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Abstract

The conditional independence relations
present in a data set usually admit multiple
causal explanations — typically represented
by directed graphs — which are Markov
equivalent in that they entail the same
conditional independence relations among
the observed variables. Markov equivalence
between directed acyclic graphs (DAGs)
has been characterized in various ways,
each of which has been found useful for
certain purposes. In particular, Chickering’s
transformational characterization is useful in
deriving properties shared by Markov equiva-
lent DAGs, and, with certain generalization,
is needed to justify a search procedure
over Markov equivalence classes, known as
the GES algorithm. Markov equivalence
between DAGs with latent variables has also
been characterized, in the spirit of Verma
and Pearl (1990), via maximal ancestral
graphs (MAGs). The latter can represent
the observable conditional independence
relations as well as some causal features of
DAG models with latent variables. However,
no characterization of Markov equivalent
MAGs is yet available that is analogous to
the transformational characterization for
Markov equivalent DAGs. The main contri-
bution of the current paper is to establish
such a characterization for directed MAGs,
which we expect will have similar uses as
Chickering’s characterization does for DAGs.

1 INTRODUCTION

Markov equivalence between directed acyclic graphs
(DAGs) has been characterized in several ways (Verma
and Pearl 1990, Chickering 1995, Andersson et al.

1997). All of them have been found useful for various
purposes. In particular, the transformational char-
acterization provided by Chickering (1995) is useful
in deriving properties shared by Markov equivalent
DAGs. Moreover, when generalized to the I-map re-
lationship, the transformational characterization war-
rants an efficient search procedure over Markov equiv-
alence classes of DAGs, known as the GES algorithm
(Meek 1996, Chickering 2002).

In many situations, however, we need also to consider
DAGs with latent variables. Indeed there are cases
where no DAGs can perfectly explain the observed con-
ditional independence relations unless latent variables
are introduced. Such latent variable models, fortu-
nately, can be represented by ancestral graphical mod-
els (Richardson and Spirtes 2002), in the sense that
for any DAG with latent variables, there is a (maxi-
mal) ancestral graph that captures the exact observ-
able conditional independence relations as well as some
causal relations entailed by that DAG. Since ancestral
graphs do not explicitly include latent variables, they
provide, among other virtues, a finite search space of
latent variable models (Spirtes et al. 1997).

Markov equivalence for ancestral graphs has been char-
acterized in ways analogous to the one given by Verma
and Pearl (1990) for DAGs (Spirtes and Richardson
1996, Ali et al. 2004). However, no characterization is
yet available that is analogous to Chickering’s trans-
formational characterization. In this paper we estab-
lish one for directed ancestral graphs, which we expect
will have similar uses as it does for DAGs. Specif-
ically we show that two directed maximal ancestral
graphs are Markov equivalent if and only if one can be
transformed to the other by a sequence of single mark
changes — adding or dropping an arrowhead — that
preserve Markov equivalence.

The paper is organized as follows. The remaining of
this section introduces the relevant definitions and no-
tations. We then present the main result in section
2, drawing on some facts proved in Zhang and Spirtes



(2005) and Ali et al. (2005). We conclude the paper in
section 3 with a discussion of the potential application,
limitation and generalization of our result.

1.1 DIRECTED ANCESTRAL GRAPHS

In full generality, an ancestral graph can contain three
kinds of edges: directed edge (→), bi-directed edge
(↔) and undirected edge (−−). In this paper, how-
ever, we will confine ourselves to directed ancestral
graphs — which do not contain undirected edges —
until section 3, where we explain why our result does
not hold for general ancestral graphs. The class of
directed ancestral graphs, due to its inclusion of bi-
directed edges, is suitable for representing observed
conditional independence structures in the presence of
latent confounders.

By a directed mixed graph we denote an arbitrary
graph that can have two kinds of edges: directed and
bi-directed. The two ends of an edge we call marks or
orientations. So the two marks of a bi-directed edge
are both arrowheads (>), while a directed edge has
one arrowhead and one tail (−) as its marks. Some-
times we say an edge is into (or out of) a vertex if
the mark of the edge at the vertex is an arrowhead
(or a tail). The meaning of the standard graph the-
oretical concepts, such as parent/child, (directed)
path, ancestor/descendant, etc., remains the same
in mixed graphs. Furthermore, if there is a bi-directed
edge between two vertices A and B (A ↔ B), then A
is called a spouse of B and B a spouse of A.

