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Abstract

A fundamental question in causal inference
is whether it is possible to reliably infer the
manipulation effects from observational data.
There are a variety of senses of asymptotic
reliability in the statistical literature, among
which the most commonly discussed frequen-
tist notions are pointwise consistency and
uniform consistency (see, e.g. Bickel, Dok-
sum [2001]). Uniform consistency is in gen-
eral preferred to pointwise consistency be-
cause the former allows us to control the
worst case error bounds with a finite sample
size. In the sense of pointwise consistency,
several reliable causal inference algorithms
have been established under the Markov and
Faithfulness assumptions [Pearl 2000, Spirtes
et al. 2001]. In the sense of uniform con-
sistency, however, reliable causal inference is
impossible under the two assumptions when
time order is unknown and/or latent con-
founders are present [Robins et al. 2000]. In
this paper we present two natural generaliza-
tions of the Faithfulness assumption in the
context of structural equation models, under
which we show that the typical algorithms in
the literature are uniformly consistent with
or without modifications even when the time
order is unknown. We also discuss the situa-
tion where latent confounders may be present
and the sense in which the Faithfulness as-
sumption is a limiting case of the stronger
assumptions.

1 INTRODUCTION

1.1 CAUSAL INFERENCE

We consider the kind of causal inference in the liter-
ature that intends to predict the manipulation effects

based on non-experimental data [Pearl 2000, Spirtes
et al. 2001]. Such inference typically involves two
steps: discovery of causal structures, represented by
directed acyclic graphs (DAGs)1, and identification of
causal parameters. There are two main approaches in
the causal discovery step: constraint-based approach
and Bayesian approach [Heckerman et al. 1995], of
which we focus on the former as we are going to dis-
cuss the frequentist notions of consistency. The ba-
sic idea of the constraint-based approach is to test
the conditional independence relations among the ob-
served variables, which, under certain assumptions,
put some graphical constraints on the possible causal
structures. The two commonly adopted assumptions
are the Markov and Faithfulness assumptions. The
Markov assumption says that every variable is in-
dependent of its non-effects conditional on its direct
causes, which is just the (local) Markov property of
DAGs. The Faithfulness assumption says that no
conditional independence relations other than the ones
entailed by the Markov assumption are present in the
population distribution. Since the conditional inde-
pendence relations entailed by the Markov assump-
tion correspond exactly to d-separation [Pearl 1988],
these two assumptions together translate the condi-
tional independence relations in the population distri-
bution to the d-separation constraints on the possible
causal graphs.

Hence the output of the constraint-based algorithms is
typically a set of causal graphs compatible with back-
ground knowledge that share the same d-separation
features (or say, entail the same conditional indepen-
dence relations) among the observed variables, which
is usually called an O-Markov equivalence class. A
causal quantity is identifiable with respect to a set of

1In general directed (cyclic) graphs can be used to rep-
resent causal systems that might have feedback. There are
(constraint-based) algorithms of discovering causal graphs
with (possibly) cycles assuming no latent confounders
[Richardson 1996], of which the results in this paper still
hold.



causal graphs if given any graph in the set, the causal
quantity can be written uniquely in terms of some es-
timable statistical quantities. No conclusion can be
drawn concerning an unidentifiable causal parameter.
When a causal parameter is identified, the inference of
this parameter is just the ordinary statistical inference.

In this paper we confine the discussion to one of
the most commonly used parameterizations of causal
graphs: linear structural equation models (LSEMs),
in which the structural parameters can be easily inter-
preted as the direct manipulation effects. Specifically,
given a DAG, each arrow is assigned a coefficient so
that every variable can be written as a linear function
of its parents plus a Gaussian error2. Usually the vari-
ables are standardized for the sake of interpreting the
structural coefficients. Without loss of generality, we
consider standardized LSEMs in what follows.

Finally, there is an important assumption called causal
sufficiency that can dramatically simplify causal dis-
covery. A causal system (i.e. a set of observed vari-
ables) is causally sufficient if no common cause of any
two variables in the system is left out. In more plain
words, causal sufficiency assumes that there are no la-
tent confounders of any two observed variables. For
simplicity we will present our main results under this
assumption, but it is not essential as we will point out
later.

