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Abstract A graphical model is a graph that represents a set of conditional
independence relations among the vertices (random variables). The graph is often
given a causal interpretation as well. I describe how graphical causal models can
be used in an algorithm for constructing partial information about causal graphs
from observational data that is reliable in the large sample limit, even when some
of the variables in the causal graph are unmeasured. I also describe an algorithm
for estimating from observational data (in some cases) the total effect of a given
variable on a second variable, and theoretical insights into fundamental
limitations on the possibility of certain causal inferences by any algorithm
whatsoever, and regardless of sample size.
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1 INTRODUCTION

A graphical model consists of a graph with vertices that are random

variables, and an associated set of joint probability distributions over the

random variables, all of which share a set of conditional independence

relations. The graph is often given a causal interpretation as well, in which

case it is a graphical causal model. Linear structural equation models with

associated path diagrams are examples of graphical causal models. By
exploiting the relationship between graphs and conditional independence

relations on the one hand, and graphs and causal relations on the other

hand, many properties of path diagrams can be generalized to a wide variety

of families of distributions, and assumptions about linearity can be relaxed.

Although graphical causal modeling has historical ties to causal modeling

in econometrics and other social sciences, there have been recent
developments by statisticians, computer scientists, and philosophers that

have been relatively isolated from the econometric tradition. In this paper I

will describe a number of recent developments in graphical causal modeling,

and their relevance to econometrics and other social sciences.

The use of graphs to represent both causal relations and sets of
conditional independence relations (which will henceforth be referred to
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as the graphical approach to causal inference) is relevant to econometric and

other social science methodology for three kinds of reasons. First, the

graphical approach to causal inference has led to a more explicit

formulation of the assumptions implicit in some social science methodology

(see, for example, sections 2.3 and 4). This in turn enables one to examine

when the assumptions (and associated methods) are reasonable and when

they are not.

Second, the graphical approach to causal inference has led to the

discovery of a number of useful algorithms. These include, among others,

algorithms for searching for partial information about causal graphs that

are reliable in the large sample limit (the sense of ‘reliability’ and the

assumptions under which the algorithms are reliable are described in section

4), and an algorithm for estimating the total effect of a given variable on a

second variable in some cases, given partial information about causal

graphs, even when some of the variables in the graph are unmeasured

(sections 4.4 and 5).

Third, the graphical approach to causal inference has led to theoretical

insights into fundamental limitations on the possibility of certain causal

inferences by any algorithm whatsoever, and regardless of sample size. One

fundamental limitation on causal inference from observational data is the

underdetermination of causal models by probability distributions, i.e. more

than one causal model is compatible with a given probability distribution.

Using graphical models, the extent of this underdetermination can be

precisely characterized, under assumptions relating causal models to

probability distributions (section 4).

Section 2 describes in more detail a simple kind of graphical model,

a linear structural equation model (LSEM) that illustrates many of the

basic concepts; section 3 describes the main obstacles to reliable causal

modeling and a standard of success that can be applied to judge

whether an algorithm for causal inference is ‘reliable’ or not; section 4

describes assumptions and algorithms that provide reliable causal

inference in LSEMs; section 5 sketches how to extend the same

basic ideas to latent variables models; section 6 mentions some exten-

sions to cyclic models and VAR models; section 7 describes

properties of the search algorithm at finite sample sizes; and section 8 is

the conclusion.

2 LSEM MODELING

LSEMs are a special case of the much broader class of graphical models.

Answers to questions about searching for and selecting LSEMs will shed

light on the problem of searching for and selecting other more realistic

models.
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2.1 The statistical interpretation of LSEMs

In an LSEM the random variables are divided into two disjoint sets, the

substantive variables (typically the variables of interest) and the error

variables (summarizing all other variables that have a causal influence on

the substantive variables). Corresponding to each substantive random

variable V is a unique error term eV. An LSEM contains a set of linear

equations in which each substantive random variable V is written as a linear

function of other substantive random variables together with eV, a

correlation matrix among the error terms, and the means of the error

terms. Initially, it will be assumed that the error variables are multivariate

normal. However, many of the results that are proved are about partial

correlations, which do not depend upon the distribution of the error terms,

but depend only upon the linearity of the equations and the correlations

among the error terms.

The only LSEMs that will be considered are those that have coefficients

for which there is a reduced form (i.e. all substantive variables can be written

as functions of error terms alone), all variances and conditional variances

among the substantive variables are finite and positive, and all conditional

correlations among the substantive variables are well defined (e.g. not

infinite).

The path diagram of an LSEM with uncorrelated errors is written with

the conventions that it contains an edge ARB if and only if the coefficient

for A in the structural equation for B is non-zero, and there is a double-

headed arrow between two error terms eA and eB if and only if the

correlation between eA and eB is non-zero. (‘Path diagram’ and ‘graph’ will

be used interchangeably in what follows. What makes these equations

‘structural’ is described in section 2.2.) An error term that is not correlated

with any other error term is not included in the path diagram.

The following model is an example of an LSEM with free parameters. The

path diagram for the LSEM is G1 of Figure 1. A directed graph consists of a

set of vertices and a set of directed edges, where each edge is an ordered pair

of vertices. In G1, the vertices are {A,B,C,D,E}, and the edges are {BRA,

BRC, DRC, CRE}. In G1, B is a parent of A, A is a child of B, and A and B

are adjacent because there is an edge ARB. A path in a directed graph is a

sequence of adjacent edges (i.e. edges that share a single common endpoint).

A directed path in a directed graph is a sequence of adjacent edges all

pointing in the same direction. For example, in G1, BRCRE is a directed

Figure 1 G1 of Model 1

Graphical models, causal inference, and econometric models 3



path from B to E. In contrast, BRCrD is a path, but not a directed path in

G1 because the two edges do not point in the same direction; in addition, C is

a collider on the path because both edges on the path are directed into C. A
triple of vertices <B,C,D> is a collider if there are edges BRCrD in G1;

<B,C,D> is an unshielded collider if in addition there is no edge between B

and D. E is a descendant of B (and B is an ancestor of E) because there is a

directed path from B to E; in addition, by convention, each vertex is a

descendant (and ancestor) of itself. A directed graph is acyclic when there is

no directed path from any vertex to itself: in that case the graph is a directed

acyclic graph, or DAG for short.

The structural equations are: A :5hBAB+eA; B :5eB; C :5hBCB+hDCD+eC;
D :5eD; and E :5hCEC+eE. hBA, hBC, hDC, and hCE are free parameters of the

model, which take on any real values except zero (which is excluded in order

to ensure that a model and its submodels are disjoint). For reasons

explained in section 2.2, following the notation of Lauritzen (2001), an

assignment operator ‘:5’ rather than an equals sign is used, to emphasize

that the equation is a structural equation. The other free parameters are the

variances and means of the error terms eA, eB, eC, eD, and eE, which are

denoted by sA, sB, sC, sD, sE, and mA, mB, mC, mD, and mE respectively. The
set of free parameters is denoted asH15,hBA, hBC, hDC, hCE, sA, sB, sC, sD,
sE, mA, mB, mC, mD, mE., and the model with free parameters as <G1, H1>.

If specific values are assigned to the free parameters, e.g. H15,hBA52,

hBC50.6, hDC520.4, hCE51.3, sA51, sB51, sC51, sD51, sE51, mA50,

mB50, mC50, mD50, mE50., then the resulting parameterized model is <G1,

H1>. The structural equations are: A :52B+eA; B :5eB; C :50.6B20.4D+eC;
D :5eD; and E :51.3C+eE.

The covariance matrix over the error terms (the non-diagonal terms are
zero because there are no double-headed arrows in G1), together with

the linear coefficients, determine a unique covariance matrix over the

substantive variables A, B, C, D, and E. For a particular pair <G1, H1> the

corresponding distribution is denoted as f(<G1, H1>). The range of some

parameters must be restricted in order for the parameters to specify a

probability distribution; e.g. the standard deviations cannot be negative. In

addition, in order to make submodels disjoint from supermodels, the linear

coefficient free parameters are restricted to non-zero values. Any parameter
value that falls within the restricted range of the parameters will be referred

to as a ‘legal’ parameter value. The set of all distributions corresponding to

legal values of the parameters is denoted as P(<G1, H1>).
In all of the distributions in P(<G1, H1>) some conditional independence

relations hold (i.e. they are entailed to hold for all legal values of the

parameters). The set of conditional independence relations that holds in

every distribution in P(<G1, H1>) is denoted by I(<G1, H1>). In a multi-

variate normal distribution, the partial correlation r(X,Y|Z) is zero if and
only if X and Y are independent conditional on Z. So for multivariate
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normal distributions, the conditional independence relations in I(<G1, H1>)

can be specified by listing a set of zero partial correlations among the

variables.1

There are many different ways of parameterizing a graph such as G1.