Definition 1 (ancestral). A directed mixed graph is
ancestral if

(a1) there is no directed cycle; and

(a2) for any two vertices A and B, if A is a spouse of
B (i.e., A ↔ B), then A is not an ancestor of B.

Clearly DAGs are a special case of directed ancestral
graphs (with no bi-directed edges). Condition (a1) is
just the familiar one for DAGs. Condition (a2), to-
gether with (a1), defines a nice feature of arrowheads
— that is, an arrowhead implies non-ancestorship.
This motivates the term ”ancestral” and induces a nat-
ural causal interpretation of ancestral graphs (see, e.g.,
Richardson and Spirtes 2003).

Mixed graphs encode conditional independence rela-
tions by essentially the same graphical criterion as
the well-known d-separation for DAGs, except that in
mixed graphs colliders can arise in more edge config-
urations than they do in DAGs. Given a path u in a
mixed graph, a non-endpoint vertex V on u is called a
collider if the two edges incident to V on u are both
into V , otherwise V is called a non-collider.

Definition 2 (m-separation). In a mixed graph,
a path u between vertices A and B is active (m-
connecting) relative to a set of vertices Z (A,B /∈ Z)
if

i. every non-collider on u is not a member of Z;

ii. every collider on u is an ancestor of some member
of Z.

A and B are said to be m-separated by Z if there is
no active path between A and B relative to Z.

The following property is true of DAGs: if two vertices
are not adjacent, then there is a set of some other
vertices that m-separates (d-separates) the two. This,
however, is not true of directed ancestral graphs in
general, which motivates the following definition.
Definition 3 (maximality). A directed ancestral
graph is said to be maximal if for any two non-
adjacent vertices, there is a set of vertices that m-
separates them.

It is shown in Richardson and Spirtes (2002) that every
non-maximal ancestral graph has a unique supergraph
that is ancestral and maximal, and it is easy to con-
struct the maximal supergraph given a non-maximal
ancestral graph. This justifies considering only those
ancestral graphs that are maximal (MAGs). From now
on, we focus on directed maximal ancestral graphs,
which we will refer to as DMAGs. A notion closely
related to maximality is that of inducing path:
Definition 4 (inducing path). In an ancestral
graph, a path u between A and B is called an inducing
path if every non-endpoint vertex on u is a collider
and is an ancestor of either A or B.

Richardson and Spirtes (2002) proved that the pres-
ence of an inducing path is necessary and sufficient for
two vertices not to be m-separated by any set. So, to
show that a graph is maximal, it suffices to demon-
strate that there is no inducing path between any two
non-adjacent vertices in the graph.

Given any DAG with (possibly) latent variables, the
conditional independence relations as well as the
causal relations among the observed variables can be
represented by a DMAG that include only the ob-
served variables. The DMAG is constructed as fol-
lows: for every pair of observed variables, Oi and Oj ,
put an edge between them if and only if they are not
d-separated by any set of other observed variables in
the given DAG, and mark an arrowhead at Oi (Oj) on
the edge if it is not an ancestor of Oj (Oi) in the given
DAG.

For example, Figure 1(a) is a DAG with latent vari-
ables {L1, L2, L3}. Figure 1(b) depicts the DMAG



(G1) resulting from the above construction. The m-
separation relations in G1 correspond exactly to the
d-separation relations over {X1, X2, X3, X4, X5} in
Figure 1(a). By contrast, no DAG without extra latent
variables has the exact same d-separation relations.
Furthermore, the orientations in G1 accurately repre-
sent the ancestor relationships — which, upon natural
interpretations, are causal relationships — among the
observed variables in 1(a). (This, however, is not the
case with G2.)
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Figure 1: (a): A DAG with latent variables; (b): A
DMAG that captures both the conditional indepen-
dence and causal relations among the observed vari-
ables represented by (a); (c): A DMAG that entails
the right conditional independence relations but not
the right causal relations in (a).

1.2 MARKOV EQUIVALENCE

A DMAG represents the set of joint distributions that
satisfy its global Markov property, i.e., the set of dis-
tributions of which the conditional independence re-
lations entailed by m-separations in the DMAG hold.
Hence, if two DMAGs share the same m-separation
structures, then they represent the same set of distri-
butions.