1.2 CONSISTENCY OF TESTS

Consistency is a property that corresponds to asymp-
totic reliability (in the sense of avoiding error). Two
notions of consistency are often discussed in the sta-
tistical literature — pointwise consistency and uni-
form consistency (see e.g. Bickel, Doksum [2001]).
Here is a generic formal setting that facilitates the
formal definitions in the context of causal inference3.
O is the set of observed random variables, of which
On = {O1, ..., On} denotes an i.i.d sample. G is the set
of possible causal graphs (defined by our background
knowledge) over O and possibly some other latent vari-
ables if causal sufficiency is not assumed. Given any
G ∈ G, Ω(G) is the set of distributions that are le-
gitimate given G according to the assumptions. For
example, given the Markov and faithfulness assump-
tions, Ω(G) is the set of distributions that are Markov
and faithful to G. We use ΩG to denote the union of
Ω(G)’s: ΩG = ∪G∈GΩ(G). Finally, for every distri-
bution P , P̃ denotes the marginal distribution of O
obtained from P .

2We assume the errors are uncorrelated. Correlated
Gaussian errors to a large extent can be dealt with by
introducing new latent variables [Spirtes et al. 1996].

3Our notations and the subsequent definitions largely
follow Robins et al. [2000].

A test φ is a sequence of functions (φ1, φ2, ..., φn, ...),
where each φi takes data Oi and returns 0, 1, or 2,
representing ”acceptance”, ”rejection” or ”no conclu-
sion”, respectively. Let θ be any causal parameter
of interest, which is in general a functional of the
probability distribution P and the causal structure
G: θ = T (P, G). With respect to the null hypoth-
esis H0 : θ = θ0 versus the alternative hypothesis
H1 : θ 6= θ0, we define

ΩG0 = {P : ∃G ∈ G(P ∈ Ω(G) ∧ T (P,G) = θ0)}
ΩG1 = {P : ∃G ∈ G(P ∈ Ω(G) ∧ T (P,G) 6= θ0)}

Intuitively ΩGi is the set of distributions that are com-
patible with Hi, i = 0, 1. Usually ΩG0 and ΩG1 are
not disjoint when the time order between variables is
unknown. The distributions in their intersection ob-
viously underdetermine the truth value of the null hy-
pothesis, for which we have to return ”no conclusion”.
Even when they are disjoint, It could also occur, in
the presence of latent variables, that a distribution in
ΩG0 shares the same marginal distribution over the ob-
served variables with a distribution in ΩG1, in which
case the hypothesis is still underdetermined by what
we can observe. The inclusion of ”no conclusion” in
the outputs of tests respects the fact that there may
exist P0 ∈ ΩG0, P1 ∈ ΩG1 such that P̃0 = P̃1.

Let Pn denote the n-fold product measure correspond-
ing to P , here are the key definitions:

Definition 1 (pointwise consistency) A test φ is
pointwise consistent if
(i) for every P ∈ ΩG0, lim

n
Pn(φn(On) = 1) = 0 and

(ii) for every P ∈ ΩG1, lim
n

Pn(φn(On) = 0) = 0

Definition 2 (uniform consistency) A test φ is
uniformly consistent if
(i) lim

n
sup

P∈ΩG0

Pn(φn(On) = 1) = 0 and

(ii) for every δ > 0, lim
n

sup
P∈ΩG1δ

Pn(φn(On) = 0) = 0

where

ΩG1δ = {P : ∃G ∈ G(P ∈ Ω(G) ∧ |T (P, G)− θ0| ≥ δ)}

It should be clear from the definition that uniform con-
sistency (but not pointwise consistency) allows us to
simultaneously control the worst case type I error and
type II error with finite sample size (given that the
true parameter value is bounded away by a constant
from the null value). The error bounds for a merely
pointwise consistent procedure depend on the value of
θ, which is exactly what we want to figure out in the
first place.

An obviously uniformly consistent procedure is to al-
ways return 2 in the limit. We exclude such uninfor-



mative tests by considering only non-trivial ones in the
following sense:

Definition 3 (non-triviality) A test φ is non-
trivial if for some P ∈ ΩG0 ∪ ΩG1,

lim
n

Pn(φn(On) = 0) = 1 or lim
n

Pn(φn(On) = 1) = 1

2 UNIFORM CONSISTENCY WITH
MORE FAITHFULNESS

We assume causal sufficiency in this section, and dis-
cuss the situation without the assumption in the next
section.

