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1. Introduction
Among other things, causal hypotheses ought to predict how the world will respond to an
intervention. How much will we reduce our risk of stroke by switching to a low-fat diet?
How will the chances of another terrorist attack change if the U.S. invades Iraq next
week?  Causal inference is the move from data and background knowledge to justified
causal hypotheses. Epistemologically, we want to characterize the conditions under
which we can do causal inference, that is, what sorts of data and background knowledge
can be converted into knowledge of how the world will respond to an intervention. Over
the last two decades, philosophers, statisticians, and computer scientists have converged
substantially on at least the fundamental outline of a theory of causation that provides a
precise theory of causal knowledge and causal inference (Spirtes, Glymour, and Scheines,
2000; Pearl, 2000).  Different researchers give slightly different accounts of the idea of a
manipulation, or an intervention, but all assume that when we intervene ideally to directly
set the value of exactly one variable, it matters not how we set it in predicting how the
rest of the system will respond.  This assumption turns out to be problematic, primarily
because it often does matter how one sets the value of a variable one is manipulating.  In
this paper we explain the nature of the problem and what can be done to handle it.  We
begin by describing the source of the problem, defined variables.  We illustrate how
interventions on defined variables can be ambiguous, and how this ambiguity affects
prediction.   We then describe how the possibility of ambiguous manipulations affects
causal inference, and illustrate with an example involving both an ambiguous and then an
unambiguous manipulation.

2. Defined Variables

In causal modeling, variables are sometimes deliberately introduced as defined functions
of others variables. More interestingly, sometimes two or more measured variables are
deterministic functions of one another, not deliberately, but because of redundant
measurements, or underlying lawlike connections. This sort of dependency sometimes
shows up as perfect correlation, also known as “multicollinearity,” which creates
problems for data analysis for which a variety of strategies have been developed, e.g.,
“ridge regression.” Perhaps the most principled response is to divide the analysis into
several sub-analyses in none of which are variables deterministically related. But the
most interesting case is much more interesting.
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Consider the following hypothetical example. Through an observational study,
researchers discover, they think, that high cholesterol levels cause heart disease. They
recommend lower cholesterol diets to prevent heart disease. But, unknown to them, there
are two sorts of cholesterol: LDL cholesterol causes heart disease, and HDL cholesterol
prevents heart disease. Low cholesterol diets differ, however, in particular in the
proportions of the two kinds of cholesterol. Consequently, experiments with low
cholesterol regimens differ considerably in their outcomes.

In such a case the variable identified as causal—total cholesterol—is actually a
deterministic function of two underlying factors, one of which is actually causal, the
other preventative. The interventions (diets) are actually interventions on the underlying
factors, but in different proportions. When specification of the value of a variable, such as
total cholesterol, underdetermines the values of underlying causal variables, such as LDL
cholesterol and HDL cholesterol, we will say that manipulation of that variable is
ambiguous. How are such causal relations to be represented, what relationships between
causal relations and probability distributions are there in such cases, and how should one
conduct search when the systems under study may, for all one knows, have this sort of
hidden structure? These issues seem important to understanding possible reasons for
disagreements between observational and experimental studies, non-repeatability of
experimental studies (and not only in medicine—psychology present many examples),
and in understanding the value and limitations of meta-analysis.

3. Causal Inference When Manipulations are Assumed Unambiguous

First, we will consider the case where all manipulations are assumed to be unambiguous.
The general setup is described at length in Spirtes et al. (2000), which we illustrate with
the following example. It is assumed that HDL cholesterol (HDL) causes Disease 1, LDL
cholesterol (LDL) causes Disease 2, and that HDL and LDL cause heart disease (HD).
This causal structure can be represented by the directed acyclic graph shown in

Figure 1.

Figure 1

A directed graph G is the causal graph for a causal system C when there is an edge from
A to B in G if and only if A is a direct cause of B relative to C. Note that for a causal
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system C there is a unique causal graph for C. (We assume that the set of variables in a
causal graph is causally sufficient, i.e. if V is the set of variables in the causal graph, that
there is no variable L not in V that is a direct cause (relative to V » {L}) of two variables
in V).

We assume that a causal system C over a set of causally sufficient variables V satisfies
the Causal Markov Principle: each variable is independent of the set of variables that are
neither its parents nor its descendants, conditional on its parents in the causal graph G for
C. In this case, that entails that HD is independent of {Disease 1, Disease 2} conditional
on {HDL, LDL}, HDL is independent of {LDL, Disease 2}, LDL is independent of
{HDL, Disease 1}, Disease 1 is independent of {HD, LDL, Disease 2} conditional on
HDL, and Disease 2 is independent of {HD, HDL, Disease 1} conditional on LDL.