Definition 5 (Markov equivalence). Two DMAGs
G1,G2 (with the same set of vertices) are Markov
equivalent if for any three disjoint sets of vertices
X,Y,Z, X and Y are m-separated by Z in G1 if and
only if X and Y are m-separated by Z in G2.

Figure 1(c), for example, is a DMAG Markov equiv-
alent to 1(b). It is well known that two DAGs are
Markov equivalent if and only if they have the same
adjacencies and the same unshielded colliders (Verma
and Pearl 1990). Here is the definition of unshielded
collider:

Definition 6 (unshielded collider). In a DMAG, a

triple of vertices 〈A, B,C〉 forms an unshielded col-
lider if A and C are not adjacent, and the edge be-
tween A,B and the edge between B,C are both into
B.

The conditions are still necessary for Markov equiva-
lence between DMAGs, but are not sufficient. For two
DMAGs to be equivalent, some shielded colliders have
to be present in both or neither of the graphs. The
next definition is related to this.

Definition 7 (discriminating path). In a DMAG,
a path between X and Y , u = 〈X, · · · ,W, V, Y 〉, is a
discriminating path for V if

i. u includes at least three edges (i.e., at least four
vertices as specified);

ii. V is adjacent to an endpoint Y on u; and

iii. X is not adjacent to Y , and every vertex between
X and V is a collider on u and is a parent of Y .

Discriminating paths behave similarly to unshielded
triples in that if u = 〈X, · · · ,W, V, Y 〉 is discriminating
for V , then 〈W,V, Y 〉 is a (shielded) collider if and only
if every set that m-separates X and Y excludes V ; it is
a non-collider if and only if every set that m-separates
X and Y contains V . The following proposition is
proved by Spirtes and Richardson (1996)1.

Proposition 1. Two DMAGs over the same set of
vertices are Markov equivalent if and only if

(e1) They have the same adjacencies;

(e2) They have the same unshielded colliders;

(e3) If a path u is a discriminating path for a vertex
B in both graphs, then B is a collider on the path
in one graph if and only if it is a collider on the
path in the other.

2 TRANSFORMATION BETWEEN
EQUIVALENT DMAGS

We present the main result of the paper in this sec-
tion, namely Markov equivalent DMAGs can be trans-
formed to each other by a sequence of single mark
changes that preserve Markov equivalence. We first
describe in section 2.1 two corollaries from Zhang and
Spirtes (2005) and Richardson et al. (2005) which our
arguments will rely upon. Section 2.2 establishes suffi-
cient and necessary conditions for a single mark change
to preserve equivalence. The theorems are then pre-
sented in section 2.3.

1The conditions are also valid for maximal ancestral
graphs that can contain undirected edges.



2.1 LOYAL EQUIVALENT GRAPH

Given a MAG, a mark (or edge) therein is invariant
if it is present in all MAGs equivalent to the given one.
Invariant marks are particularly important for causal
inference because in general data can only determine
up to a Markov equivalence class of graphs. An algo-
rithm of detecting all invariant arrowheads in a MAG
is given by Ali et al. (2005), and that of further detect-
ing all invariant tails is presented in Zhang and Spirtes
(2005). The following is a special case of Corollary 18
in Zhang and Spirtes (2005).

Proposition 2. Given any DMAG G, there exists a
DMAG H Markov equivalent to G such that all bi-
directed edges in H are invariant, and every directed
edge in G is also in H.

We will call H in Proposition 2 a Loyal Equivalent
Graph (LEG) of G. In general a DMAG could have
multiple LEGs. A distinctive feature of the LEGs
is that they have the fewest bi-directed edges among
Markov equivalent DMAGs2. Drton and Richardson
(2004) explored the statistical significance of this fact
for bi-directed graphs (graphs that contain only bi-
directed edges). Roughly speaking, if the LEGs of a
bi-directed graph are DAGs, then fitting is easy; oth-
erwise fitting is not easy (in a specific technical sense).

Another feature which will be particularly relevant to
our argument is that between a DMAG and any of its
LEGs, only one kind of differences is possible, namely,
some bi-directed edges in the DMAG are oriented as
directed edges in its LEG. For a simple illustration,
compare the graphs in Figure 2, where H1 is a LEG of
G1, and H2 is a LEG of G2. (Note that X4 ↔ X5 is in-
variant, which is why no DAG without latent variables
can represent the observable conditional independence
structure entailed by Figure 1(a)).

