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S

There is a long tradition of representing causal relationships by directed acyclic
graphs (Wright, 1934). Spirtes (1994), Spirtes et al. (1993) and Pearl & Verma (1991)
describe procedures for inferring the presence or absence of causal arrows in the graph
even if there might be unobserved confounding variables, and/or an unknown time
order, and that under weak conditions, for certain combinations of directed acyclic
graphs and probability distributions, are asymptotically, in sample size, consistent.
These results are surprising since they seem to contradict the standard statistical
wisdom that consistent estimators of causal effects do not exist for nonrandomised
studies if there are potentially unobserved confounding variables. We resolve the
apparent incompatibility of these views by closely examining the asymptotic properties
of these causal inference procedures. We show that the asymptotically consistent
procedures are ‘pointwise consistent’, but ‘uniformly consistent’ tests do not exist. Thus,
no finite sample size can ever be guaranteed to approximate the asymptotic results.
We also show the nonexistence of valid, consistent confidence intervals for causal
effects and the nonexistence of uniformly consistent point estimators. Our results make
no assumption about the form of the tests or estimators. In particular, the tests could
be classical independence tests, they could be Bayes tests or they could be tests based
on scoring methods such as  or . The implications of our results for observational
studies are controversial and are discussed briefly in the last section of the paper. The
results hinge on the following fact: it is possible to find, for each sample size n,
distributions P and Q such that P and Q are empirically indistinguishable and yet P
and Q correspond to different causal effects.

Some key words: Causation; Confounding; Directed acyclic graph.
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492 J. M. R, R. S, P. S  L. W

1. I

The problem of inferring causal relationships between variables is a topic of continuing
interest. Common statistical wisdom dictates that causal effects cannot be consistently
estimated from observational studies alone unless one observes and adjusts for all possible
confounding variables, and knows the time order in which events occurred. However,
Spirtes (1994), Spirtes et al. (1993) and Pearl & Verma (1991) developed a framework in
which causal relationships are represented by arrows in a directed acyclic graph G. They
also described asymptotically consistent procedures for determining features of causal
structure from data even if we allow for the possibility of unobserved confounding variables
and/or an unknown time order. For certain combinations of directed acyclic graphs and
probability distributions, these procedures can infer the existence or absence of causal
relationships. In particular, Spirtes et al. (1993, Ch. 5, 6) proved the Fisher consistency of
these procedures. Pointwise consistency follows from the Fisher consistency and the uni-
form consistency of the test procedures for conditional independence relationships that
the procedures use.

We will call the framework assumed in Spirtes et al. (1993) the Spirtes–Glymour–
Scheines model. The model is closely related to Wright’s path diagrams (Wright, 1934)
and structural equation models with acyclic path diagrams and uncorrelated errors
(Bollen, 1989, pp. 80–2; Spirtes et al., 2000, pp. 27–8; Pearl, 1995). The Spirtes–Glymour–
Scheines model has also been extended to allow cyclic directed graphs and correlated
errors, although this is not described here; see Spirtes et al. (1998) and Richardson (1996).
The reader is referred to Lauritzen (1996) and Wermuth (1980) for further details on
statistical graphical models. A related approach to causation is based on the theory of
counterfactuals; for a recent discussion of this approach, see Dawid (2000). Philosophical
comments on causality can be found in many places; see Humphreys & Freedman (1996)
and Spirtes et al. (1997) for example.

This paper explores the apparent discrepancy between the common statistical wisdom
and the aforementioned results. We show that under the Spirtes–Glymour–Scheines model
there do, in certain canonical examples, exist ‘pointwise consistent’ tests but there do not
exist ‘uniformly consistent’ tests for causal effects. This implies that these tests are guaran-
teed to yield correct answers with an infinite sample size, but that no test can make such
guarantees in finite samples, even approximately, no matter how large the sample.
Furthermore, we show that valid, consistent confidence intervals do not exist for causal
effect parameters in the presence of potential confounding variables. The methodological
implications of these results for observational studies are controversial, and are briefly
discussed in § 10.

In § 2 we review the Spirtes–Glymour–Scheines model. In § 3 we introduce several
canonical examples. In § 4 we discuss consistent tests. In § 5 we present the main result of
the paper, the nonexistence of uniformly consistent causal inference procedures. Section 6
examines the implications for confidence intervals and point estimates. Section 7 discusses
Bayes tests. In § 8 we discuss the problem of inferring time order. A generalisation of the
results is discussed in § 9. Some further remarks are in § 10. Proofs of results are in
Appendix 1. In the interest of brevity, some proofs are omitted. To make the results precise,
it is necessary to introduce a certain amount of notation. For the reader’s convenience,
we have included a glossary of notation in Appendix 2, which also defines the notion of
‘d-separation’. Throughout the paper, we write X))Y to mean that the random variables
X and Y are independent. We write X))Y |Z to mean that the random variables X and
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493Uniform consistency in causal inference

Y are independent given Z, where X, Y and Z may represent individual random variables
or sets of random variables.

2. T S–G–S    

A directed acyclic graph G is a set of vertices with arrows between some pairs of vertices
such that there is no directed cycle, in that one cannot start at a vertex and follow a
directed path back to that vertex; a directed path between vertices A and B is a sequence
of vertices starting at A and ending at B of the form A�X1� . . .�X

k
�B or of the form

A÷X1÷ . . .÷X
k
÷B. An example of a directed acyclic graph is given in Fig. 1.

YX

Z

Fig. 1. Directed acyclic graph for Example 1.

The Spirtes–Glymour–Scheines model begins with a triple (G, V, P), where G is a directed
acyclic graph with a set of vertices V, V= (X1 , . . . , Xk ) is a vector of random variables
and P is a joint probability distribution for V. The random variable X

j
takes values in a

set X
j
. Arrows represent causal relationships: if there is an arrow pointing from X

i
to X
j
,

it means that X
i

has a direct causal effect on X
j
, relative to V. In what follows we will

always assume that the distribution P is ‘Markov’ to G and we will sometimes assume
that P is ‘faithful’ to G. We now proceed to define these two concepts.

The variable X
i
is in the set of ‘parents’ of a variable X

j
in a directed acyclic graph G,

denoted by 
G
(X
j
), if there is an edge X

i
�X
j
in G; X

j
is a ‘descendant’ of X

i
in G if there

is a directed path from X
i
to X
j
or X

i
=X
j
. A distribution P with density function p is

‘Markov’ to G if

p(x
1
, . . . , x

k
)=a
n

i=1
p{x
i
|pa
G
(x
i
)},

where p{x
i
|pa
G
(x
i
)}=p(x

i
) when pa

G
(x
i
)=B. The formula above is called the ‘Markov

factorisation’ of P according to G. Equivalently, P is Markov to G if for every subset W
of V we have that X

i
))XC
i
|
G
(X
i
), where XC

i
are all variables in V that are not descendants

of X
i
in G. If each of the conditional probabilities p{X

i
|pa
G
(x
i
)} in the Markov factorisation

is well defined, then P has ‘full Markov support’ relative to G. Let P(G) denote all
distributions that are Markov to G. Note that if P is in P(G) then P is ‘compatible’ with
G. The Markov assumption is that if G represents the data generating mechanism for P,
then PµP(G).

Given PµP(G), let I(P) represent all independence and conditional independence
relationships that hold for the variables in V under P. Let I

G
=]
QµP(G)

I(Q) be all inde-
pendence relationships that are common to all the distributions in P(G). We say that P
is ‘faithful’ to G if I(P)=I

G
. Otherwise, P is called ‘unfaithful’. In other words, P is

faithful if it does not possess extra independence relationships not shared by all the other
distributions in P(G).
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What reasons are there for considering the assumption of faithfulness to directed acyclic
graphs to be interesting? After all, as Matus & Studeny have pointed out, there are 18 300
distinct sets of conditional independence relationships that hold in some probability distri-
bution over four variables, but directed acyclic graphs over four variables can faithfully
represent fewer than 1000 patterns of conditional independence relationships (Matus &
Studeny, 1995a, b).

Why expect the patterns of conditional independence relationships that hold among a
set of variables to be among the small percentage that can be faithfully represented by
directed acyclic graphs? One reason that we have chosen to concentrate on inferring
directed acyclic graph models and their generalisations is that they provide a clear causal
semantics for explaining mechanisms by which a probability distribution can be generated
(Spirtes et al., 2000, Ch. 3; Pearl, 2000, pp. 27–40). In addition, such models have long
played an important role in various sciences, such as econometrics.

One reason that the faithfulness assumption should be of interest to statisticians is that
it is implicit in a variety of statistical practices. For example, it is common practice to
select variables that are of interest in an observational causal study by regressing a variable
Y on a set of regressors X and then removing from the study those variables with small
regression coefficients. The regression coefficient of a variable Z is zero if and only if Z is
independent of Y conditional on X. Hence this practice implicitly assumes that a con-
ditional independence relationship indicates a zero causal effect, which is the faith-
fulness assumption. In addition, in cases where P(G) can be parameterised by a family
of distributions with a parameter of finite dimension, the set of unfaithful distributions
typically has Lebesgue measure zero (Spirtes et al., 2000, pp. 41–2; Meek, 1995).