The Causal Markov Principle is equivalent to the following factorization principle. X is
an ancestor of Y in a graph if there is a directed path from X to Y, or X = Y.  X is a parent
of Y in a graph if there is a directed edge X Æ Y in the graph. Parents(G,Y) is the set of
parents of Y in graph G. If G is a directed graph over S, and X Õ S, X is an ancestral set
of vertices relative to G if and only if every ancestor of X in G is in X. A joint probability
distribution (or in the case of continuous variables a joint density function) P(V) factors
according to a directed acyclic graph (DAG) G when for every X  Õ  V  that is an
ancestral set relative to G,

† 

P(X) = P(X | Parents(G, X))
X ŒX
’

In the example, this entails that P(Disease 1, Disease 2, HDL, LDL, HD} = P(Disease
1|HDL) ¥ P(Disease 2|LDL) ¥ P(HDL) ¥ P(LDL) ¥ P(HD|LDL,HDL). This factorization
entails that the entire joint distribution can be specified in the following way:

P(HDL = High) = .2
P(LDL = High) = .4
P(Disease 1 = Present|HDL = Low) = .2
P(Disease 1 = Present|HDL = High) = .9
P(Disease 2 = Present|LDL = Low) = .3
P(Disease 2 = Present|LDL = High) = .8

P(HD = Present|HDL = Low, LDL = Low) = .4
P(HD = Present|HDL = High, LDL = Low) = .1
P(HD = Present|HDL = Low, LDL = High) =  .8
P(HD = Present|HDL = High, LDL = High) = .3

We will take a joint manipulation {Man(P1(X1))…,Man(Pn(Xn))} for a set of variables
Xi Œ  X as primitive. Intuitively, this represents a randomized experiment where the
distribution P’(X) = 

† 

P'i (Xi)X i ŒX’  is forced upon the variables X. We will also write

{Man(P’1(X1))…,Man(P’n(Xn))} as Man(P’(X)). We assume X can be manipulated to any



distribution over the values of X, even those that have zero probability in the population
distribution over X , as long as the members of X  are jointly independent in the
manipulated distribution. For a set of variables V ⊇  X, a manipulation Man(P’(X))
transforms a distribution P(V) into a manipulated distribution over V  denoted as
P(V ||P’(X )), where the double bar (Lauritzen??) denotes that the manipulation
Man(P’(X)) has been performed.

A DAG G represents a causal system among a set of variables V when P(V) factors
according to G, and for every manipulation  Man(P(X)) of any subset X of V

† 

P(V || P'(X)) = P'(X) ¥ P(V | Parents(G,V ))
V ŒV \ X
’

For example, if HD is manipulated to have the value Present, i.e. P’(HD = Present) = 1,
then the joint manipulated distribution is:

P(Disease 1, Disease 2, HD, LDL, HD = Present||P’(HD)) = 1 ¥ P(Disease 1|HDL) ¥
P(Disease 2|LDL) ¥ P(LDL) ¥ P(HDL), and

P(Disease 1, Disease 2, HDL, LDL, HD = Absent||P’(HD)) = 0 ¥ P(Disease 1|HDL) ¥
P(Disease 2|LDL) ¥ P(LDL) ¥ P(HDL) = 0.

Note that the distribution of HDL  after manipulation of H D to Present, i.e.
P(HDL||P’(HD = Present) = 1) is not equal to the probability of HDL conditional on HD
= Present, i.e. P(HDL|HD = Present).

The Causal Markov Principle allows some very limited causal inferences to be made. For
example, suppose {X,Y} is causally sufficient. A causal graph that contains no edge
between X and Y entails that X is independent of Y, and hence is not compatible with any
distribution in which X and Y are dependent. However, if it is not known whether {X,Y}
is causally sufficient, then assuming just the Causal Markov Principle, no causal
conclusions can be reliably drawn. For example, suppose the causal relationships
between X and Y is known to be linear, and the correlation between X and Y is r. Let the
linear coefficient that describes the effect of X on Y be c (i.e. a unit change in  X produces
a change of c in Y.) Then regardless of the value of r, for any specified c there is a causal
model in which the correlation between X and Y is r, and the effect of X on Y is c. That is
the observed statistical relation (r) places no constraints at all on the causal relation (c).
This negative result generalizes the case where more than two variables are measured.
Even when {X,Y} is known to be causally sufficient, the Causal Markov Principle does
not suffice to produce a unique prediction about the mean effect of manipulating X on Y
no matter what variables are measured, as long as X and Y are dependent.

We will make a second assumption, that is commonly, if implicitly, made in the
statistical literature.



Causal Faithfulness Principle: In a causal system C, if S is causally sufficient, and P(S)
is the distribution over S in C, every conditional independence that holds in P(S) among
three disjoint sets of variables X, Y, and Z included in S is entailed by the causal graph
that represents C under the Causal Markov Condition.