Because G1 is a DAG (i.e. it contains directed edges, but no directed cycles

and no bidirected edges), the LSEM parameterization has the property that

it entails that each variable in G1 is independent of the variables that are

neither its descendants nor its parents, conditional on its parents. Any

probability distribution that satisfies this property for G1 is said to satisfy

the local directed Markov property for G1.

In the multivariate normal case, the following partial correlations are

entailed to equal zero by the local directed Markov property for G1:

r(A,C|{B}), r(A,D|{B}), r(A,E|{B}), r(B,D), r(C,A|{B,D}), r(D,A), r(D,B),

r(E,A|{C}), r(E,B|{C}), and r(E,D|{C}). The list contains some redundan-

cies [e.g. r(B,D) and r(D,B)] because it contains all applications of the local

directed Markov property to each variable in the graph, whether they are

redundant or not.

The conditional independence relations entailed by satisfying the local

directed Markov property in turn entail all of the other conditional

independence relations in I(<G1, H1>). For any distribution that satisfies

the local directed Markov property for G1, all of the conditional

independence relations in I(<G1, H1>) hold. Since these independence

relations don’t depend upon the particular parameterization but only on the

graphical structure and the local directed Markov property, they will

henceforth be denoted by I(G1).

There is an (unfortunately unintuitive) graphical relationship among sets

of variables in a DAG G named ‘d-separation’ that determines which

conditional independence relations belong to I(<G1, H1>) (i.e. are entailed

by satisfying the local directed Markov property). Following Pearl (1988) ;, in

a DAG G, for disjoint variable sets X, Y, and Z, X and Y are d-separated

conditional on Z in G if and only if there exists no path U between an XgX

and a YgY such that (i) every collider on U has a descendent in Z; and (ii)

no other vertex on U is in Z. A DAG G entails that X is independent of

Y conditional on Z (in the multivariate normal case r(X,Y|Z)50 for all

XgX and YgY) if and only if X is d-separated from Y conditional on Z in

G.

For multivariate normal distributions, the set of d-separation relations

between pairs of variables in G1 corresponds to the set of partial correlations

entailed to be zero by the local directed Markov property. For G1, the

complete set of partial correlations entailed to be zero is: {r(A,C|{B}),

r(A,C|{B,D}) r(A,C|{B,E}), r(A,C|{B,D,E}), r(A,D), r(A,D|{B}), r(A,D|

{B,C}), r(A,D|{B,E}), r(A,D|{B,C,E}), r(A,E|{C}), r(A,E|{B}), r(A,E|
{B,C}), r(A,E|{B,D}, r(A,E|{C,D}), r(A,E|{B,C,D}), r(B,D), r(B,D|{A}),
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r(B,E|{C}), r(B,E|{C,D}), r(B,E|{A,C}), r(B,E|{A,C,D}), r(D,E|{C}),

r(D,E|{A,C}), r(D,E|{B,C}), r(D,E|{A,B,C})}.

For multivariate Normal distributions, every probability distribution that
satisfies the set of conditional independence relations in I(<G1, H1>) is also
a member of P(<G1, H1>). However, for other families of distributions, it is

possible that there are distributions that satisfy the conditional indepen-

dence relations in I(<G1, Ha>), but are not in P(<G1, Ha>) (i.e. the

parameterization imposes constraints that are not conditional independence

constraints). See Lauritzen et al. (1990), Pearl (2000), or Spirtes, Glymour

and Scheines (2000) for details.

2.2 The causal interpretation of LSEMs

The conditional distribution f(B|A5a) represents the probability distribu-

tion of B in a subpopulation in which A5a, or when A has been observed to

have value a, but the causal system has not been interfered with. The density

of B when A is manipulated to have value a represents the probability

distribution of B in a hypothetical population in which an manipulation has

been performed on each member of the population to set the value of A to a.
Conditioning is typically the appropriate operation when attempting to

diagnose the value of a hidden variable, or to predict the future.

Manipulating is typically the appropriate operation when calculating the

effect of adopting some policy.

For example, when attempting to determine the probability that someone

who does not have nicotine-stained fingers has lung cancer it would be

appropriate to use f(Lung Cancer5yes|Nicotine-stained fingers5no). In

guessing whether Lung Cancer5yes from the value of Nicotine-stained
fingers, it does not matter whether Nicotine-stained fingers is an effect of

Lung Cancer, a cause of Lung Cancer, or (as is actually the case) Lung

Cancer and Nicotine-stained fingers have a common cause (Smoking). On the

other hand, if one is considering a plan to reduce the incidence of Lung

Cancer by encouraging people to remove the nicotine stains from their

fingers, then the relevant question is whether manipulating the system to

wash nicotine stains off of fingers is going to reduce the incidence of lung

cancer; the quantity that represents this is the distribution of Lung

Cancer5yes when the population is manipulated to have Nicotine-stained

fingers5no. The manipulated distribution does depend upon whether

Nicotine-stained fingers is an effect of Lung Cancer, a cause of Lung

Cancer, or Lung Cancer and Nicotine-stained fingers have a common cause.

In this example, it is intuitively clear that f(Lung Cancer5yes|Nicotine-

stained fingers5no) is not the same as the distribution of Lung

Cancer5yes when the population is manipulated to have Nicotine-stained

fingers5no (because the latter group contains both smokers and non-
smokers.).
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In the rest of this section, notation to describe manipulated distributions

will be introduced, as well as an explanation of how manipulations can be

represented in LSEM. No definition of ‘direct cause’ is provided here, but
an axiomatic approach is adopted that makes assumptions about the

relationships between direct causation and probability distributions, and the

relationship between direct causes and the effects of manipulating variables

in a causal system.

Under the causal interpretation, the equations in an LSEM are

‘structural’ because the variables on the right hand side of the equation

are direct causes of the variables on the left hand side of the equation, and

the equations can be used to calculate the effects of manipulating the
variables in the system. As a result, there is an edge from X to Y in the

corresponding path diagram just when X is a direct cause of Y. Intuitively,

one simple kind of manipulation of a variable A is a randomized experiment

on A which replaces the naturally occurring distribution of A with a new

distribution that is imposed upon it. More complex manipulations allow

randomized experiments to be performed upon multiple variables, or the

value imposed by the randomization to depend upon the values of other

variables. However, for the sake of simplifying the example, it will be
assumed that the randomizations performed upon distinct variables are

done independently, and that the value assigned in the randomization does

not depend upon the values of other variables.

Following the basic framework of Strotz and Wold (1960), such a

randomization can be represented in an LSEM by:

1. Replacing the equation original equation for each variable X that is

randomized with a new equation X :5e9X, where e9X has the

randomizing distribution; and

2. Setting the covariance between e9X and all other error terms to zero.

For example in Model 1, in order to manipulate the distribution of A to a

normal distribution with mean 2 and variance 5, replace A :526B+eA with

A :5e 9A, where e9A has mean 2 and variance 5. The new set of structural

equations and assignments of values after the manipulation is: A :5e 9A;

B :5eB; C :5.6B20.4D+eC; D :5eD; E :51,3C+eE. The new parameters

are H0
1~S hBC~0:6, hDC~{0:4, hCE~1:3, s0A~

ffiffiffi
5

p
, sB~1, sC~1, sD~1,

sE~1, m0A~2, mB~0, mC~0, mD~0, mE~0T.
This new set of structural equations, and the probability distributions

over the new error terms, determines a new joint probability distribution

over the substantive variables. Note that because the new structural

equation for A contains does not contain B, there is also a new path diagram

(see Figure 2) that describes the manipulated population, in which there is

no edge from B to A. The removal of this edge is needed for both the

statistical and the causal interpretations of the graph of the manipulated
model. In the manipulated structural equation model, A is independent of
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all of the other variables, and hence by the local directed Markov property

no edge between A and any other (non-error) variable is needed. Also, in the

manipulated structural equation model, A has no (non-error) causes, and

hence under the causal interpretation, there is no edge between A and any

other (non-error) variables.