Remark 1. It is important to note that the Spirtes–Glymour–Scheines procedures, in
their most general form, allow for the possibility that the observed variables were measured
with selection bias, leave out latent variables, and include correlated errors and cycles. All
of these possibilities imply that the set of conditional independence relationships that hold
among the observed variables may not be faithful to a directed acyclic graph over the
observed variables. Spirtes et al. (2000) introduce generalisations of directed acyclic graphs,
closely related to the extensions of directed acyclic graphs found in the structural equation
modelling literature, to handle these various possibilities. They still assume, however, that
the set of conditional independence relationships among the observed variables are faithful
to some generalised graph, and this set of conditional independence relationships is still
a small fraction of the total number of possible sets of conditional independence relation-
ships. The extension of the Spirtes–Glymour–Scheines methods to generalised graphs does
not materially affect any of the arguments or conclusions of this paper.

Let V(G)5P(G) denote the set of all distributions that are faithful to G. The faithfulness
assumption is that, if G represents the data generating mechanism for P, then PµV(G).
As Spirtes et al. (2000) say, ‘. . . the Faithfulness Condition can be thought of as the
assumption that conditional independence relations are due to causal structure rather
[than] to accidents of parameter values’.

Let G be some set of directed acyclic graphs of interest. Define P(G)=^
GµG

P(G) and
V (G)=^

GµG
V(G). In many of our examples, G has the following special structure. We

start with time-ordered random variables and we let G be the unique, complete graph
consistent with this time ordering; complete means no missing arrow. Then G is G together
with all subgraphs of G where a subgraph is obtained by deleting some of the arrows in
G. This is the structure of G throughout the paper except in § 8.
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495Uniform consistency in causal inference

Typically, we do not observe all the random variables V. In this case we write
V= (O, U), where O are the observed random variables and U are the unobserved, or
latent, random variables. Let PB denote the marginal distribution of P for the observed O.
We suppose that we have independent and identically distributed observations
On= (O

1
, . . . , O

n
) from PB .

We can now summarise the Spirtes–Glymour–Scheines model. We start with a set of
graphs G and we assume there exists a triple (G, V, P), where GµG, V= (O, U), and that
P is Markov and faithful to G. We observe n independent and identically distributed
observations On= (O

1
, . . . , O

n
) from PB , the O-marginal of P. We shall address the following

question: given two variables of interest X
i
and X

j
in O, and given a sample On from PB ,

can we test whether or not there is an arrow from X
i
to X
j
in G, or, more precisely, is

there a directed path from X
i
to X
j

in G which except for the endpoints contains only
unobserved variables? We also address a related question: can we estimate the size of
the causal effect, as defined in § 4·2, of X

i
on X

j
? It is critical to recognise that in general

the analyst does not know the graph G that generated the data and the only available
information is the data On and possible background knowledge, such as time order.

Even given the Markov and faithfulness assumptions, many distributions over the
random variables in a directed acyclic graph are compatible with more than one directed
acyclic graph which yield different predictions about the causal effect of a variable. For
example, if there are just two measured variables X and Y which are dependent, the joint
distribution over X and Y is compatible with X causing Y or Y causing X. In the former
case, the causal effect of X on Y is not zero, while in the latter case it is zero. When faced
with this situation, the Spirtes–Glymour–Scheines procedures generate the output ‘no
conclusion’. However, there are some distributions that are compatible only with a set of
directed acyclic graphs all of which yield the same prediction about the causal effect of a
variable. The Spirtes–Glymour–Scheines approach is to characterise which distributions
have this property, under a variety of background assumptions.

3. S  

Before proceeding with any technical details, we introduce some examples. In this sec-
tion, we deal with the examples theoretically: we assume that, rather than given a sample
On of size n, we are given the marginal distribution of O. In §§ 4 to 8, we examine the
realistic setting in which the marginal distribution of O is unknown but we obtain a
sample On.

Example 1. Let V= (Z, X, Y ), where X is the number of cigarettes smoked in one year,
Y is a measure of disease at a later time, and Z represents all potential common causes
of X and Y. Suppose, for the purposes of this example, that the following structural
equation model holds, where X, Y and Z are standardised Normal variables:

Z=e
Z
, X=aZ+e

X
, Y=bX+cZ+e

Y
, (1)

where e
X
, e
Y

and e
Z

are Normally distributed with mean 0. The directed acyclic graph G
is given in Fig. 1. In this model, X is a direct cause of Y if and only if bN0. In other
words, there is an arrow from X to Y if and only if bN0. Also, cov (X, Y )=b+ac. Suppose
we do not observe Z. Thus, O= (X, Y ) and U=Z. Suppose we are given that X and Y
are uncorrelated. We will show that this information is sufficient to deduce that X is not
a cause of Y under the Spirtes–Glymour–Scheines model. First note that there are two
explanations for the zero correlation. One possibility is that b and at least one of a and
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c are 0. In this case, inferring that X does not cause Y from the data is correct. On the
other hand, even if b is large we can still obtain a zero correlation between X and Y. This
will happen if b=−ac. For example, we might have b=0·72, a=0·9 and c=−0·8. In
this case, X does cause Y, indeed the causal effect b is large compared to the variance,
and inferring that X does not cause Y would be an error. Intuitively, it seems ‘unlikely’
that b=−ac. To be specific, the set of (a, b, c) values that satisfy b=−ac has Lebesgue
measure 0 in R3. A distribution for which b=−ac is unfaithful to G since it has an
independence between some variables not because of missing arrows in the directed acyclic
graph but because of parameters cancelling each other out as in the equation b=−ac. If
a priori we rule out these unfaithful distributions, which have Lebesgue measure 0, then
the conclusion must be that X does not cause Y.

The theorems that we will present about what causal conclusions can be reliably inferred
from marginal probability distributions are consequences of the following relationships
between the set P of all joint probability distributions over X, Y and Z, the set B of all
values of h and the set PB of all marginal probability distributions over X and Y. Here,
h denotes the causal effect or treatment effect, defined formally in § 4·2. These relationships
are illustrated in Fig. 2. Each joint distribution P uniquely determines both a marginal
g(P) and a value of h= f (P). However, both the function g and the function f are many-
to-one functions: for each marginal distribution PB there are many distributions P such
that PB=g(P), and for each value h there are many distributions P such that h= f (P).

θ=0

Joint distributions for (X, Y, U)

Marginal distributions for (X, Y )
X⊥⊥Y X⊥⊥Y/

θ=| 0
unfaithful

θ=| 0
faithful

Fig. 2. The mapping from joint distributions for
(X, Y, U) to marginal distributions for (X, Y ).
Unfaithful joint distributions with a nonzero causal
effect can make X and Y independent. If the unfaithful
distributions, which have Lebesgue measure 0, are

ruled out, then X)) Y if and only if h=0.

For any subset Q of P, let

f (Q)={hµB : there exists PµQ with f (P)=h}.

Assume that the marginal distribution PB is observed. Then, if faithfulness is not assumed,
for all P, f (g−1PB )=B. If faithfulness is assumed, it is still the case that for all PB , in which
X and Y are dependent, f (g−1PB )=B; however, unlike the unfaithful case, for all PB in
which X and Y are independent, f (g−1PB )=0. Thus, if we assume faithfulness, and if X is
observed to be independent of Y, then the conclusion h=0 can reliably be returned, but
if X is observed to be dependent on Y then the conclusion ‘don’t know’ must be returned.
Given just samples from the observed marginal distribution, this is what entails the exist-
ence of pointwise consistent tests of h=0, but not of other values of h. However, it is also
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497Uniform consistency in causal inference

the case that, even if we assume faithfulness, there are distributions PµP such that f (P)
is arbitrarily large, but the correlation between X and Y is arbitrarily small; as we will
show, this entails that, given samples from the marginal distribution, there is no uniformly
consistent test of any value of h.

Example 2: Deducing noncausation. This example is the same as Example 1 but we drop
the Normality assumption and state the set-up in more generality. Let V= (Z, X, Y ), where
Z represents unobserved confounders, X is an exposure variable and Y is an outcome.
We observe X and Y but not Z. Thus, U=Z and O= (X, Y ). We further assume that the
variables are in known time order with Z preceding X and X preceding Y. There are
exactly eight possible directed acyclic graphs for these variables as shown in Fig. 3, all of
which are subgraphs of G. Then G is this set of eight directed acyclic graphs. We have
partitioned the directed acyclic graphs into a set A with five graphs and a set B of three.
If we assume faithfulness, X))Y for the directed acyclic graphs in the set B, and X and
Y are dependent for the graphs in A.