2.1 A CANONICAL CASE

Consider a canonical case of (constraint-based) causal
inference. In Figure 1, all variables are observed, i.e.
O = {X1, X2, X3, X4}, and there are no latent vari-
ables. Obviously without further background infor-
mation G includes all possible DAGs over O. In par-
ticular, G1, G2 ∈ G. In the context of standardized
structural equation models, Xi’s are marginally stan-
dard Gaussian variables, and the structural equation
models associated with, for example, G1 and G2 are
M1 and M2, respectively, as follows:

M1 M2
X1 = ε1 X1 = ε1
X2 = ε2 X2 = ε2
X3 = αX1 + βX2 + ε3 X3 = fX1 + gX2 + hX4 + ε3
X4 = γX3 + ε4 X4 = mX1 + nX2 + ε4

where all error terms are uncorrelated Gaussians with
zero means. Note that the linear coefficients in the
models are naturally interpreted as the direct causal
(manipulation) effects of one variable on the other. For
example, in M1 if we manipulate X3 by one unit (ac-
tually one standard deviation in the unstandardized
situation) without affecting other variables unless via
X3, the expectation of X4 will change by γ units. So γ
quantifies the direct manipulation effect of X3 on X4.

Suppose the parameter of interest, θ, is the direct ma-
nipulation effect of X3 on X4. In G1, for example,
θ = γ, while in G2 θ = 0. It is easy to verify that
the graph G1 is the only structure that can faith-
fully generate the distributions such that X1⊥⊥X2 and
X4⊥⊥{X1, X2}|X3 and no other conditional indepen-
dence relations hold. In other words, under the Faith-
fulness assumption, if X1⊥⊥X2 and X4⊥⊥{X1, X2}|X3

and no other conditional independence relations hold,
G1 is the true causal structure, in which θ is obviously
identified (with the correlation between X3 and X4).
It follows that there are non-trivial pointwise consis-
tent tests for testing H0 : θ = θ0 against H1 : θ 6= θ0

given pointwise consistent tests for correlations and
partial correlations. The tests return informative an-
swers in the large sample limit for the distributions
faithful to G1.
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Figure 1: A Canonical Case

However, under the Markov and Faithfulness assump-
tions, there are no non-trivial uniformly consistent
tests of H0 : θ = θ0 for θ0 6= 0 [Robins et al. 2000],
though we do have uniformly consistent tests for cor-
relations and partial correlations4. The proof turns on
the fact that for any distribution P compatible with
G1 with γ = θ0, there is a distribution Q compatible
with G2 such that such that Q is arbitrarily close to
P , and vice versa.

Below we present two (families of) naturally strength-
ened versions of Faithfulness — which we call k-
Constraint assumption and λ-Strong-Faithfulness as-
sumption respectively — and investigate the consis-
tency property of causal inference in the canonical case
and in general under the stronger assumptions. These
two families of assumptions are interesting in that they
naturally generalize and on the boundary collapse into
the usual Faithfulness assumption.

2.2 k-CONSTRAINT

Given a causal graph G, let ΨG be the set of linear
structural coefficients for G that imply covariance ma-
trices faithful to G. For any (small) fixed positive con-
stant k, we define k-Constraint as below:

Definition 4 (k-Constraint) The k-Constraint is a
subset ΨG denoted by Ψk

G such that for every µ ∈ ΨG,

µ ∈ Ψk
G ⇐⇒ ∀a, b ∈ O, C ⊆ O\{a, b}(|ρab.C | ≥ k|µab|)

where ρab.C is the partial correlation between a and b
given C (or correlation when C = Ø) in the distribu-
tion generated by (µ,G), and µab is the arrow coeffi-
cient, if any, between a and b.

4For multivariate Gaussian distributions, the test of cor-
relation based on Fisher’s Z-transformation, for example,
is uniformly consistent. There is also a very nice relation-
ship between the inference of partial correlation and the
inference of correlation. See, e.g. Anderson [1958]



The k-constraint assumption says that for every
G ∈ G, if the true structure is G, then the true struc-
tural parameter is in Ψk

G.