Adapting the notation of Lauritzen (2001), if f(A) is manipulated to a new

probability distribution f9(A), denote the new distribution by

f(A,B,C,D,E||{f9(A)}), where the ‘||’ notation denotes manipulation. In this

example f9(A),N(2,5). The special case in which every member of the

population has been assigned the same value of a of A is denoted as

f(A,B,C,D,E||A5a).

After manipulating A, marginal and conditional distributions can be

formed in the usual ways. The marginal f(B) after manipulating A to

distribution f9(A) is denoted by f(B||{f9(A)}), and the manipulated

distribution entailed by <G1,H1> is denoted as f(B||{f9(A)},<G1,H1>). In
this example, since <G1,H1> is hypothesized to be the true model,

f(B||{f9(A)})5f(B||{f9(A)},<G1,H1>)5f(B),N(0,1). Similarly, it is possible

to first manipulate A to f9(A), and then form the conditional distribution

f(B|A5a) after manipulating; this is denoted as f(B|A5a||{f9(A)}).

The set of all joint distributions f(A,B,C,D,E||X,<G1,H1>), where X

ranges over every possible joint manipulation of the variables, is denoted by

M(G1, H1).

There are important differences between manipulating and conditioning.

Both operations transform one probability distribution into a second

probability distribution. In general, conditioning is relative to the set of

values that are conditioned on, but manipulating is relative to a new

probability distribution over the variables that are manipulated. Note,

however, that it is possible to condition on a single value of a variable (e.g.

f(B|A5a)), or to manipulate to a single value of a variable (e.g. f(B||A5a).

In addition, f(A|Bgb), the distribution of A conditional on the

value of B lying in the set of values b is a function of just the joint

distribution of A and B (for conditioning sets that are not measure 0.)

In contrast, f(B||{f9(A)}) in a given population is a function not only

of the joint distribution, but also of the true causal graph. For example,

consider the graph G2 of Figure 3. <Let Model 2 be <G2,H2>, where

H2~Sh0AB~0:4, hBC~0:6, hDC~{0:4, hCE~1:3, s0A~
ffiffiffi
5

p
, s0B~

ffiffiffiffiffiffiffi
0:2

p
,

sC~1, sD~1, sE~1, mA~0, mB~0, mC~0, mD~0, mE~0T. f(<G1,H1>)5
f(<G2,H2>), i.e. the probability distributions are the same. However

Figure 2 When A in G1 is Manipulated
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f(B||f9(A),<G1,H1>)?f(B||f9(A),<G2,H2>), because f(B||f9(A),

<G2,H2>),N(0.8,1.0). Hence, f(B||{f9A)}) depends upon which of G1 or G2

is the true causal graph.

The non-standard notation ‘A :526B+eA’ is used in order to emphasize

that, according to Model 1, A is not just equal to 26B+eA, but that it is
being assigned the value A :526B+eA. The difference between Model 1 and

Model 2 shows up not in the sets of distributions that they represent, but in

the effects of manipulations they entail. According to Model 1, manipulat-

ing A does not change the distribution of B, whereas according to Model 2

the distribution of B changes after manipulating A.

2.3 The relationship between the causal and statistical interpretations

The model <G1,H1> has now been used for two distinct purposes. First it

determines a joint probability distribution over the substantive variables.

Second, it determines the effects of manipulations. The effects of mani-

pulations are not a function of the probability distribution alone. What

assumption links these two distinct uses of the same model? The following

assumption is a generalization of two assumptions: the immediate past

screens off the present from the more distant past; and if X does not cause Y

and Y does not cause X, then X and Y are independent conditional on their

common causes.

Causal Markov Assumption: Each variable is independent of its non-

effects conditional on its direct causes.

In graphical terms, the Causal Markov Assumption states that in the

population distribution, each variable is independent of its non-descendants

and non-parents, conditional on its parents in the true causal graph. As long

as the true causal graph is acyclic and the error terms do not cause each

other and have no common causes, the Causal Markov Assumption is

entailed for any structural equation model (linear or non-linear) by the

weaker assumption that each error term is jointly independent of all of the

other error terms.

This assumption presupposes that while the random variables of a unit in

the population may causally interact, the units themselves are not causally

interacting with each other. For example, if there is a population of people,

at least to a high degree of approximation, Carol’s exercise level affects the

Figure 3 G1 of Model 1; and G2 of Model 2
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rate of her heartbeat, and Bob’s exercise level affects the rate of his

heartbeat, but Carol’s exercise level does not affect the rate of Bob’s

heartbeat and Bob’s exercise level does not affect the rate of Carol’s
heartbeat. On the other hand, Bob having measles may certainly affect

Carol having measles and vice-versa. In that case, in order to apply the

Causal Markov Assumption, the population has to be redefined to make a

unit consist of a set of all of the people who may infect each other; a

population of these units is then a population of sets of people.

It has often been pointed out (e.g. Yule 1926) that in seeming

contradiction to the Causal Markov Assumption, two non-stationary time

series can be correlated even if there are no causal connections between
them. For example if bread prices in England and sea level in Venice are

both increasing over time, they appear to be correlated even though there is

no causal relation between them. Hoover (2003) argues that these apparent

violations of the Causal Markov Assumption are due to the inappropriate

use of the sample correlation coefficient as a test for association between

trends in two different time series. When the appropriate statistical test for

association between trends in two different time series is used, the apparent

counterexamples are shown not to be violations of the Causal Markov
Assumption.

The Causal Markov Assumption, together with the graphical representa-

tion of a manipulation as the breaking of all edges into the manipulated

variables, entails the correctness of the rules for calculating the distribution

after a manipulation.

3 PROBLEMS IN LSEM MODELING

The question investigated in this section is: are there reasonable assumptions

under which it is possible to reliably estimate the effects of manipulations?

In the course of answering this question, it will also be necessary to ask if

there are reasonable assumptions under which it is possible to reliably find

the true causal graph.

To be more specific, the following example will be used. Suppose that

Model 1 in Figure 1 is the true causal model. It is not known what the true

causal model is, but some sample data is available. For the purposes of
illustration, assume as background knowledge that the correct model is an

LSEM, and the correct model does not have latent variables, correlated

errors, or cycles. (These unrealistic assumptions will be relaxed later, but

they simplify the presentation of the basic ideas.) Further assume that some

common measure of how well the data fits Model 1 [e.g. p(x2), or the Bayes
Information Criterion] is high.2 The goal is to answer the following three

questions: What is the effect of manipulating A on B, i.e. f(B||{f9(A)})? What

is the effect of manipulating C on E, i.e. f(E||{f9(C)})? What is the effect of
manipulating B on C, i.e. f(C||{f9B)})? In the context of LSEMs, these
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manipulated distributions are each described by two parameters, the mean

and the variance of the affected variable.

3.1 One sense of ‘reliable’

In the frequentist framework, a good (pointwise consistent) estimator of a

quantity must approach the true value of the quantity in probability in the

large sample limit regardless of what the true causal model is. Under

reasonable assumptions, there are no good estimators in this strong sense

either of causal graphs, or of the effect of manipulations, unless there is very

strong background knowledge. (Note however that there are pointwise (and
even uniform) consistent estimators of the effects of manipulations, given

the correct causal graph.)

On the other hand, there are estimators of causal graphs or of the effects

of manipulations that under some reasonable assumptions succeed except

for models that are intuitively improbable. The frequentist framework does

not provide any formal way of quantifying the improbability of models, but

the Bayesian framework does. In the Bayesian framework, one method of

point estimation of a quantity h proceeds by:

1. Assigning a prior probability to each causal graph.

2. Assigning joint prior probabilities to the parameters H conditional

on a given causal graph. (Assume this prior is assigned in such a way

that conditional on the true causal graph, the posterior converges in
the large sample limit to the correct parameter values with

probability 1.)

3. Calculating the posterior probability of H (which is assumed to be a

function of the posterior probabilities of the graphs and the graph

parameter values.)

4. Turning the posterior probability over the mean and variance of the

affected variable into a point estimate by returning the expected

values of the parameters.