Z

Z Z Z

Z Z Z Z

X

X X X

X X X XY

Y Y Y

(i)

(vi) (vii) (viii)

(ii) (iii) (iv) (v)

Y

Subset A

Subset B

Y Y Y

Fig. 3. Subgraphs for Example 2 partitioned into subsets A and B.

Suppose X))Y so that the true directed acyclic graph G generating the data is in set B.
Since there is no arrow from X to Y in any graph in B, we then conclude that X does not
cause Y. Suppose now that X is not independent of Y so the true graph G is in set A. Since,
in set A, some graphs have an arrow from X to Y while others do not, we report ‘no
conclusion’. Unlike most familiar statistical procedures, a key component of these causal
procedures is that they can produce the output ‘no conclusion’. This is formalised in § 4.

In this example, if the joint distribution of X, Y and U is known then the hypothesis that
X does not cause Y is identifiable because the hypothesis is true if and only if X and Y are
independent given U. The hypothesis is not a function of the marginal distribution of the
observables X and Y if the assumption of faithfulness is not imposed. If however the assump-
tion of faithfulness is imposed then the hypothesis is a function of the marginal distribution
of X and Y if and only if X and Y are independent, in which case the hypothesis is true.

In the realistic setting where the population distribution of O is unknown, Spirtes et al.
(2000, Ch. 6) suggest that we perform a test of the null hypothesis X))Y based on data
On where the level of the test may depend on n. If the test does not reject, we will accept
X))Y and conclude that X did not cause Y.

We shall see that this procedure can result in pointwise consistent but not uniformly
consistent tests. Pointwise consistency in this setting means the following. For any fixed
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faithful distribution for X, Y , and U under which X and Y are marginally independent,
there exists a sample size n, depending on the alternative, such that we reject the alternative
and accept the hypothesis of no causation with probability arbitrarily close to one. If X
and Y are not independent, there exists a sample size n such that the test produces the
output ‘no decision’ with probability arbitrarily close to one. On the other hand, there is
no uniformly consistent test; that is, there does not exist a sample size n, independent of
the alternative, such that we reject all alternatives outside a neighbourhood of the null
which we will define precisely in § 4, with probability arbitrarily close to one. In the
absence of uniform consistency nontrivial confidence intervals do not exist. Sections 4 to
8 make these ideas precise.

Example 3: Deducing causation. Now suppose we have three time ordered variables
(X, Y, Z). We want to know if Y causes Z. We allow for a confounding variable R between
Y and Z and another possible confounding variable S between X and Z; see Fig. 4. Hence,
V= (X, Y, Z, R, S). The decomposition into observables and unobservables is O= (X, Y, Z)
and U= (R, S). We could also allow for a third confounding variable between X and Y
but this is not crucial to the example.

R

S

Y ZX

Fig. 4. Directed acyclic graph for Example 3.

Suppose we are given that
(i) X and Y are not independent, and not independent given Z,
(ii ) Y and Z are not independent and not independent given X,
(iii ) X and Z are not independent but are independent given Y.
If we assume faithfulness and use the d-separation rules of Pearl (1988, pp. 116–22), it

follows that at least one arrow from R and one arrow from S must be removed. Moreover,
the arrow from Y to Z must be present. We have thus inferred that Y causes Z. The reader
who is unfamiliar with the d-separation rules will not find this immediately obvious from
looking at the directed acyclic graph; d-separation is defined in Appendix 2.

Spirtes et al. (2000) suggest testing the joint null hypothesis (i)–(iii) with an a-level test,
and, if it does not reject, concluding that (i)–(iii) are true and thus that Y causes Z. Again,
this test can be made to be pointwise but not uniformly consistent.

These examples give a sense of how causal inferences are made in this framework; see
Spirtes et al. (2000) for the details of the general theory, which does not require either
time order or the assumption of no latent variables. For clarity, the results in this paper
mostly focus on these last two key examples.

4. C 

4·1. Introduction

To answer questions about the presence or absence of causal arrows from data in the
Spirtes–Glymour–Scheines model, we need to use some test or model-search technique
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499Uniform consistency in causal inference

for choosing between alternative causal models. In this section we review some basic facts
about statistical tests.

Recall that G is a directed acyclic graph for variables V= (X1 , . . . , Xk ), P(G) are all
probability distributions Markov to G and V(G)5P(G) are the distributions that are
faithful to G. Define

PG= p
GµG

{(P, G); PµP(G)}, VG= p
GµG

{(P, G); PµV(G)}.

Thus, (P, G) is in VG if and only if P is faithful to GµG. Note that VG is not the Cartesian
product of V (G) and G. Recall also that V= (O, U), where O is the subset of the variables
of V that are observable and U are the remaining variables. For any PµP (G), PB denotes
the marginal distribution of O under P. We assume that we have a random sample
On= (O1 , . . . , On ) from PB .

4·2. Consistent tests

Let On=O× . . .×O, where O is the range of the set of random variables O, and let Pn
denote the n-fold product measure corresponding to P. Let h=T (P, G), where T maps
VG into R. We call h a ‘parameter.’ In § 4·2 we will formally define the ‘causal effect’ or
‘treatment effect’ which will be the parameter we are interested in. For now we let h be
an arbitrary parameter. We will use the terms ‘causal effect’ and ‘treatment effect’
interchangeably.

Let h0 be a fixed constant and consider testing H0 : h=h0 versus H1 : hNh0 . A test is a
mapping w : On�{0, 1, 2}. The interpretation is that w(On )= 0 means ‘choose H0’,
w(On )=1 means ‘choose H1’, and w(On )=2 means ‘make no decision’; we ignore random-
ised tests which make a random rather than a deterministic decision. We shall be studying
the asymptotic, large-sample, properties of tests. Thus, suppose we specify a test w

n
for

each sample size n and let w= (w1 , w2 , . . . ) represent this sequence of tests. In what follows,
all limits refer to the sample size n tending to 2. When we refer to a test, we mean a
sequence of tests w. A test which always reports ‘no decision’ is not useful. To rule out
such trivial cases, we make the following definition.

D 1. A test w is nontrivial if there exists some PµV (G) and some jµ{0, 1}
such that

lim
n�2

Pn{w
n
(On )= j}=1. (2)

In other words, a test is nontrivial if there is at least one distribution P in the model
such that, with probability tending to one, it eventually settles on a definite decision.
Throughout the rest of this paper, we restrict attention to nontrivial tests. A test is consist-
ent if, at least for large sample sizes, it does not report an incorrect decision. This is
formalised as follows. Let

P
G0
= p
GµG

{PµP(G); T (P, G)=h
0
}, P

G1
= p
GµG

{PµP(G); T (P, G)Nh
0
},

V
G0
= p
GµG

{PµV(G); T (P, G)=h
0
}, V

G1
= p
GµG

{PµV(G); T (P, G)Nh
0
}.

D 2. A test w is pointwise consistent if
(i ) for every PµV

G0
, lim
n�2

Pn{w
n
(On )=1}=0 and

(ii ) for every PµV
G1

, lim
n�2

Pn{w
n
(On )=0}=0.
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500 J. M. R, R. S, P. S  L. W

Let P
Gd
=^
GµG

{PµV(G); |T (P, G)−h0 |�d}; that is P
Gd

contains distributions P com-
patible with a directed acyclic graph G such that the treatment effect is at least d away
from h0 . The notation for the subset of faithful distributions of these sets is similar but
with V in place of P.

D 3. A test w is uniformly consistent if
(i ) lim

n�2
sup
PµVG0

Pn{w
n
(On )=1}=0 and

(ii ) for every d>0, lim
n�2

sup
PµVGd

Pn{w
n
(On )=0}=0.

The difference between a pointwise and a uniformly consistent test is the presence of
the suprema in the definitions. Uniform consistency is what links asymptotic, i.e. large-
sample, procedures to finite samples. To see this, suppose that, given e>0, we wish to
find a sample size n0 (e) such that the probability of falsely rejecting the null hypothesis
and accepting the alternative is bounded above by e if n�n0 (e). To achieve this goal with
a test that is pointwise but not uniformly consistent requires one to know the true distri-
bution that generates the data; that is, n0 (e) is a function of the unknown P. Hence, there
is no sample size n which guarantees that the probability of choosing the wrong hypothesis
is less than e, if P is unknown.

If a test is uniformly consistent then we can find n0 (e) which does not depend on P such
that sup

PµVG0
Pn{w
n
(On )=1}∏e for all n�n0 (e). Furthermore, if the test is uniformly

consistent, then, given an error rate e>0 and a d>0, we can find an n0 such that, for all
n�n0 , the probability of falsely rejecting the null is bounded above by e and the probability
of falsely accepting the null and rejecting the alternative when |T (P, G) |>d is also bounded
above by e for all n�n0 , without knowledge of P or G.

There is a relationship between tests and confidence intervals. Loosely speaking, tests
cannot be inverted to form uniformly consistent confidence intervals unless they are
uniformly consistent. We discuss this further in § 5.