Note that under the Gaussian parameterizations, the
usual Faithfulness assumption entails that for any two
variables a and b, if ρab.C = 0 for some C ⊆ O\{a, b},
there cannot be an arrow between a and b, and hence
there is no direct causal effect between a and b. In
short, vanishing (partial) correlations indicate no (di-
rect) effects. The k-Constraint assumption assumes
furthermore that small (partial) correlations indicate
small (direct) causal effects. In this sense it is a nat-
ural strengthening of the Faithfulness assumption. In
practice, it is not uncommon among social scientists
to both interpret the regression coefficients causally
and delete insignificant variables based on t test. A
charitable interpretation is that they implicitly adopt
(something like) the k-Constraint assumption: small
correlation means small effect.

Under the Markov and k-Constraint assumptions (no
matter how small k is), we can construct non-trivial
uniformly consistent procedures to test H0 : θ = θ0 in
the canonical case by modifying the typical constraint-
based algorithms slightly. We will describe the modi-
fication after we introduce the λ-Strong-Faithfulness5,
where more intuition can be gained. To see why the ex-
isting algorithms in the literature have to be modified
to be uniformly consistent, here we present a negative
result that may give a hint. Suppose, in the canon-
ical case, the background knowledge is sufficient for
us to conclude that the true causal graph is either G1

or G2, i.e. G = {G1, G2}. Under this circumstance,
U = ΩG0 ∩ ΩG1 = Ø, that is, there is no issue of un-
derdetermination. Intuitively we do not need the an-
swer of ”no conclusion” at all. However, there are no
uniformly consistent tests that do not return ”no con-
clusion” under the Markov and k-Constraint assump-
tions, which is a direct consequence of the following
theorem.

Theorem 1 Given the Markov assumption and the k-
Constraint assumption, for any θ0 6= 0, if G1, G2 ∈ G
in case 2 , there is no uniformly consistent test φ for
H0 : θ = θ0 versus H1 : θ 6= θ0 such that

lim
n→∞

sup
P∈ΩG10

Pn(φn(On) = 1 ∨ φn(On) = 2) = 0

where ΩG10 is the set of all legitimate Gaussian distri-
butions generated by G1 with γ = θ0

Obviously if there were a uniformly test that does not
return 2, the condition in Theorem 1 would be sat-
isfied. This result applies to any test procedures, in-

5The formal proof can be found in Zhang [2002], which
does not fit in the room here.

cluding, for example, the tests based on the various
model selection scores. In the context of constraint-
based causal inference, the intuition behind it is that
the arrow between X1 and X3 and the one between
X2 and X3 in G1 can be arbitrarily weak, and hence
the detection of the correlation between X1 and X3

and that between X2 and X3 can become arbitrarily
difficult as α, β approach zero. In short, in the canon-
ical case, α and β can become arbitrarily small, which
is responsible for the lack of uniform consistency of
the typical algorithms in the literature that only test
whether the correlations are vanishing. We have to
modify those algorithms to control the nuisance pa-
rameters α, β somehow in order to obtain uniform con-
sistency.

2.3 λ-STRONG-FAITHFULNESS

A perhaps more direct strengthening of Faithfulness is
the following:

Definition 5 (λ-Strong-Faithfulness) A mul-
tivariate Gaussian distribution P is said to be
λ-strong-faithful to a DAG G with observed variables
O if for any a, b ∈ O and C ⊆ O\{a, b},

a is d-connected to b given C in G ⇐⇒ |ρab.C | > λ

where λ ∈ (0, 1) is a fixed (small) constant.

Here is the λ-Strong-Faithfulness assumption: the
Gaussian distributions generated by a causal graph are
λ-Strong-Faithful to the graph. Intuitively the differ-
ence between λ-Strong-Faithfulness and k-Constraint
is that λ-Strong-Faithfulness further rules out the pos-
sibility of weak arrows in the graph. For example, it
entails that |α| > λ, |β| > λ in G1. Under the λ-
Strong-Faithfulness assumption (no matter how small
λ is), the inference of causal structure in general can
be uniformly consistent.