The justification for the Causal Faithfulness Principle (as well as descriptions of cases
where it should not be assumed) is discussed at length in Spirtes et al. (2000). One
justification is that for a variety of parametric families, the Causal Faithfulness Principle
is only violated for a set of parameters that have measure 0 (with respect to Lebesgue
measure, and hence with respect to any of the usual priors placed over the parameters of
the model.)

Given the Causal Markov Principle, and the Causal Markov Principle, there are
algorithms that in the large sample limit correctly infer some of the causal relations
among the random variables, and correctly predict the effects of some manipulations,
even if it is not known whether the measured variables are causally sufficient. For those
causal relations that cannot be inferred, and those effects of manipulations that cannot be
predicted, the algorithms will return “can’t tell”.

4. Causal Inference When Manipulations May Be Ambiguous
Consider what kinds of dependency structures can emerge in a few hypothetical
examples.

4.1.  Example 1

Consider an extenstion of the hypothetical Example 1, shown in Figure 2, in which the
concentration of total cholesterol is defined in terms of the concentrations of high density
lipids and low density lipids. This is indicated in the figure by the bold faced arrows from
HDL and LDL to TC. The other arrows indicate causal relationships. Suppose that high
levels of HDL tend to prevent HD, while high levels of LDL tend to cause HD. We have
the following parameters for Example 1.

HDL = Low, LDL = Low Æ TC = Low
HDL = Low, LDL = High Æ TC = Medium
HDL = High, LDL = Low Æ TC = Medium
HDL = High, LDL = High Æ TC = High

P(HDL = High) = .2
P(LDL = High) = .4
P(Disease 1 = Present|HDL = Low) = .2
P(Disease 1 = Present|HDL = High) = .9
P(Disease 2 = Present|LDL = Low) = .3
P(Disease 2 = Present|LDL = High) = .8



P(HD = Present|HDL = Low, LDL = Low) = .4 = P(HD = Present|TC = Low)
P(HD = Present|HDL = High, LDL = Low) = .1
P(HD = Present|HDL = Low, LDL = High) =  .8
P(HD = Present|HDL = High, LDL = High) = .3 = P(HD = Present|TC = High)

Manipulation of TC is really a manipulation of HDL and LDL. However, even after an
exact level of TC is specified as the target of a manipulation, there are different possible
manipulations of HDL  and LDL  compatible with that target. For example, if a
manipulation sets TC to Medium, then this could be produced by manipulating HDL to
Low and LDL to High, or by manipulating HDL to High and LDL to Low. Thus, even
after the manipulation of TC is completely specified (e.g. to Medium), the effect of the
manipulation on HD is indeterminate (i.e. if the manipulation is HDL to High and LDL to
Low, then after the manipulation P(HD) is .1, but if the manipulation is HDL to Low and
HDL to High, then after the manipulation P(HD) is .8). Hence a manipulation of TC to
Medium might either lower the probability of HD (compared to the population rate), or it
might raise the probability of HD. It is quite plausible that in many instances, someone
performing a manipulation upon TC would not know about the existence of the
underlying variables HDL and LDL, and would not know that the manipulation they
performed was ambiguous with respect to underlying variables. For example,
manipulation of TC could be produced by the administration of several different drugs
that affect HDL and LDL in different ways, and produce different effects on HD.

What is the correct answer to the question “What is the effect of manipulating TC to
Medium on HD?” With no further information, the most informative answer that could be
given is to give the entire range of effects of manipulating TC to Medium (i.e. either
P(HD) = .8 or P(HD = .1)). One might take a Bayesian strategy in which priors were put
over the probability of the underlying variables from which the manipulated variable is
constructed. Another possible answer is to simply output “Can’t tell” because the answer
is indeterminate from the information given. A fourth, but misleading, answer would be
to output one of the many possible answers (e.g. P(HD) = .1).This answer is misleading
as long as it contains no indication that this is merely one of a set of possible different
answers, and an actual manipulation of TC to Medium might lead to a completely
different result. Note that it is the third, misleading, kind of answer that would be
produced by performing a randomized clinical trial on TC; there would be nothing in the
trial to indicate that the results of the trial depended crucially upon details of how the
manipulation was done.
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Figure 2

Suppose now that Disease 1, Disease 2, TC, and HD are the measured variables, and we
assume the Causal Markov and Faithfulness Principles (extended to graphs with
definitional links), but allow that there may be hidden common causes.  What reliable
(pointwise consistent) inferences can be drawn from samples of the distribution described
in Example 1?  We will contrast 2 cases: the case where it is assumed that all
manipulations are unambiguous and the case where the possibility that a manipulation
may be ambiguous is allowed. The general effect of weakening the assumption of no
ambiguous manipulations is to introduce more “Can’t tell” entries.