4·3. Causal eVects and hypotheses about causal graphs

In our earlier informal description of Example 2, we constructed tests as follows. We
began with a directed acyclic graph G, and let G be the set of all subgraphs of G. We took
A and B to be two sets of subgraphs. Define V(A) to be all distributions faithful to some
directed acyclic graph in A and V(B) to be all distributions faithful to some directed acyclic
graph in B. We constructed A and B such that V (G)=V(A)^V(B) and V(A)]V(B)=B.
Finally, we tested A versus B by testing PµV(A) versus PµV(B). To put this in the
terminology of § 4·2, deciding that PµV(B) is like reporting w

n
(On )=0, while deciding

PµV(A) is like reporting w
n
(On )=2. At this point, it will clarify the discussion if we

introduce the notion of a causal effect and then express our tests in terms of the causal
effect parameter.

The causal effect of a variable X
i
on another variable X

j
can be thought of as the mean,

or some other summary, of the distribution of X
j
when X

i
is set to a particular value x.

To make this precise, let

p(v)= a
k

r=1
p{x
r
|pa
G
(x
r
)}

be the joint density of V, where 
G
(X
r
) is the set of parents of X

r
in G, and pa

G
(x
r
) is

some particular configuration of values of 
G
(X
r
). Define a new distribution p

G,X
i
=x

(v)
obtained by starting with the joint density p(v) and replacing the factor p{x

i
|pa
G
(x
i
)} with
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a distribution which is a point mass at x; that is

p
G,X
i
=x

(v)=d(x
i
) a
rNi

p{x
r
|pa
G
(x
r
)},

where d(x
i
)=1 if x

i
=x, and d(x

i
)=0 otherwise.

Graphically, p
G,X
i
=x

(x
j
) has the following interpretation. Start with the graph G and

create a new graph by breaking all arrows into X
i
. Then p

G,X
i
=x

is the distribution in the
new graph. We regard p

G,X
i
=x

as the density obtained by setting X
i
=x. It should not

be confused with p(. |X
i
=x), which is the distribution when X

i
is observed to be x. We

call the distribution with density p
G,X
i
=x

the causal distribution. Note that, unlike
p(. |X

i
=x), p

G,X
i
=x

depends upon both the joint distribution p, and on the graph G; two
different data generating mechanisms represented by G1 and G2 respectively could generate
the same distribution, but disagree on their respective causal distributions, p

G
1
,X
i
=x

and
p
G
2
,X
i
=x

.
Let

pAG,X
i
=x

(x
j
)= ∑
x
i
;i=j

p
G,X
i
=x

(v)

be the marginal density for X
j
obtained from p

G,X
i
=x

(v).
The causal effect is usually defined to be some contrast functional of pAG,X

i
=x

(x
j
). In

particular, assume that X
i
is binary and define the causal effect h as the mean of X

j
when

X
i
is set to 1 minus the mean of X

j
when X

i
is set to 0. To be specific, if X

j
denotes the

possible values that X
j
can take, then the ‘causal effect’ is

h= ∑
x
j
µX
j

x
j
pAG,X
i
=1

(x
j
)− ∑
x
j
µX
j

x
j
pAG,X
i
=0

(x
j
)=E

PB
G,Xi=1

(X
j
)−E

PB
G,Xi=0

(X
j
).

The parameter h is sometimes called the ‘treatment effect’. Since h is a function of the
joint distribution P and G we write h=T (P, G). An alternative way to define the causal
effect is by way of the theory of counterfactuals used by Rubin (1974) and Robins (1986,
1987, 1995, 1997). This approach leads to exactly the same formulae for the causal effects.

If G is the directed acyclic graph in Example 2, the formula for the causal effect of X
on Y turns out to be

h¬T (P, G)¬ P {E(Y |X=1, Z=z)−E(Y |X=0, Z=z)} dP(x). (3)

If G is the directed acyclic graph in Example 3, the formula for the causal effect of Y on
Z is

h¬T (P, G)

¬ P {E(Z |Y=1, R=r, S=s)−E(Z |Y=0, R=r, S=s)} dP(r, s).

5. N        

5·1. Overview

In this section we discuss the nonexistence of uniformly consistent tests for causal
hypotheses in the two key examples from § 3. Recall that the first example involves a
potential cause X, an outcome Y and a potential confounder Z. The second example
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involves a covariate X, a potential cause Y, an outcome Z and two potential confounders
R and S. In each example we will take X and Y to be binary. The variables Z, R and S
are discrete and take only finitely many values.

5·2. Example 2

The variables V= (Z, X, Y ) are assumed to be time ordered as Z then X then Y. The
variable Z represents possible confounding variables. The question of interest is whether
or not X causes Y ; that is, is there an arrow from X to Y ?

Recall that, if we observe X and Y to be nearly independent in a large sample,
the conclusion from the informal reasoning in § 3 is that X does not cause Y, that is
w
n
(On )=0. However, when X and Y were observed to be dependent, the outcome of the

test was ‘no decision about causation’, that is w
n
(On )=2. Let G be the complete directed

acyclic graph for V, with an arrow from X to Y, as in Fig. 1. Let G be G and all subgraphs
of G. Following the discussion in § 4, we test H0 : h=0 versus H1 : hN0.

In this example, where the time order is given, the results about the existence of pointwise
and uniformly consistent tests depend on whether or not Z is observed. In practice, we
are mainly interested in the case where Z is unobserved. We include the case where Z is
observed to make it clear exactly what is lost by the presence of the possibility of unob-
served confounding. Note that when Z is observed we have O= (Z, X, Y ) and U=B
while if Z is unobserved then we have O= (X, Y ) and U=Z.

T 1. Consider testing H0 : h=0 versus H1 : hN0. Given the Markov assumption
and full Markov support, if Z is observed then there exist pointwise and uniformly consistent
tests of this hypothesis. Given the Markov assumption, the faithfulness assumption and full
Markov support, if Z is not observed then there exist pointwise consistent tests but there is
no uniformly consistent test.

Remark 2. Theorem 1 may be extended to testing H0 : h=h0 versus H1 : hNh0 with
h0N0. In this case, when Z is unobserved, there is not even a nontrivial, pointwise
consistent test.

The proof of the theorem is in Appendix 1; related results may be found in Spirtes et al.
(2000). Note that, in the absence of the assumption that there is no latent variable, if
faithfulness is not assumed then there are not even pointwise consistent tests of the hypoth-
esis when h0=0. This is because the independence of X and Y can always be explained
either faithfully by no edge from X to Y and either no edge from Z to X or no edge from
Z to Y in which case the treatment effect is zero, or unfaithfully, in which case the treatment
effect is not zero.

An intuitive explanation of the proof is as follows. For each sample size n we can always
choose a P

n
(i ) which is faithful but arbitrarily close to unfaithful, (ii ) which has a large

causal effect, and (iii) whose marginal makes X and Y nearly independent. The existence
of a single such P

n
precludes a uniformly consistent test. As n grows, the offending P

n
is

closer and closer to being unfaithful.
It is worth recalling that there do exist uniformly consistent tests for testing associations.

For example, a parameter that measures the association between X and Y is the risk
difference a=pr (Y=1 |X=1)−pr (Y=1 |X=0). Another is the odds ratio

y=
pr (Y=1 |X=1) pr (Y=0 |X=0)

pr (Y=0 |X=1) pr (Y=1 |X=0)
.
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P 1. L et a and y be the parameters defined above, and let O= (X, Y ). For
any a0 , there exists a uniformly consistent test for H0 : a=a0 versus H1 : aNa0 , and similarly
for y.

This result follows since, for associations, we have that a and y are functions of P only
through PB .

Unless one imposes additional a priori smoothness or dimension reducing assumptions
on either pr (Y=1 |X, Z) or pr (X=1 |Z), there is no uniformly consistent test of the
hypothesis Y))X |Z even when X and Y are Bernoulli when Z is discrete with many
levels, more precisely, with the number of levels increasing with sample size, or is absoutely
continuous with respect to Lebesgue measure (Ritov & Bickel, 1990; Robins & Ritov,
1997). Thus in the context of Theorem 1 there is no uniformly consistent test of
H
0
: h=0 versus H

1
: hN0 even when Z is observed but no smoothness assumption is

imposed. The philosophical implication is that even if somehow one were able to measure
all variables that precede X and Y and thereby have measured all potential confounding
factors, nonetheless, in the absence of substantive prior information, the problem of causal
inference would still not be solved in the sense that no uniformly consistent test of causal
hypotheses would exist.

Remark 3. In a randomised experiment, it is possible to construct uniformly consistent
tests of causal hypotheses. To see this, consider our example. Randomisation breaks the
arrow from Z to X in Fig. 1. It then can be shown that

h=a=pr (Y=1 |X=1)−pr (Y=1 |X=0)

and, as noted above, there exist uniformly consistent tests for this risk difference a.