Theorem 2 Let M be an arbitrary Markov equiva-
lence class. Consider the null hypothesis H0: data
On are generated from a structure in M. Given the
Markov and λ-strong-faithfulness assumptions, there
exists a test φ of the null hypothesis such that φ only
returns 0 and 1 and

lim
n

sup
P∈Γ0

Pn(φn(On) = 1) = 0

and lim
n

sup
P∈Γ1

Pn(φn(On) = 0) = 0

where

Γ0 =
⋃

G∈M
Ω(G) Γ1 =

⋃

G/∈M
Ω(G)



The test constructed in the proof (in the appendix) is a
combination of a series of tests of vanishing partial cor-
relations, which is exactly what the constraint-based
algorithms suggest. In other words, those algorithms
are uniformly consistent without further modification
under the λ-Strong-Faithfulness assumption. It follows
from Theorem 2 that as long as a causal parameter can
be identified in some Markov equivalence class, there
exist non-trival uniformly consistent tests for that pa-
rameter provided that there are uniformly consistent
tests for the corresponding statistical quantity.

It follows from Theorem 1 that Theorem 2 cannot
be true if the λ-Strong-Faithfulness assumption is re-
placed by the k-Constraint assumption. As noted ear-
lier, unlike the λ-Strong-Faithfulness assumption, the
k-Constraint assumption allows the possibility of arbi-
trarily weak arrows, which usually act as sort of nui-
sance parameters when they are not of direct interest.
In the canonical case, for instance, α and β are nui-
sance parameters, which we have to control somehow
in order to get uniformly consistent tests. This re-
quires modifying the existing algorithms that only in-
volve testing vanishing partial correlations. One way
to modify the algorithm is to further test the null hy-
potheses |ρX1X3 | ≥ α0 and |ρX2X3 | ≥ β0 for fixed
α0, β0 and return ”no conclusion” if any of the tests
rejects the null hypotheses (see Zhang [2002] for de-
tails). Intuitively this modification amounts to build-
ing some λ-Strong-Faithfulness into the algorithm, as
the modified algorithm refuses to give informative an-
swers when the correlations are below some thresh-
old. We do not yet have a general proof of the ex-
istence of uniformly consistent procedures under the
k-Constraint assumption, but in view of the general
result on the λ-Strong-Faithfulness, it is quite intuitive
that this kind of modification should work in general
to obtain uniform consistency under the k-Constraint
assumption.

2.4 ESTIMATORS AND CONFIDENCE
REGIONS

There is nothing special about tests. All the previ-
ous results on consistency can be formulated in terms
of point estimators and confidence regions6. Since
a causal parameter is only sometimes estimable, we
need also generalize the notions of point estimators
and confidence regions, just as we include an un-
informative answer in the possible outputs of tests.
Robins et al. [2000] defined a generalized estima-
tor θ̂ of θ as a sequence (θ̂1, ..., θ̂n, ...), where each θ̂i

is a function of Oi that returns a non-empty subset
of the parameter space Θ. A non-singleton set (e.g.

6Many details are left out in this section, which can be
found in Zhang [2002]

Θ) indicates that no estimation can be made. Let
ΩG = {(P, G) : G ∈ G, P ∈ Ω(G)}. θ̂ is pointwise
consistent if for every (P,G) ∈ ΩG, θ̂ converges in
probability to θ = T (P,G), namely, for every ε > 0,

lim
n→∞

Pn(d[θ̂n(On), T (P, G)] > ε) = 0

θ̂ is said to be uniformly consistent if for every ε >
0,

lim
n→∞

sup
(P,G)∈ΩG

Pn(d[θ̂n(On), T (P, G)] > ε) = 0

where the distance d between a set S and a real number
r is defined as the shortest Euclidean distance between
r and the elements in S: d[S, r] = infs∈S |s−r|. Finally
θ̂ is non-trivial if

lim
n→∞

Pn(θ̂n(On) is a singleton) = 1

In the constraint-based causal inference, a typical es-
timator of a causal parameter first pins down a O-
Markov equivalence class via a series of tests of inde-
pendence and conditional independence relations, and
then estimates the parameter if it is estimable in the
resulting equivalence class or returns the whole sample
space otherwise. In view of Theorem 2, it is not hard
to see that this estimator is uniformly consistent un-
der the Markov and λ-strong-faithfulness assumptions,
provided that the estimator of the statistical quantity,
with which the causal parameter is identified, is uni-
formly consistent.