A directed edge in a DMAG is called reversible if
there is another Markov equivalent DMAG in which
the direction of the edge is reversed. To prove Theorem
2 below, we also need a fact that immediately follows
from Corollary 4.1 in Ali et al. (2005).

Proposition 3. Let A → B be any reversible edge in
a DMAG G. For any vertex C (distinct from A and
B), there is an invariant bi-directed edge between C
and A if and only if there is an invariant bi-directed
edge between C and B.

In particular, if H is a LEG of a DMAG, then A → B
being reversible implies that A and B have the same
set of spouses, as every bi-directed edge in H is invari-
ant.

2For general MAGs, Corollary 18 in Zhang and Spirtes
(2005) also asserts that the LEGs have the fewest undi-
rected edges as well.
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Figure 2: A LEG of G1 (H1) and a LEG of G2 (H2)

2.2 LEGITIMATE MARK CHANGE

Eventually we will show that any two Markov equiv-
alent DMAGs can be connected by a sequence of
equivalence-preserving mark changes. It is thus de-
sirable to give some simple graphical conditions un-
der which a single mark change would preserve equiv-
alence. Lemma 1 below gives necessary and sufficient
conditions under which adding an arrowhead to a di-
rected edge (i.e., changing the directed edge to a bi-
directed one) preserves Markov equivalence. By sym-
metry, they are also the conditions for dropping an
arrowhead from a bi-directed edge while preserving
Markov equivalence.

Lemma 1. Let G be an arbitrary DMAG, and A → B
an arbitrary directed edge in G. Let G′ be the graph
identical to G except that the edge between A and B
is A ↔ B. (In other words, G′ is the result of simply
changing A → B into A ↔ B in G.) G′ is a DMAG
and Markov equivalent to G if and only if

(t1) there is no directed path from A to B other than
A → B in G;

(t2) For any C → A in G, C → B is also in G; and
for any D ↔ A in G, either D → B or D ↔ B is
in G;

(t3) there is no discriminating path for A on which B
is the endpoint adjacent to A in G.

Proof Sketch: 3 We skip the demonstration of neces-
sity because it is relatively easy and will not be used
later. To prove sufficiency, suppose (t1)-(t3) are met,
and we show that they guarantee G′ is a DMAG and

3Some details of the proofs are omitted
for the lack of space, but can be found in
the full version of the paper, available at
www.andrew.cmu.edu/user/jiji/transformation.pdf.



is Markov equivalent to G. To see that G′ is ancestral,
note that it only differs from G, an ancestral graph,
regarding the edge between A and B. So the only way
for G′ to violate the definition of ancestral graph is for
A to be an ancestor of B in G′, which contradicts (t1).

To show that G′ is maximal, we need to show that
there is no inducing path (Definition 4) between any
two non-adjacent vertices. Suppose for contradiction
that there is an inducing path u in G′ between two
non-adjacent vertices, D and E. We show that this
implies the presence of an inducing path between D
and E in G, contradicting the fact that G is maximal.

The first thing to note is that u includes A ↔ B, for
otherwise u would also be an inducing path in G, con-
tradicting the fact that G is maximal. Furthermore,
A is not an endpoint of u, otherwise u is still an in-
ducing path in G according to the definition. We also
note that D is not a parent of B, otherwise D is an
ancestor of E by definition 4, which easily leads to
a contradiction given that G′ has been shown to be
ancestral. (See, e.g., Lemma 4.5 in Richardson and
Spirtes 2002.)

Suppose, without loss of generality, that D is the
endpoint closer to A on u than it is to B. Let
u(D,A) = 〈D = V0, ..., Vn, A〉 be the subpath of u be-
tween D and A. We claim that some Vi is B’s spouse
(in G). The argument for this claim is roughly as fol-
lows: suppose otherwise, i.e., no Vi is B’s spouse, then
we can show by induction that every Vi, and in par-
ticular V0 = D, is a parent of B, a contradiction. The
induction is backward. By (t2), Vn is either a parent
or a spouse of B, but it is not a spouse by supposition,
so it is a parent, which establishes the base case. In
the inductive step, suppose for every m < j ≤ n, Vj

is a parent of B, consider Vm. Vm is adjacent to B,
otherwise u(Vm, B) forms a discriminating path (Defi-
nition 7) for A, which contradicts (t3). It is then easy
to argue that the edge between Vm and B is Vm → B,
which completes the induction.