5·3. Example 3

Now consider time ordered variables X, Y and Z and potential confounding variables
R and S. We are interested in the causal effect of Y on Z. The directed acyclic graph that
describes all of the causal relationships in the model is given in Fig. 4. Again, we take all
the variables to be discrete. Recall that h is now the causal effect of Y on Z as defined in § 4.

T 2. Consider testing H0 : h=h0 versus H1 : hNh0 . Given the Markov assumption
and full Markov support, if R and S are observed, there exist pointwise and uniformly
consistent tests for this hypothesis. Given the Markov assumption, the faithfulness assumption
and full Markov support, if R and S are unobserved, there exist pointwise consistent tests
for this hypothesis but there do not exist uniformly consistent tests.

Remark 4. In contrast to the situation in Theorem 1, there do exist nontrivial, pointwise
consistent tests for the case where h0N0.

6. C    

6·1. Estimability of causal eVects

An ‘estimator’ is a sequence of functions h@
n
of On= (O1 , . . . , On ).

An estimator is consistent if, for every (P, G)µVG, and every e>0,

Pn{ |T (P, G)−h@
n
|>e}�0.

An estimator h@
n
is ‘uniformly consistent’ if, for every e>0,

sup
(P,G)µVG

Pn{ |h@
n
−T (P, G) |>e}�0.
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To discuss estimation in the Spirtes–Glymour–Scheines framework, we need to allow
for a more general notion of an estimator. Recall that their tests sometimes return ‘no
conclusion’, which is what allows the tests to be pointwise consistent. Similarly, for esti-
mation, we should allow the possibility that the answer is sometimes ‘no estimate is
provided’. Formally, we define a ‘generalised estimator’ h@

n
to be any measurable mapping

from On into the Borel sets of the real line. In particular, when h@
n
(On )=R, as opposed to

a point, this corresponds to ‘no estimate is provided’. To define consistency for generalised
estimators we need to define the distance between the estimator and the true value. Given
a set A and a point b define t(A, b)= inf

aµA
d(a, b). If A={a} consists of a single point,

then t(A, b)=|a−b |, the usual Euclidean distance. For our purposes, we say that a gener-
alised estimator is ‘consistent’ at (P, G) if, for every e>0, Pn{t(h@

n
, T (P, G))>e}�0. A

generalised estimator h@
n
is ‘uniformly consistent’ if, for every e>0,

sup
(P,G)µVG

Pn{t(h@
n
, T (P, G))>e}�0.

A generalised estimator h@
n
is ‘nontrivial’ if there exists PµV (G) such that

P2(Ac
n

finitely often)=1,

where A
n

is the event that h@
n
consists of a single point. In other words, h@

n
is nontrivial if

there is at least one P for which h@
n
eventually becomes a point.

T 3. Given the Markov assumption and full Markov support, in Example 2, if Z
is observed, and in Example 3, if R and S are observed, and there is no unobserved variable,
there is a uniformly consistent estimator of h. Given the Markov assumption, the faithfulness
assumption and full Markov support, in Example 2, if Z is not observed, and in Example 2,
if R and S are not observed, there is no uniformly consistent estimator of h but there exist
pointwise consistent estimators.

Some insight can be gained into the lack of consistency in the following way. Let H be
the map that takes P into the marginal PB . The parameter h is ‘identified at P’ if h(P) is
the same for all H−1 (PB ). It is well known that if there is any P such that a parameter is
not identified then it cannot be consistently estimated. In our case, the situation is a bit
subtle. If the parameter were defined on P¬P (G) instead of V¬V (G), then it would
follow immediately that h is not identifiable for any P and hence not consistently estimable.
One might hope that restricting ourselves to V instead of P might help since, for example,
in Example 2, if PB is a distribution with X independent of Y then h is identified at P and
is equal to 0. However it can be shown that V is dense in P, so uniform consistent
estimation is still precluded. As with testing, there are uniformly consistent estimators of
the association parameters a and y defined in § 5.

6·2. Confidence intervals

Consider a collection of maps

C={I
a,n

; n=1, 2, . . . , aµ[0, 1]},

where each I
a,n

takes On into the Borel sets of R. If

lim inf
n

inf
(P,G)µVG

Pn{T (P, G)µI
a,n

(On )}�1−a

then we call C a ‘confidence map’ and we call I
a,n

a 1−a asymptotic confidence region.
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Note that confidence sets are, by definition, uniform. There does not appear to be a useful
‘pointwise’ notion of a confidence map. A confidence map C is ‘consistent’ if it eventually
omits all false values; that is, if for some (P, G) we have that, for every d>0 and for every
aµ[0, 1],

sup
(Q,H)µVG;|T(Q,H)−(P,G)|>d

Pn{T (Q, H)µI
a,n

(On )}�0.

T 4. Given the Markov assumption, the faithfulness assumption and full Markov
support, if in Example 2 Z is unobserved then there does not exist a consistent, confidence
map for h. T he same holds in Example 3, if R and S are unobserved.

7. B 

So far, we have concentrated on frequentist inference. Robins & Wasserman (1999)
discuss related Bayesian results; see also Heckerman et al. (1994). This section gives a
brief summary of the Bayesian results and how they relate to the frequentist results; see
Robins & Wasserman (1999) for a full account and Glymour et al. (1999) for a discussion.
The goal of the section is to elucidate the behaviour of the causal test as a function of the
prior distribution. We focus on Example 2.

There are weaker and stronger senses of Bayesian convergence, which are analogous
to pointwise and uniform consistency. In the weaker sense, which uses a fixed prior, of
Bayesian convergence, the procedures described in Spirtes et al. (2000) asymptotically
converge to the truth for any prior over the parameters which is absolutely continuous
with Lebesgue measure and in which the true causal directed acyclic graph has nonzero
probability; in the stronger sense of Bayesian convergence, which uses a prior that changes
with sample size, whether or not these procedures asymptotically converge to the truth is
more sensitive to the prior and in particular depends upon how probable confounding is
relative to the sample size.

There are eight subgraphs in Example 2; see Fig. 2. Denote these subgraphs by
G1 , . . . , G8 and let c

j
represent the parameters of the joint distribution for G

j
. For example,

in the complete graph G4 , we could define the parameters c4 by

c
4
={c
4z

, c
4xz

, c
4yxz

, zµZ, x, yµ{0, 1}},

where

c
4z
=pr (Z=z), c

4xz
=pr (X=x |Z=z), c

4yxz
=pr (Y=y |X=x, Z=z).

For a Bayesian analysis we put a prior on the subgraphs and on the parameters of each
subgraph. We can write the prior as p(G

j
)p(c
j
|G
j
). We assume that the prior on c

j
is

smooth, i.e. absolutely continuous with respect to Lebesgue measure with bounded density.
After we have observed the data On, Bayes’ theorem gives us a posterior probability
p(G
j
|On ) for each possible subgraph. We can then test for the presence of a causal effect

by finding the posterior odds B
n
of ‘X causes Y ’ versus ‘X does not cause Y ’:

B
n
=

pr (M |On )
pr (Mc |On )

=
pr (H

1
|On )

pr (H
0
|On )

,

where M is the set of all graphs G in which there is an arrow from X to Y, that is M
corresponds to H1 . The number B

n
tells us the strength of evidence in favour of the

hypothesis of causation. In testing consistently estimable parameters such as measures of
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association, it is typically the case that B
n

will tend to 0 or infinity in probability as the
sample size increases and thus B

n
will be decisive.

Let us compare the Bayesian and frequentist analyses. In contrast to the Bayesian
analysis, the frequentist analysis is a worst case analysis: for each sample size n we can
always choose a P

n
which is faithful but arbitrarily close to unfaithful, which has a large

causal effect, and whose marginal makes X and Y nearly independent. The existence of a
single such P

n
precludes a uniformly consistent test. However, as n grows, the offending

P
n

must be closer and closer to being unfaithful. In other words, the set P
n

of offending
P
n

gets smaller as n increases. With fixed prior mass on each subgraph and a smooth,
fixed prior density on the parameters of each subgraph, the weaker sense of Bayesian
convergence, we see that p(P

n
)�0. Thus, these distributions play a lesser and lesser role

as n increases, which is why B
n
�0 in probability, in the cases mentioned above.

There is a stronger sense of Bayesian convergence, which more closely links the asymp-
totic results with finite sample sizes. In this stronger sense of Bayesian convergence, instead
of using a fixed prior the prior mass on the graphs changes with sample size n. This is
only meant to reflect the fact that the prior on H, which denotes all subgraphs where Z
does not have arrows into both X and Y, can be small relative to sample size. We do not
literally envisage the prior changing with n. In this stronger sense of Bayesian convergence,
some prior distributions will lead to tests that are pointwise consistent while others will
lead to trivial tests. Here H can be thought of as the hypothesis that there is no unobserved
confounding. Robins & Wasserman (1999) showed that, under weak conditions, if p(H )=
o(n−D ), then B

n
will stay bounded, in probability, away from 0 and infinity and hence will

not be decisive. Thus, if one’s prior belief that there is no confounding, relative to the
sample size, is small, the Bayes test provides no decision. On the other hand, if there were
reason to believe that there might not be unobserved confounding, then we would set
p(H ) to be not small relative to sample size; for example, we might put fixed positive
mass on each subgraph. In this case, when X))Y, B

n
�0 in probability.