We define the generalized confidence regions in a way
that maintains the well known duality between tests
and confidence regions (see e.g. Casella and Berger
[1990]). Let Rα denote a sequence: (Rα,1, ...,Rα,n...),
where each Rα,i is a function of Oi which returns a
triple partition (S0

α,i, S
1
α,i, S

2
α,i) of the parameter space

Θ. Rα is called a 1 − α confidence region of θ =
T (P, G) if

lim inf
n

inf
(P,G)∈ΩG

Pn(T (P, G) /∈ S1
α,n) ≥ 1− α

The definition is obviously given with test inversion in
mind. We can easily invert a test (actually a family
of tests) into a confidence region thus defined: S0

α,n

contains the values of the parameter that are accepted,
S1

α,n contains the values rejected and S2
α,n contains the

rest, for which ”no conclusion” are returned.

Rα is said to be pointwise consistent if for every
(P,G), (Q, H) ∈ ΩG such that T (P, G) 6= T (Q,H),

lim
n→∞

Pn(T (Q, H) ∈ S0
α,n) = 0

it is uniformly consistent if for every δ > 0

lim
n→∞

sup
|T (Q,H)−T (P,G)|>δ

Pn(T (Q, H) ∈ S0
α,n) = 0



it is non-trivial if at least for some (P,G) ∈ ΩG,

lim
n→∞

Pn(S2
α,n 6= Θ) = 1

It is not hard to verify the usual duality between tests
and confidence regions in this generalized setting. In
particular, a family of uniformly consistent tests can
be inverted into a uniformly consistent 1 − α confi-
dence region for any α ∈ (0, 1), at least in principle.
Hence under the strong-faithfulness assumptions, we
can hope for uniformly consistent confidence regions
of causal parameters.

It is worth noting that in most cases, the test inver-
sion will lead to a confidence region such that either
S2

α,n = Ø when θ is identifiable, or S0
α,n = S1

α,n = Ø
when θ is not identifiable (and hence we are totally ig-
norant of θ). For example, in case 2, either the causal
structure suggested by data is G1 in which case we
can calculate an informative confidence interval, or the
structure indicated by data is not G1 in which case the
confidence interval is the uninformative one, the whole
set of legitimate values. Either way the resulted con-
fidence interval looks just like the ordinary confidence
interval. Only in some special cases, say in case 1,
where some value of θ (0 in case 1) is of special status,
the generalized confidence regions do look weird.

3 DISCUSSION

3.1 WITHOUT CAUSAL SUFFICIENCY

It is clear that the proof of Theorem 2 does not de-
pend on the assumption of causal sufficiency at all.
So, even in the presence of latent confounders, the
typical causal inference algorithms, such as FCI in
Spirtes et al. [1993], are uniformly consistent under
the Markov and λ-Strong-Faithfulness assumptions.
Under the k-Constraint assumption as currently de-
fined, however, causal sufficiency is in general neces-
sary to guarantee the possibility of uniformly consis-
tent causal inference7. It is possible nonetheless to de-
fine the k-Constraint with respect to the parameteriza-
tion of Maximal Ancestral Graphs (MAGs) [Richard-
son, Spirtes 2000] so that uniform consistency can be
established without causal sufficiency. A problem with
such a definition is that the nice intuitive explanation
of k-Constraint — small (partial) correlation indicates
small (direct) effect — is no longer available, as the pa-
rameters in MAGs do not always correspond to direct
causal effects.

7In the canonical case, for example, if we allow the pos-
sibility that there might be a latent confounder between
X1 and X4, it can be shown fairly easily that there is
no non-trivial uniformly consistent test even under the k-
Constraint assumption.

3.2 REFLECTION ON
STRONG-FAITHFULNESS

The two Strong-Faithfulness assumptions laid out in
this paper are both indexed by a positive constant. No
matter how small the constant is, the assumptions en-
tail the possibility of uniformly consistent causal infer-
ence. Both assumptions collapse into the faithfulness
assumption on the boundary: 0-constraint is a vacu-
ous constraint and 0-strong-faithfulness is essentially
the same as faithfulness8.