Unfortunately the strict Bayesian procedure is computationally infeasible

for a number of reasons, including the fact that the number of graphs is

superexponential in the number of variables. Note that such an estimator is
a function not only of the data, but also of the prior probabilities. If the set

of causal models (i.e. causal graph – probability distribution pairs) for which

the estimator converges in probability to the correct value has a prior

probability of 1, then say that it is Bayes consistent (with respect to the given

set of priors.) Note that Bayes consistency is weaker than some other

desirable properties in the Bayesian framework, such as minimizing mean

squared error; however, it is not known how to find estimators with these

stronger properties in a computationally feasible way. The procedures that I
will describe for estimation are not themselves what an ideal Bayesian
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unrestricted by computational limitations would do, but under the
assumptions described below they will satisfy a (slightly weakened version

of) Bayes consistency.

4 WEAK BAYES CONSISTENCY

There are two major problems in constructing a Bayes consistent estimator
of the effects of manipulations. They are both problems in which there is

more than one causal theory compatible with a given probability

distribution. I will argue that the first problem ‘unfaithfulness’ is unlikely

to occur; and the second problem, ‘distributional equivalence’ can be solved

by allowing estimators to return ‘can’t tell’ in some (but not all) cases.

4.1 The problem of unfaithfulness

To illustrate the first kind of problem in estimating the effects of a

manipulation, suppose for the moment that Model 1 is the (unknown) true

model, and the only two possible models are Model 1 and Model 3 with the

path diagrams G1 and G3 of Figure 4 respectively. (Subsequent sections will

consider inference when any DAG model is possible.)

It can be shown that P(<G1,H1>),P(<G3,H1>). This entails that

regardless of which f(<G1,H1>)gP(<G1,H1>) is the true distribution, there

is an alternative explanation equally compatible with the data, namely
some f(<G3,H3>)gP(<G3,H3>). Note also that f(E||{f9(C)},<G1,H1>)?
f(E||{f9(C)}, <G3,H3>), because according to Model 3, manipulating C

has no effect on E, while according to Model 1, manipulating C has an

effect on E. In general, regardless of what the true distribution f(V) is,

for any manipulation f(X||{f9(Z)}), there are two models such that

f(V)5f(<GA,HA>)5f(<GB,HB>), but f(X||{f9(Z)},<GA,HA>)?f(X||{f9(Z)},

<GB,HB>), and one of the manipulations had no effect on X. (This problem

is closely related to the issue of choosing a matrix to premultiply a VAR
model in order to produce a diagonal covariance matrix among the

residuals.)

What are the priors under which there exist Bayes consistent estimators?
If a DAG G does not entail that r(X,Y|Z)50 for all legal values of the free

parameters [i.e. r(X,Y|Z)1I(G)], nevertheless there may be some parameter

values H such that r(X,Y|Z)50 in f(<G,H>). In that case say that f(<G,H>)
is unfaithful to G. For example, if f(<G3,H3>)5f(<G1,H1>), then r(B,D)50,

Figure 4 G1 of Model 1, and G4 of Model 4
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because r(B,D)50 is entailed by G1. Because there is an edge between B and

D in G3, it follows that for any set Z, r(B,D|Z)1I(G3). Hence if

f(<G3,H3>)5f(<G1,H1>), r(B,D)50 but r(B,D)1I(G3), and f(<G3,H3>) is

unfaithful to G3. (If f(<G3,H3>)gP(<G1,H1>) then there are also other zero

partial correlations that are not in I(G3) as well.

Consider the subgraph of G3 containing just the vertices B, D, and E.

Suppose that the variances of B, D, and E are fixed at 1, and that B

represents Total Income, E represents Tax Rates, and D represents Tax

Revenues. In that case the total correlation between Total Income and Tax

Revenues is the sum of two terms. The first term is due to the direct positive

effect of Total Income on Tax Revenues (hBD) and is positive. The second

term is due to the product of the direct negative effect of Tax Rates on Total

Income (hEB) and the direct positive effect of Tax Rates on Tax Revenue

(hED) and is negative. If the two terms exactly cancel each other (i.e.

hBD52hEB,6hED) there is a zero correlation between Total Income and Tax

Revenues.

This algebraic constraint (the cancellation of the two terms) defines a

surface of unfaithfulness in the parameter space. Every set of parameter

values for which f(<G3,H3>)gP(<G1,H1>) lies on the surface of unfaithful-

ness. This polynomial in the free parameters is a two-dimensional surface in

the three dimensions of the space of parameters (assuming the variances are

fixed). Figure 5 shows the plane in which hBD50, and the two-dimensional

surface on which hBD52hEB,6hED. (The set of legal parameter values

actually extends beyond the box shown in Figure 5 because hBD and hED
range from 2‘ to ‘, and there are some additional constraints on the

parameters that place joint limitations on the parameters that are not

shown. In order for Model 3 to unfaithfully represent a distribution in

P(<G1,H1>), other algebraic constraints, which are not shown, must be

satisfied as well).

Note that any value of hBD is compatible with r(B,D)50 because each

value of hBD occurs somewhere on the surface of unfaithful parameters. So,

if E were unobserved, any possible direct effect of B on D would be

compatible with the observed correlation r(B,D)50.

In general, for parametric models, the set of parameters associated with

unfaithful distributions is of lower dimension than the full parameter space,

and hence is of Lebesgue measure 0. If the only two choices were between

Model 1 and Model 3, and the population distribution was faithful to G1

(and hence unfaithful to G3) it would follow that for any prior distribution

that assigns non-zero probability to each graph, and a zero probability to

lower dimension subspaces of the parameter space, with probability 1 in the

large sample limit the posterior probability of Model 1 approaches 1 and the

posterior probability of Model 3 approaches 0. Assuming that each graph is

assigned a non-zero probability, and (temporarily) assuming the only two
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DAGs with positive probability are G1 and G3, the following assumption is

sufficient to guarantee the existence of Bayes consistent estimators:

Bayesian Causal Faithfulness Assumption: If G is the true causal graph,
and G does not entail X is independent of Y conditional on Z (i.e. X

independent of Y conditional on Z1I(G)) the set of parameter values H
such that X is independent of Y conditional on Z in f(G,H) has prior

probability zero.

In the example described above, this entails assigning the set of parameter

values in Model 3 such that hBD52hEB,6hED (among others) a zero prior

probability.3 Given the Causal Markov Assumption and the Bayesian

Causal Faithfulness Assumption, with probability 1, X and Y are

independent conditional on Z in f(V) if and only if X is d-separated from

Y conditional on Z in the true causal graph.

4.1.1 Faithfulness and common methods of LSEM selection

The Bayesian Causal Faithfulness Assumption is implicit in several different

common methods of LSEM selection. One method of LSEM selection is to

use background knowledge to construct the model, and a x2 statistical test to
determine whether to accept the model. Nevertheless, it is possible that

Model 3 is true but that because f(<G3,H3>)5f(<G1,H1>), the statistical test
would mistakenly select Model 1 as the true LSEM. (Note that the test is

Figure 5 Surface of Unfaithfulness
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correct about the sample fitting Model 1; it is only incorrect if the test is used

to select Model 1 as a causal model.) Use of such a test to select LSEMs

implicitly assumes that such violations of faithfulness are of low probability
(which we are approximating by assuming zero probability.)

A second method of LSEM selection is to assign a score to each model,

and choose the model with the higher score. Under a model score such as the

Bayesian Information Criterion (BIC) in the large sample limit the

probability of selecting Model 1 over Model 3 is equal to 1. This is because

the Bayesian Information Criterion is a penalized maximum likelihood score

that rewards a model for assigning a high likelihood to the data (under the

maximum likelihood estimate of the values of the free parameters), and
penalizes a model for being complex (which for causal DAG models without

latent variables can be measured in terms of the number of free parameters

in the model.) For such models, the Bayes Information Criterion is also a

good approximation to the posterior probability in the large sample limit.

Model 3 is more complex (has a higher dimension) than Model 1. In the

large sample limit, the penalty for the higher dimension of Model 3 will

increase fast enough to ensure with probability 1 that Model 1 will be

preferred, given that f(<G1,H1>)gP(<G1,H1>) is the true distribution.
Nevertheless, it is possible that Model 3 is true but that because

f(<G3,H3>)5f(<G1,H1>), the BIC would mistakenly select Model 1. Use

of a score such as BIC to select causal models implicitly assumes that such

violations of faithfulness are of low probability (which is approximated by

assuming zero probability.)

A common practice for variable selection in constructing causal models

for a variable T is to regress T on all other measured variables, and to

remove the variables that have insignificant regression coefficients. The
implicit justification for this procedure is that if the regression coefficient for

X is insignificant, then it is probable that the effect of X on T is small.