Let Vj be a spouse of B on u(D, A). Replacing
u(Vj , B) on u with Vj ↔ B yields an inducing path
between D and E that does not include A ↔ B,
and hence an inducing path between D and E in G,
a contradiction. So the initial supposition of non-
maximality is false. G′ is also maximal.

Lastly, we verify that G and G′ satisfy the conditions
for Markov equivalence in Proposition 1. Obviously
they have the same adjacencies, and share the same
colliders except possibly A. But A will not be a col-
lider in an unshielded triple, for condition (t2) requires
that any vertex that is incident to an edge into A is
also adjacent to B. So the only worry is that a triple
〈C,A, B〉 might be discriminated by a path, but (t3)

guarantees that there is no such path.

We say a mark change is legitimate when the condi-
tions in Lemma 1 are satisfied. Recall that for DAGs
the basic unit of equivalence-preserving transforma-
tion is (covered) edge reversal (Chickering 1995). In
the current paper we treat an edge reversal as simply a
special case of two consecutive mark changes. That is,
a reversal of A → B is simply to first add an arrowhead
at A (to form A ↔ B), and then to drop the arrowhead
at B (to form A ← B). An edge reversal is said to be
legitimate if both of the two consecutive mark changes
are legitimate. Given Lemma 1, it is straightforward
to check the validity of the following conditions for le-
gitimate edge reversal. (We use PaG/SpG to denote
the set of parents/spouses of a vertex in G.)

Lemma 2. Let G be an arbitrary DMAG, and A → B
an arbitrary directed edge in G. The reversal of A → B
is legitimate if and only if PaG(B) = PaG(A) ∪ {A}
and SpG(B) = SpG(A).

When there is no bi-directed edge in G, that is, when
G is a DAG, the condition in Lemma 2 is reduced to
the familiar definition for covered edge, i.e., PaG(B) =
PaG(A)∪{A} (Chickering 1995). The condition given
by Drton and Richardson (2004) for a bi-directed edge
in a bi-directed graph to be orientable as a directed
edge in either direction (SpG(B) = SpG(A)) can be
viewed as another special case of the above lemma.

2.3 THE MAIN RESULT

We first state two intermediate theorems crucial for the
main result we are heading for. The first one says if the
differences between two Markov equivalent DMAGs G
and G′ are all of the following sort: a directed edge is
in G while the corresponding edge is bi-directed in G′,
then there is a sequence of legitimate mark changes
that transforms one to the other. The second one says
that if every bi-directed edge in G and every bi-directed
edge in G′ are invariant, then there is a sequence of
legitimate mark changes (edge reversals) that trans-
forms one to the other. The proofs of them follow the
strategy of Chickering’s proof for DAGs.

Theorem 1. Let G and G′ be two Markov equivalent
DMAGs. If every bi-directed edge in G is also in G′,
and every directed edge in G′ is also in G, then there is
a sequence of legitimate mark changes that transforms
one to the other.

Proof Sketch: We prove that there is a sequence of
transformation from G to G′, the reverse of which will
be a transformation from G′ to G. Specifically we show
that as long as G and G′ are different, there is always a
legitimate mark change that can eliminate a difference



between them. The theorem then follows from a simple
induction on the number of differences.

The antecedent of the theorem implies that the dif-
ferences between G and G′ are all of the same sort: a
directed edge (→) is in G while the corresponding edge
in G′ is bi-directed (↔). Let

Diff = {y| there is a x such that x → y is in G and
x ↔ y is in G′}

It is clear that G and G′ are identical if and only if
Diff = Ø. We claim that if Diff is not empty, there is
a legitimate mark change that eliminates a difference.
Choose B ∈ Diff such that no proper ancestor of B
in G is in Diff . Let

DiffB = {x|x → B is in G and x ↔ B is in G′}

Since B ∈ Diff , DiffB is not empty. Choose A ∈
DiffB such that no proper descendant of A in G is in
DiffB . The claim is that changing A → B to A ↔ B
in G is a legitimate mark change — that is, it satisfies
the conditions stated in Lemma 1.