The perhaps most powerful and frequently used de-
fense for the faithfulness assumption is that under the
Gaussian or the multinomial parameterization, given a
causal structure G, the set of parameters that lead to
distributions unfaithful to G has zero Lebesgue mea-
sure (Spirtes et al. 1993, Meek 1995). A nice con-
sequence of this fact is that for any causal structure
G, any prior that is absolutely continuous with re-
spect to Lebesgue measure will assign 0 probability to
the unfaithful distributions. It is not necessarily the
case, as it is tempting to conjecture, that the Lebesgue
measure of the set of parameters ruled out by the λ-
strong-faithfulness assumption can be made arbitrarily
small (by decreasing λ), unless the parameter space is
bounded.9 But it is true that given a causal struc-
ture G and a prior absolutely continuous with respect
to Lebesgue measure, for any ε > 0, there exists a λ
such that the prior probability assigned to the set of
distributions that are not λ-strong-faithful to G is less
than ε. This readily follows from the continuity of the
probability measure.

An implication of the ”measure 0” result is the ex-
istence of faithful multivariate Gaussian distributions
(and multinomial distributions) for every causal struc-
ture, which is also cited fairly often in the literature.
It is certainly not the case that for every λ ∈ (0, 1) and
every causal structure G, there exists a distribution λ-
strong-faithful to G.10 For example, if A, B, C are
three independent Gaussian parents of D, it is impos-
sible that the correlations between D and each of the
parents are all greater than

√
3/3. On the other hand,

it is trivial to see that for any causal structure G, there
exists a multivariate Gaussian distribution λ-strong-
faithful to G for some λ. More interestingly, it can be

8The part of the faithfulness assumption we really use
in causal inference only involves the observed variables.

9Here is a simple illustration of the remark. In the two-
dimensional plane, the line x = y has zero Lebesgue mea-
sure, but the region S = {(x, y) : x − k ≤ y ≤ x + k}
has infinite Lebesgue measure no matter how small k is,
though it becomes the line when k = 0.

10It is not yet clear whether for every k ∈ (0, 1) and every
causal structure G, there exists a Gaussian distribution
that satisfies the k-constraint with G.



shown that given a fixed set of observed variables O,
we can find a small λ such that for every causal struc-
ture G with O as the observed variables, there exists
a multivariate Gaussian distribution λ-strong-faithful
to G. The magnitude of λ depends on the number of
variables in O.

Another popular interpretation of the faithfulness as-
sumption appeals to the notion of ”stableness”. [Pearl
2000] The faithful distributions are stable in the sense
that the independence and conditional independence
relations associated with the distributions cannot be
destroyed by the waggling of parameters. Similarly,
a faithful but close to unfaithful distribution may be
said to be unstable in the sense that some dependence
relations may be destroyed by a slight change in pa-
rameterization. In this sense, the λ in the λ-strong-
faithfulness serves as an rough index of stableness.

It is not the main purpose of the reflection to argue
for the plausibility of the strong-faithfulness assump-
tions. Rather the discussion is to illustrate the close
relation between the usual faithfulness condition and
the stronger faithfulness conditions laid out in the pa-
per. Clearly in several important respects, the faith-
fulness assumption is just a limiting case of the λ-
strong-faithfulness assumption (or the k-constraint as-
sumption). This suggests that the stronger assump-
tions are not only sufficient but also close to necessary
to entail the existence of uniformly consistent causal
inference procedures without substantial background
knowledge.
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Appendix

Proof of Theorem 1.

Lemma Consider the linear structural equation mod-
els (with independent error terms and no latent vari-
ables) associated with G1 and G2 in Figure 2:

M1 M2
X1 = ε1 X1 = ε1
X2 = ε2 X2 = ε2
X3 = αX1 + βX2 + ε3 X3 = fX1 + gX2 + hX4 + ε3
X4 = γX3 + ε4 X4 = mX1 + nX2 + ε4

X1, X2, X3, X4 are all standard Gaussians. For every
0 < k < 1, θ0 6= 0 and every ε > 0, there are µ1 =
(α, β, γ = θ0) and µ2 = (f, g, h,m, n) such that µi ∈
Ψk

Gi
and KL(P1, P2) < ε, where Pi is the distribution

generated by (µi, Gi), and KL(P1, P2) is the Kullback-
Leibler divergence.