Assuming linearity, the regression coefficient for X when T is regressed on

all of the other observed variables is equal to zero if and only if the partial

correlation between T and X conditional on all the other observed variables

is also zero. So this practice also implicitly assumes, at least approximately,

an instance of the Bayesian Causal Faithfulness Assumption.

4.1.2 Faithfulness and priors

In general, for parametric models, the set of parameters associated with

unfaithful distributions is of lower dimension than the full parameter space,

and hence is of Lebesgue measure 0. Any Bayesian who assigns a prior

absolutely continuous with Lebesgue measure (as all of the typical priors

are) to the linear coefficients in an LSEM is adopting a prior that satisfies

the Bayesian Causal Faithfulness Assumption. Of course, a Bayesian is free
to assign non-standard priors that violate the Bayesian Causal Faithfulness
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Assumption, and there are circumstances where a prior obeying the

Bayesian Causal Faithfulness Assumption is not appropriate. So the status

of the Bayesian Faithfulness Assumption is that it functions as a default that
can be overridden by specific knowledge about a system.

One kind of case in which the Bayesian Faithfulness Assumption should

not be made is if there are deterministic relationships between measured

variables. If the true causal graph is XRYRZ, and X5Y5Z, then X and Y

are independent conditional on Z (because X is a function of Y), even

though X and Y are not d-separated conditional on Z in the true causal

graph. Theoretically it is possible to detect when there are deterministic

relations among the observed variables, in which case the Bayesian
Faithfulness Assumption should not be made. In practice it may be difficult

to detect that some variable is a function of a large set of other variables.

A second kind of case in which the Bayesian Faithfulness Assumption

should not be made are cases in which parameters may be deliberately

chosen in such a way as to violate the Bayesian Faithfulness Assumption.

Hoover (2001) describes an example where policy makers adopt a rule for

minimizing the variance of GDP at time t by controlling the money stock.

The parameters relating money stock at time t to money stock and GDP at
t-1 that minimize the variance of GDP at t also lead to violations of

faithfulness, in which both GDP at t-1 and money stock at t-1 are

uncorrelated with GDP at t.

Even given the Bayesian Faithfulness Assumption, there are no pointwise

consistent estimators of either the correct causal graph or of the effects of a

manipulation, because any estimator is sometimes wrong (albeit on a set of

measure 0), e.g. when f(<G3,H3>)5f(<G1,H1>) and there is no way to

reliably decide which model is correct.
The Bayesian Faithfulness Assumption excludes a non-zero probability

for parameters H3 such that f(<G3,H3>)5f(<G1,H1>), but it does not

exclude a high probability for ‘near-unfaithfulness’, i.e. that f(<G3,H3>) is
arbitrarily close to f(<G1,H1>). In that case, Model 3 still predicts an effect

of manipulating C on E that is zero, and hence far away from the prediction

of Model 1. For the usual model selection methods, detecting that Model 3

is correct if it is near-unfaithful requires very large sample sizes. An open

research question is whether there are plausible stronger versions of the
Bayesian Faithfulness Assumption that would make near-unfaithfulness

unlikely. (For a discussion of near-unfaithfulness in the frequentist

frameworks, see Spirtes, Glymour and Scheines 2000; and Robins et al.

2003.)

4.2 Distributional equivalence

It can be shown that Model 1 and Model 2 in Figure 6 represent exactly the
same set of probability distributions, i.e. P(<G1,H1>)5P(<G2,H2>). In that
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case say that <G1,H1> and <G2,H2> are distributionally equivalent. Whether

two models are distributionally equivalent depends not only on the graphs

in the models, but also on the parameterization families of the models (e.g.

multivariate normal). A set of models that are all distributionally equivalent

to each other is a distributional equivalence class. If the graphs are all

restricted to be DAGs, then they form a DAG distributional equivalence

class.

G1 and G2 are conditional independence equivalent if and only if

I(G1)5I(G2). In contrast to distributional equivalence, conditional indepen-

dence equivalence depends only upon the graphs of the models, and not on

the parameterization families. Conditional independence equivalence of G1

and G2 is a necessary, but not always sufficient condition for the distri-

butional equivalence of <G1,HA> and <G2,HB>. In the case of multivariate

normal or discrete distributions without latent variables, conditional

independence equivalence does entail distributional equivalence. A set of

graphs that are all conditional independence equivalent to each other is a

conditional independence equivalence class. If the graphs are all restricted to

be DAGs, then they form a DAG conditional independence equivalence class.

G1 and G2 are conditional independence equivalent, and form a DAG

conditional independence equivalence class.

<G1,H1> and <G2,H2> of Figure 6 are different models only in the sense

that they differ in their predictions of the effects of some manipulations, i.e.

M(<G1,H1>)?M(<G2,H2>). For example, Model 1 predicts that manipu-

lating A has no effect on B; Model 2 predicts that manipulating A has an

effect on B. Because they represent the same set of probability distributions,

without further background knowledge no reliable statistical inference from

the data can distinguish between them. On the usual scores of models [e.g.

p(x2), BIC, etc.] they receive the same score on every data set.

Suppose that it were known that either Model 1 or Model 2 is correct, but

it is not known which of Model 1 or Model 2 is correct. In that case (as

shown in more detail below) P(C||P9(B)),<G1,H1>)5P(C||P9(B),<G2,H2>),
and P(E||P9(C)),<G1,H1>)5P(E||P9(C),<G2,H2>). So if it were known that

either Model 1 or Model 2 is correct, there are pointwise consistent

estimators of P(C||P9(B)) and P(E||P9(C)), even without knowing which of

Model 1 or Model 2 is correct.

On the other hand, in section 2.2 it was shown that f(B||f9(A),

<G1,H1>),N(0,1), but f(B||f9(A),<G2,H2>),N(0.8,1.0). This is because G1

Figure 6 G1 of Model 1; G2 of Model 2; and P1 (pattern for G1 and G2)
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predicts that manipulating A has no effect on B, while G2 predicts

that manipulating A has an effect on B. Since without further infor-

mation there is no way to determine which of these two estimates is
correct, there is no Bayes (or pointwise) consistent estimator of f(B||f9(A)).

For Bayes estimators, in the limit the posterior probability will peak

around two different estimates of the mean. In this example, it

would be possible to output both estimates, but in cases with large

numbers of DAGs in the DAG distributional equivalence class, or when

the possibility of latent common causes is allowed, this is not computa-

tionally feasible.

In cases where it is not computationally feasible to output all of the
different estimates, another correct response is to output ‘can’t tell’. Say that

an estimator is weak Bayes consistent if on a set of causal graph-parameter

pairs of prior probability 1 in the large sample limit the estimator

approaches the true value in probability, or it outputs ‘can’t tell’. (There

is an analogous weakening of pointwise consistent estimators to weak

pointwise consistent estimators.) Of course, if an estimator outputs ‘can’t

tell’ in every case, it would be a weak Bayes consistent estimator, but

uninteresting. Say that an estimator is non-trivial if there are causal graph–
parameter pairs such that with probability 1 in the large sample limit, the

estimator outputs a numerical estimate for those graph-parameter

pairs. There are non-trivial weak Bayes consistent estimators of the effects

of manipulations, given the Causal Markov and Causal Faithfulness

Assumptions.

In general, a necessary condition for the existence of a weak Bayes

consistent estimator of the effect of a manipulation is that every model that

is distributionally equivalent to the true model agrees on the predicted effect
of the manipulation. Hence, in order to determine whether the necessary

condition is satisfied for the effect of manipulating B on C, it is necessary to

know whether the complete set of LSEM DAG models that are

distributionally equivalent to Model 1 agree about their predictions of the

effects of manipulating B on C.

Unfortunately, there is no known computationally feasible algorithm for

determining when two models are distributionally equivalent for arbitrary

parameterizations of a DAG. In part, this is because whether two models
<G1,HA> and <G2,HB> are distributionally equivalent depends not only

upon G1 and G2, but also on the parameterizations HA and HB. However, if

G1 and G2 are DAGs, there is a known general computationally feasible

algorithm for testing when two models <G1,HA> and <G2,HB> are

conditional independence equivalent; conditional independence equivalence

depends only upon G1 and G2, and not on the parameterizations. This test

forms the basis of a general computationally feasible (for graphs in which no

variable has a large number of causes) non-trivial weak Bayes consistent
estimator of the effects of manipulations. The price that one pays for
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constructing the estimator using a test of conditional independence

equivalence, rather than distributional equivalence, is that for some

parameterizations, the former is less informative (i.e. outputs ‘can’t tell’

more often) than the latter. However, as long as the variables are either

multivariate normal or all discrete, the former estimator is not less

informative than the latter estimator.

