not the
true DAG itself. Performance statistics were recorded,
including elapsed time and false positive and nega-
tive counts for arrows, unshielded colliders, unshielded
non-colliders, and adjacencies. For each number of
variables, each performance statistic was averaged over
the five random models constructed at that dimension,
for PC and for CPC. This procedure was repeated
for denser models with DAGs randomly selected uni-
formly from the set of DAGs with at most 2d edges
and a maximum degree of 10.

Counting orientation errors when there are differences
in adjacencies as well raises some subtle issues that
we have chosen to resolve in the following way. An
arrowhead removal error (false negative) occurs when
the true pattern P1 contains A → B, but the output
P2 either does not contain an edge between A and B
or does contain an edge between A and B but there
is no arrowhead on this edge at B. An analogous rule
is used to count arrowhead addition errors (false pos-
itive). This has the consequence that if A and B are
not adjacent in P1, but A−B is in P2, this is counted
as an adjacency addition error, but not an arrowhead
addition or removal error. In contrast, if A→ B is in
P2, this is counted as an adjacency addition error and
an arrowhead addition error, because of the arrowhead
at B. The justification for this is that the A − B er-
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ror leaves open whether there is an arrowhead at B,
and does not lead to any errors in predicting the ef-
fects of manipulations (the effects of manipulation are
unknown because the orientation of the edge is un-
known). In contrast, the A→ B error does definitively
state that there is an arrowhead at B, and does lead
to errors in predicting the effects of manipulations.

There is an unshielded non-collider addition error for
the triple 〈X, Y, Z〉 if they form an unshielded non-
collider in P2, but P1 either has different adjacencies
among X , Y , and Z, or the same adjacencies but is a
collider. An unfaithful triple in G2 does not count as
an unshielded non-collider or collider addition error,
regardless of what is in G1. Unshielded non-collider
removal errors are handled in an analogous fashion.

In all the figures, PC statistics are represented by tri-
angles and CPC statistics are represented by circles;
sparser models use filled symbols, and denser models
used unfilled symbols. The horizontal axis is the num-
ber of variables in the true DAG.

Figure 2 shows that for both sparser and denser mod-
els, CPC is only slightly slower than PC.

Figure 3 shows that for both sparser and denser mod-
els, the number of extra arrows introduced is far better
controlled by CPC than by PC. For sparser models, the
number is particularly well-controlled. Figure 4 shows
that for both sparser and denser models, the number
of arrowhead removal errors committed by CPC is al-
most indistinguishable from the number of arrowhead
removal errors committed by PC.

The performance of CPC regarding false positive and
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false negative unshielded non-colliders also matches
that of PC, as shown in Figures 5 and 6. In a word, in
no respect is PC noticeably better than CPC, whereas
CPC is significantly better than PC in avoiding false
positive causal arrowheads, the arguably most conse-
quential type of errors.

Figure 7 plots the percentage of unfaithful triples
among the total number of unshielded triples output
by CPC. For sparser models, the percentage of unfaith-
ful triples is around 30 percent; for denser models, it
rises to around 40 percent. This confirms our expec-
tation that CPC is more conservative the denser the
true graph.

Similar simulations were carried out parameterizing
random graphs using discrete Bayes nets with 2 to
4 categories per variable, but otherwise with identi-
cal setup to the sparser continuous simulations above,
with similar results.

5 CONCLUSION

The CPC algorithm we proposed in this paper is
provably correct under the causal Markov assumption
plus a weaker-than-standard Faithfulness assumption,
the Adjacency-Faithfulness assumption. It can be re-
garded as a conservative generalization of the PC al-
gorithm in that it theoretically gives the same answer
as the PC does under the standard assumptions. Per-
haps more importantly, simulation results suggest that
the CPC algorithm works much better than the PC al-
gorithm in terms of avoiding false causal arrowheads,
and achieves this without costing significantly more
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Figure 6: Average count of non-collider false negatives

in running time or missing positive information. We
do not claim that the evidence is conclusive, and we
think it would be interesting to compare CPC and PC
on real data sets.

A natural question is how a score-based search al-
gorithm would perform when the true distribution
is only Adjacency-Faithful to the true causal graph.
Such algorithms could err even in the large sample
limit given typical scores such as BIC. For example,
for three discrete variables, if the true causal graph
is A → B ← C, but the true distribution satisfies
A⊥⊥C and A⊥⊥C|B, which violates the Orientation-
Faithfulness condition, the GES algorithm (Chickering
2002) outputs A−−B−−C, an unshielded non-collider,
given large sample. This is because such scores as BIC
would (eventually) prefer the model with fewer param-
eters when both contain the true distribution.

Another possible twist to the CPC algorithm is that
when a sign of an unfaithful triple arises, it actually
suggests that extra checks on the adjacencies in the
triple should be performed. We are currently explor-
ing this and other ideas that can potentially increase
the accuracy of the estimated adjacencies. Another
ongoing project is to extend our work in this paper to
the FCI algorithm, which, unlike the PC algorithm,
does not make the often unrealistic assumption of no
unmeasured common causes.
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