Proof The correlation matrix generated by M1 is

Σ1 =




1 0 α αγ
1 β βγ

1 γ
1




It is easy to verify that all legitimate parameters of M1

are in Ψk
G1

, i.e. no (more) constraints are placed on the
parameters in M1 by the k-constraint. The correlation
matrix generated by M2 is

Σ2 =




1 0 f + mh m
1 g + nh n

1 fm + gn + h
1






The k-constraint assumption puts the following con-
straints on µ2:

k|m| ≤
∣∣∣ m− (f + mh)(fm + gn + h)√

(1− (f + mh)2)(1− (fm + gn + h)2)

∣∣∣

= |ρX1X4.X3 |
k|n| ≤

∣∣∣ n− (g + nh)(fm + gn + h)√
(1− (g + nh)2)(1− (fm + gn + h)2)

∣∣∣

= |ρX2X4.X3 |
k|f | ≤ |f + mh| = |ρX1X3 |
k|g| ≤ |g + nh| = |ρX2X3 |
k|h| ≤ |fm + gn + h| = |ρX3X4 |

Given any ε > 0, there exists δα,β > 0 (δα,β depends
on α and β) such that if

f + mh = α (1)
g + nh = β (2)

fm + gn + h = γ = θ0 (3)
|m− αθ0| < δα,β (4)
|n− βθ0| < δα,β (5)

then KL(P1, P2) < ε. Solve (6),(7),(8) for f, g, h, we
get

f =
(1− n2)α + mnβ −mθ0

1−m2 − n2

g =
(1−m2)β + mnα− nθ0

1−m2 − n2

h =
θ0 −mα− nβ

1−m2 − n2

It is not hard to check that we can choose appropri-
ate (small) m,n, α, β to satisfy (9), (10) and all the
constraints. Q.E.D

Proof of Theorem 1 For the sake of contradiction,
suppose there is such a test φ. Choose δ < θ0 so that
ΩG1δ includes all the distributions in ΩG2 . Now given
any ε > 0, by the above Lemma, there are P1 ∈ ΩG1

and P2 ∈ ΩG2 such that KL(Pn
1 , Pn

2 ) < 4ε2. Hence

sup
E
|Pn

1 (E)− Pn
2 (E)| ≤ 1/2

√
KL(Pn

1 , Pn
2 ) = ε

The supremum is over all the events in the sample
space. Therefore,

sup
R∈ΩG1δ

Rn(φn(On) = 0)

≥ Pn
2 (φn(On) = 0)

≥ Pn
1 (φn(On) = 0)− ε

= 1− Pn
1 (φn(On) = 1 ∨ φn(On) = 2)

≥ 1− sup
P∈ΩG1

Pn(φn(On) = 1 ∨ φn(On) = 2)− ε

→ 1− ε

Note that the selection of ε is arbitrary, which implies

lim
n→∞

sup
R∈ΩG1δ

Rn(φn(On) = 0) = 1

Hence a contradiction. Q.E.D

Proof of Theorem 2.

M entails a unique set of zero partial correlations (we
treat correlations as partial correlations where the set
of variables to control for is empty), and there are
altogether a finite number of partial correlations to
consider among the observed variables. We construct
a test φ as below:

φn(On) =





0 if T 1
n(On) = . . . = T l

n(On) = 0
and T l+1

n (On) = . . . = Tm
n (On) = 1

1 otherwise

where T 1, . . . , T l are the uniformly consistent tests of
vanishing partial correlations for the ones entailed to
be zero by M, and T l+1, . . . , Tm are the tests of van-
ishing partial correlations for the rest. We show that
φ satisfies the requirement. Obviously it only returns
0 and 1. Let

pn
i = sup

P∈Hi
1λ

Pn(T i(On) = 0), i = 1, . . . , l

pn
j = sup

P∈Hj
0

Pn(T j(On) = 1), j = l + 1, . . . , m

where Hi
1λ and Hj

0 have the obvious definitions. Since
T 1, . . . , Tm are uniformly consistent, we have

lim
n→∞

pn
i = 0, i = 1, . . . , m.

Hence

lim
n→∞

max{pn
i : i = 1, . . . ,m} = 0,

Under the λ-strong-faithfulness assumption, it is quite
obvious that,

Pn(φλ
n(On) = 0) ≤ max{pn

i : i = 1, . . . , m}

Therefore

sup
P∈Γ1

Pn(φλ
n(On) = 0) ≤ max{pn

i : i = 1, . . . ,m} → 0

To show that

lim
n

sup
P∈Γ0

Pn(φn(On) = 1) = 0

it suffices to replace max in the foregoing argument
with summation, because the worst case error rate is
bounded above by the sum of the error rates of all the
partial correlation tests, which converges to 0 because
the number of the tests is finite. Q.E.D