The reason that a graphical test of conditional independence equivalence

is sufficient for the purpose of constructing a non-trivial weak Bayes

consistent estimator of the effects of manipulations, is that the set of DAGs

that are all conditional independence equivalent is a superset of the set of

DAGs that are in models that are distributionally equivalent for a

given parameterization. Hence, if all of the DAGs that are conditional

independent equivalent to the DAG of a given model agree on their

predictions about the effects of a particular manipulation, then so do all of

the models that are distributionally equivalent to a given model. Theorem 1

(that can be described as the Observational Equivalence Theorem) was

proved in Verma and Pearl (1990).

Theorem 1 (Observational Equivalence Theorem): Two directed acyclic

graphs are conditional independence equivalent if and only if they

contain the same vertices, the same adjacencies, and the same unshielded

colliders.

Theorem 1 entails that the set consisting of G1 and G2 is a DAG conditional

independence equivalence class.

4.3 Patterns: features common to a DAG conditional independence

equivalence class

Theorem 1 is also the basis of a simple representation (called a ‘pattern’ in

Verma and Pearl, 1990) of a DAG conditional independence equivalence

class. Patterns can be used to determine which predicted effects of a

manipulation are the same in every member of a DAG conditional

independence equivalence class and which are not.

A ‘pattern’ P represents a DAG conditional independence equivalence

class X if and only if:

1. P contains the same adjacencies as each of the DAGs in X;

2. each edge in P is oriented as XRZ if and only if the edge is oriented

as XRZ in every DAG in X, and as X–Z otherwise.

Meek (1995), Andersson et al. (1995), and Chickering (1995) =show how to

generate a pattern from a DAG. The pattern P1 for the DAG conditional

independence equivalence class containing G1 of Model 1 is shown in

Figure 6. It contains the same adjacencies as G1, and the edges are the same
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except that the edge between A and B is undirected in the pattern, because it

is oriented as ArB in G1, and oriented as ARB in G2.

4.4 Estimating the effects of a manipulation from a given pattern

Suppose that pattern P1 is given. There is a general procedure for using the

pattern to determine whether there are pointwise or Bayes consistent

estimators of the effect of a manipulation, and if so, what the estimator is.

Here I will simply illustrate the procedure for two simple cases.

Consider first the problem of estimating f(E||{f9(C)}) given P1, where

f9(C),N(2,1). Because manipulated distributions are just probability

distributions, it follows from the chain rule that:

f E f 0 Cð Þkð Þ~
ð?

{?

f E C f 0 Cð Þf gkjð Þf 0 C f 0 Cð Þf gkð ÞdC ð1Þ

where f9(C||f9(C)) is the distribution of C after manipulating the distribution

of C to f9(C); this is f9(C) by definition.

Because all of the paths from C to E in P1 that do not contain colliders are

out of C, it is possible to prove that f(E|C||{f9(C)})5f(E|C) for every member

of the equivalence class represented by P1, i.e. that the distribution of E

conditional on C is the same before and after the manipulation. For both G1

and G2, f(E|C5c||{f9(C)})5f(E|C5c),N(1.3c,1) when f9(C),N(2,1). It

follows from (1) then that:

f E f 0 Cð Þkð Þ~
ð?

{?

f E C f 0 Cð Þkjð Þf C f 0k Cð Þð ÞdC~

ð?

{?

f E Cjð Þf 0 Cð ÞdC ð2Þ

f(E|C) can be estimated from the observed distribution in the usual way.

f9(C) is given. Substituting the estimate for f(E|C) and the given f9(C) into

equation 1 provides a pointwise consistent estimator of f(E||{f9(C)}), which

in this example is N(2.6,2.69).

f(C||{f9(B)}) can be estimated in an analogous way.

Consider next the problem of estimating f(B||{f9(A)}). It is clear from the

undirected edge between A and B in the pattern that some members of the

conditional independence equivalence class (in this case G1) predict that

manipulating A has no effect on B, while other members of the conditional

independence equivalence class (in this case G2) predict that manipulating A

has an effect on B. Since without further information there is no way to

determine which of these two estimates is correct, there is no pointwise or

Bayes consistent estimator of f(B||{f9(A)}) even given P1. In this case a

correct response of an estimator is ‘can’t tell’. Once the possibility of ‘can’t

tell’ as the output of an estimator is allowed, there are nontrivial weak
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pointwise or Bayes consistent estimators of the effects of manipulations,

given P1.

4.5 Searching the space of DAG conditional independence equivalence classes

Given a pattern, there are nontrivial weak pointwise or Bayes consistent

estimators of the effects of manipulations. If there is a Bayes consistent

estimator of patterns, then the pattern estimator and the estimator of the

effect of a manipulation given a pattern can be put together to provide a

nontrivial weak Bayes consistent estimator of the effects of manipulations.

There are two major different approaches to estimating patterns: constraint

based search, described below, and score based search (Chickering 2002).

The Bayesian Causal Faithfulness Assumption is taken as given for both

kinds of searches.

4.5.1 Constraint-based search

A constraint-based search attempts to find the pattern that most closely

entails all and only the conditional independencies judged to hold in the

population. It has an adjacency phase in which the adjacencies are

determined, and an orientation phase in which as many edges as possible

are directed.

The adjacency phase is based on the following two theorems, where

Parents(G,A) is the set of parents of A in G.

Theorem 2: If A and B are d-separated conditional on any subset Z in

DAG G, then A and B are not adjacent in G.

Theorem 3: A and B are not adjacent in DAG G if and only if A and B are

d-separated conditional on Parents(G,A) or Parents(G,B) in G.

The algorithm is stated below. First the algorithm is illustrated in Figure 7,

supposing that P1 is the true unknown pattern, but that it is possible to

perform tests of conditional independence on the observed variables. First,

the algorithm starts with a graph in which every pair of vertices is connected

by an undirected edge, as in (i). Then for each pair of vertices X and Y, the

algorithm tests whether they are independent (which under the Causal

Markov and Bayesian Causal Faithfulness Assumptions amounts to testing

whether they are d-separated conditional on the empty set in the true causal

graph). If they are the algorithm removes the edge, and otherwise the

algorithm leave the edge in. This is illustrated in (ii). This step is justified by

Theorem 2. In (iii), for each pair of vertices that are still adjacent, such as A

and C, the algorithm tests whether they are independent conditional on

any vertex adjacent to A or adjacent to C. For example, A and C are

independent conditional on {B}, which is adjacent to A, so the algorithm
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removes the edge between A and C. Again, this is justified by Theorem 2.

After stage (iii), all of the adjacencies that are left are correct, but the

algorithm does not know this yet. In the next stage of the algorithm (not

shown in Figure 7) for each pair of vertices such as C and E that are still

adjacent, the algorithm tests whether they are independent conditional on

any pair of vertices adjacent to C (and not containing E) or pair of vertices

adjacent to E (and not containing C). There is only one such pair of vertices,

namely B and D. So the algorithm tests whether C and E are independent

conditional on {B,D}, and it finds that they are not. Similarly, the algorithm

tests whether C and D are independent conditional on {B,E}, and whether C

and B are independent conditional on {D,E}. Note that in the case of A and

B there is no pair of vertices (not containing A or B) that are both adjacent

to A or both adjacent to B, so this stage of the algorithm never tests whether

A and B are independent conditional on any subset of the other variables.

Finally, since there is no triple of variables all adjacent to one of the

endpoints of any remaining edge (and not containing the other endpoint),

the adjacency phase of the algorithm halts.

By Theorem 2 and the Bayesian Causal Faithfulness Assumption, every

edge that has been removed is not in the true pattern. Hence, at each stage of

the algorithm Parents(G,X) is a subset of the vertices still adjacent to X. If X

and Y are still adjacent when the adjacency phase of the search ends,

whether X and Y are independent conditional on Parents(G,X)\{Y}4 or

conditional on Parents(G,Y)\{X} has been tested, because the algorithm

tests whether X and Y are independent conditional on every subset of

variables adjacent to X (excluding Y), which includes Parents(G,X)\{Y} as a

subset; similarly the algorithm has tested whether X and Y are independent

conditional on every subset of variables adjacent to Y (excluding X) which

includes Parents(G,Y)\{X}. Hence by Theorem 3, the algorithm has

removed every edge that is not in the true pattern.