As pointed out previously, we can always choose a P
n

which is faithful but arbitrarily
close to unfaithful, which has a large causal effect and whose marginal makes X and Y
nearly independent. With a fixed prior, as sample size grows these distributions play a
lesser and lesser role. However, suppose that, as the sample size increases, we put more
probability near the unfaithful distributions or we put less and less mass on the subgraphs
with no confounder. We capture this by using a prior p

n
that depends on n. Then p

n
(P
n
)

does not tend to 0 and the Bayes test makes no decision. Which priors are more reasonable
depends on subject matter knowledge; see Robins & Wasserman (1999) and Spirtes et al.
(1998, 2000) for a discussion of the role of the prior. There are parallel results for point
and interval estimation but we shall not pursue the details here.

8. I  

Throughout this paper we have assumed that the variables have known time order.
The lack of uniform consistency arose because of the presence of potential unobserved
confounding variables. The Spirtes–Glymour–Scheines procedures that we have discussed
also permit one to infer the time order of the variables in some cases. The purpose of this
section is to show that, for the problem of inferring time order, there again do not exist
uniformly consistent procedures, but in this case the lack of uniformity does not even
require unobserved confounding variables.

Suppose we have four binary random variables V= (X1 , . . . , X4 ) and consider the two
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graphs in Fig. 5. Suppose we are interested in the causal effect of X3 on X4 . In Fig. 5(a),
it can be shown that the causal effect is

h=pr (X
4
=1 |X

3
=1)−pr (X

4
=1 |X

3
=0).

In Fig. 5(b), h is identically 0. This follows because the arrow points from X4 to X3 , so
manipulating X3 will have no effect on X4 . Note that getting the direction of the arrow
wrong thus implies getting the value of h wrong, so we will cast questions about getting
the directions of the arrows correctly as questions about the causal effect h.

(a) (b)

X1

X2 X2

X3 X4

X1

X3 X4

Fig. 5. Directed acyclic graph for § 8.

Is it possible to distinguish these two directed acyclic graphs? Suppose it were known
that X1))X2 and {X1 , X2}))X4 |X3 , and that no other independence relationship not
entailed by these holds. Assume there is no unobserved confounding variable. Then only
the first directed acyclic graph is consistent with these relationships assuming faithfulness,
and there are pointwise consistent tests of the effect of X3 on X4 . However, there is no
uniformly consistent test of whether the effect of X3 on X4 is nonzero.

For inferring time order, G is also unknown. Define G to be all directed acyclic graphs
for X1 , . . . , X4 .

T 5. Suppose we have n independent and identically distributed observations
V n= (V1 , . . . , Vn ) and that there is no unobserved confounding variable. Given the Markov
assumption, the faithfulness assumption and full Markov support, in the above example there
are pointwise consistent tests but no uniformly consistent test of H

0
: h=d versus

H
1
: hNd, where dN0. Similarly, there is no uniformly consistent point estimator and there

is no consistent 1−a confidence interval for h.

Remark 5. Note that the case H0 : h=0 is not included in Theorem 5. When we are
trying to find a causal time order with no confounder, the value 0 plays a special role. To
see this, consider the simple case of two variables X and Y. Suppose we know that there
is no confounding variable but we do not know the time order, so we are trying to decide
if X�Y or Y�X. In particular, let h be the causal effect of X on Y. Clearly, it is not
possible to test consistently whether or not h=d, for dN0. Any correlation between X
and Y can be explained equally well by the graph X�Y or the graph Y�X. However,
we can test whether or not h=0 merely by testing for an association between X and Y.
Even without time order, the only explanation for no association between X and Y is
that h=0.

9. A 

Theorems 1 and 2 referred to specific examples but the results can be made more
general. In this section we give a generalisation to linear, Normal structural equation
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models (Bollen, 1989, Ch. 6). Although we believe that the results can be generalised even
further, we do not pursue that here.

Consider the model in § 8. Suppose that the true directed acyclic graph is the one in
Fig. 5(a), that faithfulness is assumed, and the set of alternative causal structures are those
represented by any other directed acyclic graph containing (X1 , X2 , X3 , X4 ) and any
number of other variables, even latent variables. Then there are pointwise consistent tests
of the treatment effect of X3 on X4 that are functions of (X1 , X2 , X3 , X4 ), but there is no
such pointwise consistent test that is a function of (X3 , X4 ) alone.

The question arises whether or not there is an analogous phenomenon for uniform
consistency. Our examples have shown that, even assuming faithfulness, if the possibility
of latent variables is allowed, then there is no nontrivial uniformly consistent test of the
treatment effect of X1 on X2 that is a function only of the joint distribution of (X1 , X2 ).
Are there nonetheless causal structures for which, even allowing for the possibility of
hidden variables, there are nontrivial uniformly consistent tests of the treatment effect of
X1 on X2 which are functions of some larger set of variables containing X1 and X2? The
theorem stated in this section shows that this is not the case: no matter what other
variables are measured, there is no uniformly consistent test of the treatment effect of X1
on X2 .

T 6. If G is the set of all directed acyclic graphs containing B and C, Z is the
causal eVect of B on C, and O is any set of variables containing B and C, there is no nontrivial
uniformly consistent test of h=z against hNz with respect to V

Gz
and V

Gdz
. Here,

V
Gz
= p
GµG

{PµV(G); T (P, G)=z}, V
Gdz
= p
GµG

{PµV(G); |T (P, G)−z |>d}.

10. R

Many results in statistical inference are asymptotic; that is, they hold true for large
sample sizes. If asymptotic results are to be used, it is important that the large-sample
results can be approximated with finite samples. One way of ensuring this is to insist that
our tests and estimates are uniformly consistent. We have shown that causal procedures
based on the Markov and faithfulness assumptions are not uniformly consistent. The same
problem affects model-search or model-averaging methods, such as stepwise regression.
In these methods, each subgraph obtained by deleting some set of arrows is regarded as
a separate model. Then a model-search technique, such as Bayesian model selection, ,
 and so on, is used to find a best graph or to average over graphs. These methods will
also fail to have uniform consistency properties, as will any variable selection technique
that attempts to eliminate variables with small treatment effects on the basis of the
observed data.

This leaves open the question of what to do when analysing observational studies. Each
of the suggested strategies is controversial. The problems stem from unobserved con-
founding or unknown time order. Given a time order, one suggestion is to follow standard
epidemiological advice and measure as many confounders as possible, but even then we
cannot be sure that there are not further unobserved confounding variables. Furthermore,
conditioning on inappropriate variables can introduce bias into the procedures; see Spirtes
et al. (1998) and Greenland et al. (1999). A second possible approach is to perform a
sensitivity analysis in which we quantify how the estimates and tests change as a function
of the amount of unobserved confounding. Examples of sensitivity analysis can be found
in Rosenbaum (1993), Robins et al. (1999), Manski (1990, 1995, Ch. 3–4) and Balke &
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509Uniform consistency in causal inference

Pearl (1997). A third strategy is to continue to pursue search strategies which are not
uniformly consistent but which do satisfy weaker consistency conditions, such as Bayesian
consistency conditions.

Finally, as we pointed out after Proposition 1, even if we knew the time order and that
there was no unmeasured confounder, uniformly consistent tests of causal effects do not
exist when the measured potential confounders are either continuous or take many levels;
see Robins & Ritov (1997) for further discussion.
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A

Proofs

In the proofs, we make use of the total variation distance. If P and Q are two probability
measures, then the total variation distance between P and Q is defined to be d(P, Q)=
sup
A
|P(A)−Q(A) |, the supremum being over all measurable sets. If P and Q live on a finite sample

space S={s1 , . . . , sm} then it can be shown that d(P, Q)= (1
2
)Wm
j=1
|p
j
−q
j
|, where p

j
=P({s

j
}) and

q
j
=Q({s

j
}). Furthermore, d(P, Q) is a continuous function of the p

j
’s and the q

j
’s. For any vector

(a1 , . . . , aK ) we define dad
2
=max

j
|a
j
|.

Proof of T heorem 1. We only prove the case h0=0, which is the more difficult case. First suppose
that Z is observed. We construct a test that is both uniformly and pointwise consistent. Let
D=D(P)= (b000 , . . . , b11B ), where b

rst
=pr (X=r, Y=s, Z=t) for r, sµ{0, 1} and tµ{0, . . . , B}.