Manipulate: Effect on: Assume
manipulation
unambiguous

Manipulation
m a y  b e
ambiguous

Disease 1 Disease 2 None None
Disease 1 HD Can’t tell Can’t tell
Disease 1 TC Can’t tell Can’t tell
Disease 2 Disease 1 None None
Disease 2 HD Can’t tell Can’t tell
Disease 2 TC Can’t tell Can’t tell
TC Disease 1 None Can’t tell
TC Disease 2 None Can’t tell
TC HD Can’t tell Can’t tell
HD Disease 1 None Can’t tell
HD Disease 2 None Can’t tell
HD TC Can’t tell Can’t tell

4.2. Example 2

We will now consider what happens when the example is changed slightly. In Example 2,
suppose that the effect of HDL and LDL on the probability of HD actually is completely
determined by TC. Example 2 is the same as the Example 1, except that we have changed
the distribution of HD in the following way:

P(HD = Present|HDL = Low, LDL = Low) =
P(HD = Present|TC = Low) = .1

P(HD = Present|HDL = High, LDL = Low) =
P(HD = Present|HDL = Low, LDL = High) =  
P(HD = Present|TC = Medium) = .3



P(HD = Present|HDL = High, LDL = High) =
P(HD = Present|TC = High) = .8

In this case, while manipulating TC to Medium represents several different manipulations
of the underlying variables HDL and LDL, each of the different manipulations of HDL
and LDL compatible with manipulating TC to Medium produces the same effect on HD
(i.e. P(HD) after manipulation is equal to P(HD = Present|HDL = High, LDL = Low) =
P(HD = Present|HDL = Low, LDL = High)  prior to manipulation, which is .3). In this
case we say that the effect of manipulating TC on HDL is determinate. (Note that the
effect of manipulating TC on Disease 1 is not determinate, because it depends upon how
the manipulation of TC is done. So manipulating a variable may have determinate effects
on some variables, but not on others.)

Interestingly, the Causal Faithfulness assumption actually entails that the effect of TC on
HD  is not determinate. This is because if the effect of manipulating TC on H D is
determinate, then LDL and HDL are independent of HD conditional on TC, which is not
entailed by the structure of the causal graph, but instead holds only for certain values of
the parameters, i.e. those values for which P(HD = Present|HD = Low, LDL = High) =
P(HD = Present|HDL = High, LDL = Low). Hence, in these cases we make a modified
version of the Causal Faithfulness Principle, which allows for the possibility of just these
kinds of determinate manipulations.

What reliable (pointwise consistent) inferences can be drawn from samples of the
distribution described in Example 2? Because there are conditional independence
relations that hold in Example 2 that do not hold in Example 1, more pointwise consistent
estimates of manipulated quantities can be made under the assumption that manipulations
may be ambiguous, than could be made in the previous example.

Manipulate
:

Effect on: Assume
manipulation
unambiguous:
Example 2

Manipulation
m a y  b e
ambiguous:
Example 2

Disease 1 Disease 2 None None
Disease 1 HD Can’t tell Can’t tell
Disease 1 TC Can’t tell Can’t tell
Disease 2 Disease 1 None None
Disease 2 HD Can’t tell Can’t tell
Disease 2 TC Can’t tell Can’t tell
TC Disease 1 None Can’t tell
TC Disease 2 None Can’t tell
TC HD = P(HD|TC) = P(HD|TC)
HD Disease 1 None None
HD Disease 2 None None
HD TC None None



4.3. Example 3

Examples 1 and 2 are two simple cases in which causal conclusions can be reliably made.
Indeed, for those examples, the algorithms that we have already developed and that are
reliable under the assumption that there are no ambiguous manipulations, still give
correct output, as long as the output is suitably reinterpreted according to some simple
rules that only slightly weaken the conclusions that can be drawn.  However, there are
other examples in which this is not the case. For example, if Disease 1 and Disease 2 are
not independent, but are independent conditional on a third measured variable X then no
simple reinterpretation of the output of the algorithm gives answers which are both
informative about cases in which TC does determinately cause HD, and reliable. In all
such examples that we have examined so far, however, the data itself contains
information which indicates that the current algorithm cannot be applied reliably; hence
for these examples the algorithm could simply be modified to check the data for this
condition, and output “can’t tell.”

We do not yet have general conditions under which the data would indicate that the
algorithm cannot be reliably applied (unless the assumption of no ambiguous
manipulations is made.) This raises the question: Are there feasible general algorithms
that are both correct and informative even when the assumption of no ambiguous
manipulations is not made? If so, what are they? What kind of computational complexity
as a function of the number of variables will such algorithms require? What sorts of
sample sizes will such algorithms require in order to be useful?
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