Figure 7 Constraint based search, where correct pattern is P1
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The adjacency phase of the algorithm is stated more formally below. Let

Adjacencies(C,A) be the set of vertices adjacent to A in graph C. (In the

algorithm, the graph C is continually updated, so Adjacencies(C,A) is
constantly changing as the algorithm progresses.)

Adjacency Phase of PC Algorithm

Form an undirected graph C in which every pair of vertices in V is

adjacent.

n :50.
repeat

repeat

Select an ordered pair of variables X and Y that are adjacent in C

such that Adjacencies(C,X)\{Y} has cardinality greater than or

equal to n, and a subset S of Adjacencies(C,X)\{Y} of cardinality

n, and if X and Y are independent conditional on S delete edge X –

Y from C and record S in Sepset(X,Y) and Sepset(Y,X);

until all ordered pairs of adjacent variables X and Y such that

Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and

all subsets S of Adjacencies(C,X)\{Y} of cardinality n have been tested

for conditional independence;

n :5n+1;
until for each ordered pair of adjacent vertices X, Y, Adjacen-

cies(C,X)\{Y} is of cardinality less than n.

After the adjacency phase of the algorithm, the orientation phase of the

algorithm is performed. The correctness of the orientation phase of the

algorithm is based on the following theorem, and is illustrated in Figure 8.

Theorem 4: If in a DAG G, A and B are adjacent, B and C are adjacent,

but A and C are not adjacent, either B is in every subset of variables Z

such that A and C are d-separated conditional on Z, in which case

<A,B,C> is not a collider, or B is in no subset of variables Z such A and
C are d-separated conditional on Z, in which case <A,B,C> is a collider.

The first phase of the orientation algorithm is illustrated in Figure 8(i). The

boldfaced lines indicate which orientations are added in that phase of the
algorithm. The first phase of the algorithm looks for triples of variables such

that X and Y are adjacent, Y and Z are adjacent, and X and Z are not

adjacent. For example, the edge between B and D was removed by the

algorithm because B and D are independent conditional on Sepset(B,D)5w.
C1Sepset(B,D), so by Theorem 4 (and the Causal Markov and Bayesian

Causal Faithfulness Assumptions), C is not a member of any set of vertices

R such that B and D are d-separated conditional on R. Then by Theorem 4

the edges are oriented as BRCrD. On the other hand, because
BgSepset(A,C), then by Theorem 4, B is a member of every set R such
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that A and C are d-separated conditional on R. By Theorem 4, the triple

<A,B,C> is not a collider in G, so the orientation A–BRC in the pattern is

left unchanged.

The next phase of the orientation algorithms is shown in Figure 8(ii). The

orientations so far include BRC–E. The edges between B and C, and C and

E do not collide at C, because otherwise they would have been oriented as a

collider in the previous phase. The only way that they do not collide at C is if

the C–E edge is oriented as CRE.

The orientation phase of the PC algorithm is stated more formally below.

The last two orientation rules (Away from Cycles, and Double Triangle) are

not used in the example, but are sound because if the edges were oriented in

ways that violated the rules, there would be a directed cycle in the pattern,

which would imply a directed cycle in the graph (which in this section is

assumed to be impossible). Meek (1995) proved that the orientation rules

are complete (i.e. every edge that has the same orientation in every member

of a DAG conditional independence equivalence class is oriented by these

rules.)

Orientation Phase of PC Algorithm

For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y,

Z are each adjacent in graph C but the pair X, Z are not adjacent in C,

orient X–Y–Z as XRYrZ if and only if Y is not in Sepset(X,Z).

repeat

Away from colliders: If ARB–C, and A and C are not adjacent, then

orient as BRC.

Away from cycles: If ARBRC and A–C, then orient as ARC.

Figure 8 Orientation phase of PC algorithm, assuming true pattern is P1
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Double Triangle: If ARBrC, A and C are not adjacent, A–D–C, and

there is an edge B–D, orient B–D as DRB.

until no more edges can be oriented.

The tests of conditional independence can be performed in the usual way.

Such tests require specifying a significance level for the test, which is a user-

specified parameter of the algorithm. Because the PC algorithm performs a

sequence of tests without adjustment, the significance level does not
represent any (easily calculable) statistical feature of the output, but should

only be understood as a parameter used to guide the search. Nevertheless,

under the Causal Markov Assumption, and the Bayesian Causal

Faithfulness Assumption, the PC algorithm is a Bayes consistent estimator

of the true pattern. The PC algorithm together with the algorithm for

estimating the effects of manipulations from patterns forms a non-trivial

weak Bayes consistent estimator of the effects of manipulations.

5 LATENT COMMON CAUSES

The same general approach towards inference of the effects of manipula-

tions can be taken even when there is the possibility of latent common

causes. When the possibility of latent common causes is admitted the

following modifications to the four basic parts of constructing a non-trivial

weak Bayes consistent estimator of the effects of a manipulation must be

made.

1. The Causal Markov Assumption and the Bayesian Causal

Faithfulness Assumption do not need to be modified.

2. For the purposes of inference, what is of interest is marginal
conditional independence equivalence, where the marginal distribu-

tion is over the observed variables. (Conditional independence

relations that involve unobserved variables cannot be tested and are

of no use in inference based upon observed conditional indepen-

dence relations.) A kind of graph, called a ‘partial ancestral graph’,

represents (some, but not all) features common to every model in a

DAG marginal conditional independence equivalence class. It

requires several more kinds of edges than a pattern does, including
double-headed arrows X«Y, which indicate the presence of a latent

common cause between X and Y.

3. There is a known extension of the constraint based PC algorithm

(the Fast Causal Inference Algorithm, Spirtes et al. 1993 >) that

searches over the space of marginal conditional independence

classes, and outputs a partial ancestral graph. It is a Bayes consistent

estimator of the correct marginal DAG conditional independence

equivalence class, and of some of the features the DAGs in the class
have in common. The Fast Causal Inference Algorithm is more
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complicated and slower than the PC algorithm, but is computation-

ally feasible for around 100 variables, if the true partial ancestral

graph is sparse.

4. There is a known computationally feasible (if the partial ancestral

graph is sparse) weak pointwise consistent algorithm for estimating

the effects of a manipulation from a partial ancestral graph (or

outputting ‘can’t tell’). It is slower and more complicated than the

corresponding algorithm for estimating the effects of manipulations

from a pattern, and is a less informative estimator. It is not known

whether it is complete. See Spirtes et al. (1993, 1999).

Consider again the problems of estimating f(B||{f9(A)}), f(E||{f9(C)}) and

f(C||{f9(B)}), only now allow the possibility that there are latent common

causes. Suppose that the DAG marginal conditional independence

equivalence class is given. Now the DAG marginal conditional indepen-

dence equivalence class containing G1 also contains G4, as well as an infinite

number of other DAGs that are not shown. As in the case with no latent

common causes, any non-trivial weak pointwise consistent estimator of

f(B||{f9(A)}) outputs ‘can’t tell’ because <G1,h1> and <G2,h2> make

different predictions about f(B||{f9(A)}). As in the case with no latent

common causes, there is a non-trivial weak pointwise consistent estimator of

f(E||{f9(C)}) that outputs a numerical estimate because it can be shown that

all of the members of the DAG marginal conditional independence

equivalence class containing <G1,H1> agree on their predictions about

f(E||{f9(C)}). In contrast to the case with no latent common causes, however,

any non-trivial weak pointwise consistent estimator of f(C||{f9(B)}) outputs

‘can’t tell’ because while <G1,h1> and <G2,h2> make the same predictions

about f(C||{f9(B)}), <G4,h4>makes a different prediction (that manipulating

B has no effect on C) about f(C||{f9(B)}) than either <G1,h1> or <G2,h2>.