In this example, because the time order is given and there is no latent variable, the treatment effect
is completely determined by D. Let DC= (b@000 , . . . , b

@
11B

), where b@
rst

is the observed sample pro-
portion corresponding to b

rst
, that is

b@
rst
=card{(X

i
, Y
i
, Z
i
); X
i
=r, Y

i
=s, Z

i
=t}/n.

Let e
n
=√( log n/n). It follows from Hoeffding’s inequality that

sup
PµV(G)

Pn{dDC−D(P)d
2
>e
n
}�0.

Define h@=T (DC ))T (DC , G). Since h is a continuous function of D,

sup
PµV(G)

Pn{ |h@−h(P) |>e
n
}�0. (A1)

Define w
n
(On )=1 if |h@ |>e

n
and w

n
(On )=0 otherwise. It follows from (A1) that this test is uniformly

and pointwise consistent.
Now assume that Z is not observed. First we construct a pointwise consistent test. Define
a=pr (Y=1 |X=1)−pr (Y=1 |X=0) and let

a@=qWni=1YiXiWn
i=1

X
i
−
Wn
i=1

Y
i
(1−X

i
)

Wn
i=1

(1−X
i
) r .

Again, we have that sup
PµV(G)Pn{ |a@−a(P) |>e

n
}�0. Define w

n
(On )=0 if |a@ |<e

n
and w

n
(On )=2

otherwise.
If a(P)=0 then Pn{w

n
(On )=0}�1 so the test is nontrivial. Now we show that the test is pointwise

consistent. Suppose that PµV0 . Then Pn{w
n
(On )=1}�0 by definition of w. If PµV

G1
and P is
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faithful, then a(P)N0. Hence, from the uniform consistency of a@ we see that Pn{w
n
(On )=2}�1.

This establishes the pointwise consistency of the test.
Now we show that no test can be uniformly consistent. Basically we will show that if hN0 we

will never be able to establish this by observation of On alone. This is intuitively clear from Fig. 2.
Suppose there is a nontrivial, uniformly consistent test. We will show that this leads to a contra-
diction. Since w is nontrivial, (2) holds for some P. Suppose T (P, G*)=d for some G*µG and
dN0, so that PµV

Gd
and Pn{w

n
(On )=1}�1 as n�2. Let p(x, y, z) denote the density of P. Let

G be directed acyclic graph (i) in Fig. 2. Then P(G) is all Q whose densities satisfy q(x, y, z)=
q(z)q(x |z)q(y |z). Note that QµP(G) implies that T (Q, G)=0 if Q has full Markov support. If PB
has full support, let P*(X, Y )=PB , and otherwise let P*(X, Y ) be a distribution with full support
such that d(PB , P*)<e.

There exists a QµP(G) such that Q has full Markov support, is faithful to G, QB=P* and
T (Q, G)=0. To see this, define a

rs
=P*(X=r, Y=s) for r, sµ{0, 1}. Define a distribution Q as

follows. Let Q(Z=0)=a
00

, Q(Z=1)=a
01

, Q(Z=2)=a10 and Q(Z=3)=a11 . Also, let

Q(X=0, Y=0 |Z=0)=1, Q(X=0, Y=1 |Z=1)=1,

Q(X=1, Y=0 |Z=2)=1, Q(X=1, Y=1 |Z=3)=1,

Let q be the corresponding density. It can be verified directly that q(x, y, z)=q(z)q(x |z)q(y |z), so
that QµQ, has full Markov support, is faithful to G, QB=P*, and T (Q, G)=0. Hence QµV

G0
.

Since the test depends only on On and since QB=P*, we have that

sup
RµVG0

Rn{w
n
(On )=1}�Qn{w

n
(On )=1}=QB n{w

n
(On )=1}=P*n{w

n
(On )=1}

>PB n{w
n
(On )=1}−e=Pn{w

n
(On )=1}−e�1−e.

Hence, sup
RµVG0

Rn{w
n
(On )=0} does not tend to 0 as required for a uniformly consistent test.

Now suppose instead that PµV
G0

. Thus Pn{w
n
(On )=0}�1. If X))Y in PB , let

d=P(Y=0)P(Y=1)/4,

and otherwise let

d={P(Y=1 |X=1)−P(Y=1 |X=0)}/4.

For every e, there exists a QµP
Gd

such that d(PB n, QB n )>e/2. This fact is proved in Proposition A1
below. However, Q might not be faithful. Since T and d(. , . ) are both continuous functions of P,
there exists a faithful Q

n
µV

Gd
with full Markov support such that |T (Q

n
) |>d and

d(Qn
n
, Qn )<e/2. It follows that d(QB n

n
, QB n )<e/2. Hence,

sup
RµVGd/2

Rn{w
n
(On )=0}�Qn

n
{w
n
(On )=0}>Qn{w

n
(On )=0}−e/2=QB n{w

n
(On )=0}−e/2

>PB n{w
n
(On )=0}−e/2−e/2=Pn{w

n
(On )=0}−e�1−e.

Since this is true for any e>0 we conclude that

sup
RµVGd

Rn{w
n
(On )=0}�1,

and hence the test is not uniformly consistent. %

P A1. In Example 2, let O= (X, Y ). Consider PµV
G0

. If X))Y under P, let
d=P(Y=1)P(Y=0)/4; otherwise let

d=|P(Y=1 |X=1)−P(Y=1 |X=0) |/4.

For every e>0 there exists a QµP
Gd

such that d(PB , QB )<e/2.

Proof. First suppose that p(x, y, z)=p(z)p(x |z)p(y |z). Thus, P is faithful to subgraph (i) in A in
Fig. 3. It follows that a(P)N0; that is X and Y are not marginally independent. If PB has full
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support, let P*(X, Y )=PB , and otherwise let P*(X, Y ) be a distribution with full support such that
d(PB , P*)<e/2, and

P*(Y=1 |X=1)−P*(Y=1 |X=0)>{P(Y=1 |X=1)−P(Y=1 |X=0)}/2.

Define Q as follows. Let Q(Z=0)=1
2

and let

Q(X=x, Y=y |Z=z)=PB *(X=x, Y=y) (z=0, 1).

By construction, QB=P*. Let G be directed acyclic graph (iv) in Fig. 2. By equation (3),

T (Q, G)=P*(Y=1 |X=1)−P*(Y=1X=0)>{P(Y=1 |X=1)−P(Y=1 |X=0)}/2>d.

Since d(PB , P*)<e/2 and QB=P*, d(PB , QB )<e/2.
For all other PµV

G0
we have that a(P)=0, that is X and Y are marginally independent, so the

above strategy does not work. Instead we proceed as follows. Let P*(X, Y ) be a distribution with
full support such that d(PB , P*)<e/2, X))Y under P*, and

P*(Y=0)P*(Y=1)>P(Y=0)P(Y=1)/2.

Let a=P*(X=0) and b=P*(Y=0), and let c and d be two reals between 0 and 1. Since X and
Y are marginally independent under P*, a and b completely determine P*. Define Q as follows:

Q(X=0)=a, Q(Y=0)=b, Q(Z=0 |X=0, Y=0)=1−c,

Q(Z=0 |X=0, Y=1)=0, Q(Z=0 |X=1, Y=0)=1−d, Q(Z=0 |X=1, Y=1)=0,

and q(x, y, z)=q(x)q(y)q(z |x, y) where q is the density of Q.
By inspection, QB=PB *. Also Q has the following properties:

Q(Z=1)�1−b, Q(Y=1 |X=0, Z=0)=0, Q(Y=1 |X=1, Z=0)=0,

Q(Y=1 |X=0, Z=1)=
1−b

1−b+cb
, Q(Y=1 |X=1, Z=1)=

1−b

1−b+db
.

As d�0, Q(Y=1 |X=1, Z=1)�1 and, as c�1, Q(Y=1 |X=0, Z=1)�1−b. Let G be sub-
graph (iv) in Fig. 2. Then, by choosing the proper values for c and d, and using equation (3), we
have that

T (Q, G)>b(1−b)/2=P*(Y=0)P*(Y=1)/2>P(Y=0)P(Y=1)/4=d.

Since d(PB , P*)<e/2 and QB=P*, d(PB , QB )<e/2. %

Proof of T heorem 4. Suppose a consistent confidence interval exists. Define a test as follows. Let
a
n

be a decreasing sequence such that a
n
�0 as n�2. Let w

n
(On )=1 if 01I

a
n
,n

and w
n
(On )=0 if

0µI
a
n
,n
. It is easy to see that this defines a uniformly consistent test, which contradicts Theorem 1.

%

Proof of T heorem 5. Let P have density p such that

p(v)=p(x
1
)p(x
2
)p(x
3
|x
1
, x
2
)p(x
4
|x
3
).