The verifications of conditions (t1) and (t2) in Lemma
1 take advantage of the specific way by which we
choose A and B. For example, if condition (t1) were
violated, i.e., there were a directed path d from A to
B other than A → B, then in order for G′ to be ances-
tral, d would not be directed in G′, which implies that
some edge on d would be bi-directed in G′. It is then
easy to derive a contradiction to our choice of A or B
in the first place. The verification of (t2) is similarly
easy (which uses the fact that G and G′ have the same
unshielded colliders).

To show that (t3) also holds, suppose for contra-
diction that there is a discriminating path u =
〈D, · · · , C, A, B〉 for A in G. By Definition 7, C is a
parent of B. It follows that the edge between A and
C is not A → C, for otherwise A → C → B would be
a directed path from A to B, which has been shown
to be absent. Hence the edge between C and A is bi-
directed, C ↔ A (because C, Definition 7, is a collider
on u). Then the antecedent of the theorem implies
that C ↔ A is also in G′. Moreover, the antecedent
implies that every arrowhead in G is also in G′, which
entails that in G′ every vertex between D and A is
still a collider on u. It is then easy to prove by induc-
tion that every vertex between D and A on u is also
a parent of B in G′ (using the fact that G′ is Markov
equivalent to G), and hence u is also discriminating for
A in G′ (see, e.g., Lemma 3.5 in Ali et al. 2004). But A
is a collider on u in G′ but not in G, which contradicts
(e3) in Proposition 1.

Obviously a DMAG and any of its LEGs satisfy the an-
tecedent of Theorem 1, so they can be transformed to
each other by a sequence of legitimate mark changes.
Steps 0-2, in Figure 3, for example, portraits a step-
wise transformation from G1 to H1.

Theorem 2. Let G and G′ be two Markov equivalent
MAGs. If every bi-directed edge in G and every bi-
directed edge in G′ are invariant, then there is a se-
quence of legitimate mark changes that transforms one
to the other.

Proof Sketch: Without loss of generality, we prove
that there is a transformation from G to G′. It follows
from the antecedent that G and G′ have the same set
of bi-directed edges, and hence all differences between
G and G′ are of the same sort: → is in G, while ← is
in G′. Let

Diff = {y| there is a x such that x → y is in G and
x ← y is in G′}

If Diff is not empty, we can identify a legitimate edge
reversal (i.e., a couple of legitimate mark changes).
Specifically, by exactly the same procedure as that in
the proof of Theorem 1, we can choose an edge A → B.
The claim is that reversing A → B is a legitimate edge
reversal, i.e., satisfies the conditions in Lemma 2.

The verification is fairly easy. Note that A → B, by
our choice, is a reversible edge in G (for A ← B is
in G′, which is Markov equivalent to G). It follows
directly from Proposition 3 (and the assumption about
bi-directed edges in G) that SpG(B) = SpG(A). The
argument for PaG(B) = PaG(A)∪{A} is virtually the
same as Chickering’s proof for DAGs (Lemma 2, in
particular, in Chickering 1995).

Note that after an edge reversal, no new bi-directed
edge is introduced, so it is still true of the new graph
that every bi-directed edge is invariant. Hence we can
always identify a legitimate edge reversal to eliminate
a difference in direction as long as the current graph
and G′ are still different. An induction on the number
of differences between G and G′ would complete the
argument.

Since a LEG (of any MAG) only contains invariant bi-
directed edges, two LEGs can always be transformed
to each other via a sequence of legitimate mark changes
according to the above theorem. For example, steps
2-4 in Figure 3 constitute a transformation from H1 (a
LEG of G1) to H2 (a LEG of G2). Note that Chick-
ering’s result for DAGs is a special case of Theorem 2,
where bi-directed edges are absent.

We are ready to prove the main result of this paper.



Theorem 3. Two DMAGs G and G′ are Markov
equivalent if and only if there exists a sequence of sin-
gle mark changes in G such that

1. after each mark change, the resulting graph is also
a DMAG and is Markov equivalent to G;

2. after all the mark changes, the resulting graph is
G′.