6 EXTENSIONS TO CYCLES AND VAR MODELS

Systems in some kinds of equilibrium can be represented by cyclic directed

graphs. The situation with respect to directed graphs with cycles is similar in

spirit to the cases of DAGs with or without latent variables. Details about

how to represent a conditional independence equivalence class of graphs

that may contain cycles, and how to search the conditional independence

equivalence class of graphs that may contain cycles are given in Richardson

(1996). One important difference between the theory of graphs with cycles

and those without cycles is that the former applies only to multivariate

normal or discrete distributions that have reached equilibrium. Non-linear

relationships between continuous variables require a much more radical

revision to the theory, introduce many more ‘can’t tell’ answers, and the best

way to handle these cases is an open question.
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Swanson and Granger (1997), Bessler and Lee (2002), Demiralp and

Hoover (2003), and Moneta (2003) used various modifications of the PC

algorithm to search for and selecting causal orderings among contempora-

neous variables in VAR models.

7 FINITE SAMPLE SIZES

How well does the PC algorithm perform at finite sample sizes? With the

appropriate Causal Markov and Bayesian Causal Faithfulness assumptions,

the non-trivial weak Bayes consistency of the estimators described in this

article applies only to a limited class of distributional families for which tests

of conditional independence are available (including multivariate Normal or

multinomial) and to a limited class of models (DAGs with or without latent

variables, linear or discrete cyclic graphs and VAR models). In addition,

they do not always use all available background knowledge (e.g. parameter
equality constraints.) How well an estimator performs on actual data

depends upon at least five factors:

1. The correctness of the background knowledge input to the

algorithm;
2. Whether the Causal Markov Assumption holds;

3. Whether the true model is near-unfaithful;

4. Whether the distributional assumptions made by the statistical tests

of conditional independence hold;

5. The power of the conditional independence tests used by the

estimators (which depends in part on the sample size, and the

number of variables in the conditioning set).

Each of these factors may negatively affect the output in particular cases.

Hence the output of the estimators described in this chapter should be

subjected to further tests wherever possible. However, the problem is made

even more difficult because even under the Bayesian Causal Faithfulness
Assumption, for computational reasons, it is not known how to

probabilistically bound the size of errors. It is possible to perform a

‘bootstrap’ test of the stability of the output of an estimation algorithm, by

running it multiple times on samples drawn with replacement from the

original sample. However, while this can show that the output is stable, it

does not show that the output is close to the truth, because the probability

distribution might be unfaithful, or near-unfaithful, to the true causal graph.

I recommend, as well, running search procedures on simulated data of the
same size as the actual data, generated from a variety of initially plausible

Figure 9 G1 of Model 1; and G4 of Model 4 EO
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models. The results can give an indication of the probable accuracy of the

search procedure and its sensitivity to search parameters and to the

complexity of the data generating process. Of course, if the actual data is
generated by a radically different structure, or if the actual underlying

probability distribution or sampling characteristics do not agree with those

in the simulations, these indications may be misleading. Also it should be

kept in mind that even when a model suggested by an estimator fits the data

very well, it is possible that there are other models that will also fit the data

well and are equally compatible with background knowledge, particularly

when the sample size is small. (These limitations are limitations on

estimators of causal graphs or the effects of manipulations in general, and
not just of the estimators described in this paper.)

What attitude should one have towards a causal model that is output by a

search algorithm, and that passes all of these tests? Passing the tests is

evidence in favor of the model, but there is no currently known method for

quantifying how strong that evidence is. There is no known computationally

feasible way of calculating the posterior probability of a causal model

(although in simple cases without cycles, latent variables, or correlated

errors it is possible to calculate the ratio of posterior probability of two
causal models.) Since near-unfaithfulness is one important way in which the

output at a given sample size can be far from the truth, one open question is

whether it would be possible to quantify the degree of near-unfaithfulness of

a population distribution to a causal graph, and then to calculate

probabilistic bounds on the size of the error for a given maximum level of

near-unfaithfulness. If it is possible to calculate probabilistic error bounds,

then it would be possible to investigate the sensitivity of the probabilistic

error bounds to variations in assumptions about maximum levels of near-
unfaithfulness.

In many respects, the output of the causal model search algorithms is

similar to the output of Gibbs sampling algorithms for estimating the

expected value of a random variable. A Gibbs sampler is irreducible if it is

possible to pass from any state with non-zero probability to any other state

with non-zero probability in a finite number of transitions with non-zero

probability. If a random variable has a finite expectation, and the Gibbs

sampler is irreducible, it is guaranteed to converge to the expected value in
the large sample limit with probability 1. However, proving that a Gibbs

sampler is irreducible can be impossible in practice. Moreover, even if the

irreducibility condition is met, at any given sample size it is not known how

to put even probabilistic bounds on the size of the error (although lower

bounds on the required sample size can sometimes be calculated.) If a Gibbs

sampler is almost reducible, then the output of the Gibbs sampler can be

very far off even at large sample sizes and even when the simulation gives

every appearance of having approximately converged to a stable value
(York 1992).
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As an indication of how the PC algorithm performs on VAR models at

realistic sample sizes, Demiralp and Hoover (2003) tested the PC algorithm

on simulated data (which satisfied the assumptions needed for consistency)
generated from a number of different structural VAR models at sample sizes

of 500. They found that if the signal strength was large, the algorithm was

very successful in its adjacency phase (approaching 100% as the signal

strength grew), and somewhat less successful in the orientation phase

(generally around 70% or more). These numbers are probably an upper limit

to the performance of the algorithm on real data, because in real data the

assumptions that guarantee the consistency of the algorithm may hold only

approximately. Simulation tests of the PC algorithm for LSEMs are
described in Spirtes, Glymour and Scheines (2000) with similar results.

Correct background knowledge about temporal ordering can improve the

reliability of the algorithms.

The problem of how to improve the performance of graph search

algorithms on small samples, and how to extend searches to other kinds of

graphical models is an area of active research. A variety of papers on this

subject and applications of graph search algorithms can be found at <http://
www2.sis.pitt.edu/,dsl/UAI/uai.html>. An implementation of the PC
algorithm and other graphical model search algorithms can be found at

<http://www.phil.cmu.edu/projects/tetrad/>. A modification of the PC

algorithm is incorporated into the HUGIN software, available at <http://
www.hugin.com/>. A number of different Bayesian network searches have

been implemented by Kevin Murphy, and are available at <http://
www.ai.mit.edu/,murphyk/Software/BNT/bnt.html>. Several useful intro-
ductory texts include Spirtes, Glymour and Scheines (2000), Pearl (2000),

and Jordan (1999).

8 CONCLUSION

Interactions between the graphical causal modeling research program and

the econometric causal modeling research program could potentially enrich

both research programs. The research in the graphical causal modeling

research program on automated model search and manipulation estimation,

on theoretical questions about the limits of causal inference, and on what
fundamental assumptions relating causation to probability should be made

are applicable to econometric models. However, while the graphical causal

modeling research program has achieved a great deal of generality in some

areas of research with respect to distributional families, the research for the

most part has been on a rather narrow range of kinds of causal inter-

actions (those represented by DAGs, or occasionally DAGs with latent

variables), The wide variety of econometric models and econometric

causal inference methodology involving time series, equilibria, externally
imposed constraints, systems deliberately chosen to minimize variance,
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contemporaneous causation, etc. could be an important source of methods,

applications, and problems for the graphical causal modeling research

program.
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NOTES

1 In the general case, DAG models actually entail conditional independence
relations among sets of variables. In the multi-variate normal case, all
independence relations between sets of variables X and Y conditional on a
set of variables Z are entailed by conditional independence relations among
each individual variable XgX and YgY conditional on Z. This is not always
the case for non-normal distributions.

2 In counting degrees of freedom, it is assumed that no extra constraints (such as
equality constraints among parameters) are imposed. The Bayesian

Information Criterion for a DAG is defined as log P D ĥhG,G
���

� �
{ d=2ð Þlog N

where D is the sample data, G is a DAG, ĥhG is the vector of maximum
likelihood estimates of the parameters for DAG G, N is the sample size, and d is

the dimensionality of the model, which in DAGs without latent variables is

simply the number of free parameters in the model.
3 There are weaker versions of the Bayesian Causal Faithfulness Assumption

(that assume a zero probability for zero partial correlations only between pairs
of variables that are adjacent) that entail the existence of (weak) Bayes
consistent estimators of the effects of manipulations, but at the cost of making
the estimators more complicated and slower to compute. See Spirtes, Glymour
and Scheines (2000), chapter 12.

4 X\Y is a set whose members are the members of X that are not also members of
Y.
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