Proof: The ”if” part is trivial – since every mark
change preserves the equivalence, the end is of course
Markov equivalent to the beginning. Now suppose G
and G′ are equivalent. We show that there exists such
a sequence of transformation. By Proposition 2, there
is a LEG H for G and a LEG H′ for G′. By Theo-
rem 1, there is a sequence of legitimate mark changes
s1 that transforms G to H, and there is a sequence of
legitimate mark changes s3 that transforms H′ to G′.
By Theorem 2, there is a sequence of legitimate mark
changes s2 that transformsH toH′. Concatenating s1,
s2 and s3 yields a sequence of legitimate mark changes
that transforms G to G′.

As a simple illustration, Figure 3 gives the steps in
transforming G1 to G2 according to Theorem 3. That
is, G1 is first transformed to one of its LEGs, H1; H1
is then transformed to H2, a LEG of G2. Lastly, H2
is transformed to G2.
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Figure 3: A transformation from G1 to G2

Theorems 1 and 2, as they are currently stated, are
special cases of Theorem 3, but the proofs of them ac-
tually achieve a little more than they claim. The trans-
formations constructed in the proofs of Theorems 1
and 2 are efficient in the sense that every mark change
in the transformation eliminates a difference between
the current DMAG and the target. So the transforma-
tions consist of as many mark changes as the number of
differences at the beginning. By contrast, the transfor-
mation constructed in Theorem 3 may take some ”de-
tours”, in that some mark changes in the way actually
increase rather than decrease the difference between G
and G′. (This is not the case in Figure 3, but if, for
example, we chose different LEGs for G1 or G2, there
would be detours.) We believe that no such detour is
really necessary, that is, there is always a transforma-
tion from G to G′ consisting of as many mark changes
as the number of differences between them. But we
are yet unable to prove this conjecture.

3 Conclusion

In this paper we established a transformational prop-
erty for Markov equivalent directed MAGs, which is
a generalization of the transformational characteriza-
tion of Markov equivalent DAGs given by Chickering
(1995). It implies that no matter how different two
Markov equivalent graphs are, there is a sequence of
Markov equivalent graphs in between such that the
adjacent graphs differ in only one edge. It could thus
simplify derivations of invariance properties across a
Markov equivalence class — in order to show two ar-
bitrary Markov equivalent DMAGs share something in
common, we only need to consider two Markov equiv-
alent DMAGs with the minimal difference. Indeed,
Chickering (1995) used his characterization to derive
that Markov equivalent DAGs have the same number
of parameters under the standard CPT parameteriza-
tion (and hence would receive the same score under the
typical penalized-likelihood type metrics). The dis-
crete parameterization of DMAGs is currently under
development4. We expect that our result will come in
handy to show similar facts once the discrete parame-
terization is available.

The property, however, does not hold exactly for gen-
eral MAGs, which may also contain undirected edges5.

4Drton and Richardson (2005) provide a parameteriza-
tion for bi-directed graphs with binary variables, for which
the problem of parameter equivalence does not arise be-
cause no two different bi-directed graphs are Markov equiv-
alent.

5Undirected edges are motivated by the need to repre-
sent the presence of selection variables, features that influ-
ence which units are sampled (that are conditioned upon
in sampling).



A simple counterexample is given in Figure 4. When
we include undirected edges, the requirement of ances-
tral graphs is that the endpoints of undirected edges
are of zero in-degree — that is, if a vertex is an end-
point of an undirected edge, then no edge is into that
vertex (see Richardson and Spirtes (2002) for details).
So, although the two graphs in Figure 4 are Markov
equivalent MAGs, M1 cannot be transformed to M2
by a sequence of single legitimate mark changes, as
adding any single arrowhead to M1 would make it non-
ancestral. Therefore, for general MAGs, the transfor-
mation may have to include a stage of changing the
undirected subgraph to a directed one in a wholesale
manner.

B C B C

M1 M2

A A

Figure 4: A simple counterexample with general
MAGs: M1 can’t be transformed into M2 by a se-
quence of legitimate single mark changes.

The transformational characterization for Markov
equivalent DAGs was generalized, as a conjecture, to
a transformational characterization for DAG I-maps
by Meek (1996), which was later shown to be true by
Chickering (2002). A graph is an I-map of another if
the set of conditional independence relations entailed
by the former is a subset of the conditional indepen-
dence relations entailed by the latter. This general-
ized transformational property is used to prove the as-
ymptotic correctness of the GES algorithm, an efficient
search algorithm over the Markov equivalence classes
of DAGs. The extension of both the property and the
algorithm to MAGs is now under our investigation.
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