It follows that h=T (P, G1 )=P(X4=1 |X3=1)−P(X4=1 |X3=0). Moreover, we can choose such
a p so that |h |�d for some d>0. Fix e>0. It is possible to choose Q

n
with density q

n
such that

Q
n

is Markov and faithful to the graph G2 in Fig. 5(b) and such that d(Pn, Qn
n
)<e. Note that

T (Q
n
, G2 )=0. The remainder of the proof is similar to the previous proofs. %

To prove Theorem 6, we first need two preliminary results. Also, we use the following facts
concerning directed acyclic graphs. Consider a directed acyclic graph G and an associated set of
linear coefficients D; for example, a might be the linear coefficient associated with the X�Z edge
in Example 1. We will transform the variables so that each variable has variance 1. Each correlation
matrix is then a polynomial in the linear coefficients, and hence a continuous function of the
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coefficients; let the correlation matrix associated with D be R(D). Then R(D) is not faithful to G
when some partial correlation is zero, but need not be zero; that is the polynomial in the coefficients
is equal to zero but is not identically equal to zero for all values of the coefficients. We will refer
to a polynomial that is set equal to zero as a polynomial equation. Each zero partial correlation
is a polynomial equation in some subset of the correlations in R(D), and hence a polynomial
equation in some subset of the linear coefficients. Since the set of solutions of a polynomial equation
that is not an identity is of Lebesgue measure zero, it follows that the Lebesgue measure of the
coefficients that are unfaithful to a given graph G is zero.

T A1. L et x be the causal eVect of A on B, y the causal eVect of A on C and z the causal
eVect of B on C. If zN0, let M be a directed acyclic graph with edges from a latent variable A to B
and C, and an edge from B to C; otherwise, let M be a directed acyclic graph with edges from a
latent variable A to B and C, and no edge from B to C. L et P be a Normal distribution with the
correlation matrix of a standard normal bivariate probability distribution with means 0 over B and
C, let r be the correlation between B and C in P, and let r{R(D)} be the correlation between B and
C in the distribution with correlation matrix R(D). For every r, z and d>0, there is a set of coeYcients
D∞ such that the causal eVect of B on C in D∞ is z, the Normal distribution with correlation matrix
R(D∞) is faithful to graph M, and |r−r{R(D∞)}|<d.

Proof. First, consider the case where zN0. We will set the values of x and y in a set of linear
coefficients D in such a way that R(D) satisfies the given constraints upon r{R(D)}. The constraints
upon x, y and z that guarantee that the covariances are correlations and that the correlation
r{R(D)} between B and C is within d of r are the following:

(i) −1∏x∏1,
(ii) y2+x2+2xyz∏1,
(iii) |z+xy−r |<d.
These constraints can be derived either from noting that the contribution to the variance of B

from A and the contribution to the variance of C from A and B have to be less than 1, or by
calculating the constraints needed to make the entailed matrix with 1’s along the diagonal positive
definite. In order to satisfy these constraints, we will define values for x1 and y, and then form the
values for x. Set e=r−z+√(z2−2rz+1) if z−r>0, and e=r−z−√(z2−2rz+1) if z−r<0.
Set y=z−r+e and x1= (r−z)/y. Note that y and z−r have the same sign, and hence x1∏0.
Also, yN0 because, for positive z, √(z2−2rz+1) is strictly bounded below at 0 when |r |=1. We
will now show how each of the conditions (i)–(iii) listed above can be satisfied.

(i) First we show how to set −1<x∏1. Note that x1= (r−z)/(z−r+e). Since −1<r<1,
|r−z | is strictly bounded above by |1−z | or |1+z |, depending on the sign of z. Now z−r+e=
±√(z2−2rz+1) depending on the sign of z−r. Also, √(z2−2rz+1) is strictly bounded below
when r=1 or r=−1, depending on the sign of z. Hence, √(z2−2rz+1) is strictly bounded below
at either |1−z | or |1+z |. It follows that |x

1
|<1. Hence −1<x1 . It follows that −1<x1∏0. If

y and z are of the same sign, set x to a value between x1 and −1 and within |d/(2y) | of x1 ; if y
and z are of opposite signs, set x to a value between x1 and 0 and within |d/(2y) | of x1 .

(ii) Next we show that y2+z2+2xyz∏1. We have y2+z2+2x1yz=1 and 2xyz<2x1yz, and
hence y2+z2+2xyz<y2+z2+2x1yz=1.

(iii) Finally we show that |r−z+xy |<d. Note that |r−z+xy |<d/2 follows from the facts
that x1= (z−r)/y and x is within |d/(2y) | of x1 .

It is possible that R(D) is not faithful to M. We will now show that then there is a set of
coefficients D∞ such that the value of z is the same in D and D∞, R(D∞) is faithful to M and
|r{R(D)}−r{R(D∞)}|<d/2. The set of coefficients D is unfaithful to M when it fails to satisfy at
least one of the following constraints, in which r(A, B).C is the partial correlation of A and B
conditional on C:

(iv) x− (y+xz)(z+xy)=x(1−y2−z2−xyz)− (yz)N0 (r(A, B).CN0),
(v) y+xz−{x(z+xy)}=y(1−x2 )N0 (r(A, C).BN0),

(vi) z+xy−{x(y+xz)}=z(1−x2 )N0 (r(B, C).AN0),
(vii) xN0 (r(A, B)N0),
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(viii) y+xzN0 (r(A, C)N0),
(ix) z+xyN0 (r(B, C)N0).

Fixing the value of z at any value other than 0 in the polynomials (iv)–(ix) does not make any of
them identically zero for all values of x and y. Since the set of solutions in x and y is of Lebesgue
measure 0, for each polynomial equation there is a non-solution D∞={x∞, y∞, z} that has the same
z value as D∞, |x∞y∞−xy |<d/2, and that is faithful to M. It follows that |r{R(D∞)}−r |<d.

For the case where z=0, choose a value of e such that 0<e<d, −1<r+e<1 and eN0. In
D∞, set x=y=√(r+e). It follows that xN0 and yN0, and the correlation between B and
C=xy is within d of r. The probability distribution with the correlation matrix R(D∞) is faithful to
M. %

Let  (P, P∞) denote the Kullback–Leibler distance between two distributions.

T A2. L et V be a set of variables containing B and C, let P(V ) be a Normal probability
distribution faithful to some directed acyclic graph H, and let the correlation between B and C in
P(V ) be r. For every r, zN0 and d>0, there is a directed acyclic graph G over the set of variables
V ∞, and an associated set of linear coeYcients D, where V5V ∞, the causal eVect of B on C in D is z,
the Normal distribution with correlation matrix R(D) is faithful to G, the marginal of the Normal
distribution with correlation matrix R(D) over V is P∞(V ), and {P(V ), P∞(V )}<d.

Proof. We have that {P(V ), P∞(V )} is a continuous function of the correlation matrices of
P(V ) and P∞(V ∞). Hence, there is a d∞ such that, if the sum of the absolute values of the differences
of the correlations is less than d∞, {P(V ), P∞(V )}<d/2. Choose such a d∞.

Form G∞ by making B the first variable and C the second variable and making each pair of
vertices adjacent. Since G∞ is a complete graph it can represent any Normal distribution over the
measured variables with a set of coefficients D∞. At this stage of the construction, however, there
is no guarantee that the linear coefficient z∞ from B to C in D∞ is equal to the given z, nor that
R(D∞) is faithful to G∞. Form G by adding a latent variable A, and adding edges from A to B and
C. From Theorem A1 there is a set of coefficients {x, y, z} for the linear coefficient from A to B,
the linear coefficient from A to C and the linear coefficient from B to C respectively, such that the
resulting distribution is faithful to the subgraph over A, B and C, and the correlation between B
and C is arbitrarily close to r. Let the coefficients D◊ for G be {x, y, z}^ (D∞−{z∞}); that is, keep
all of the coefficients from D∞, except for replacing the coefficient for the edge from B to C by z,
and add the coefficients x and y. This makes the causal effect of B on C equal to the given z, but
it still may be the case that P(D◊) is not faithful to G.

No partial correlation is required to be zero in G∞, and hence no polynomial equation for a
partial correlation in terms of the coefficients in D∞ is identically equal to zero. Given G, the equation
for any correlation between variables in V in terms of the coefficients of D◊ is the same as the
corresponding equation in D∞, except that, everywhere the equation in D∞ contains z∞, the correspond-
ing equation in D◊ contains (z+yx). Hence, the equation for any partial correlation between
variables in V in terms of the coefficients in D◊ is the same as the corresponding equation in terms
of D∞, except that, everywhere the equation in D∞ contains z∞, the equation in D◊ contains (z+yx).
None of the partial correlation equation in D∞ is an identity; hence none of the partial correlation
equations among variables in V in terms of the variables in D◊ is an identity, even if z is held fixed,
because xy can be varied. It follows that there is a set of coefficients D, which contains the same
value of z as does D◊, such that the sum of the absolute values of the differences between the
correlations of P(V ) and P∞(V ∞) is less than d∞. Hence {P(V ), P∞(V )}<d. %

Proof of T heorem 6. Suppose that on the contrary there is a uniformly consistent test w of
h=z against hNz. Since w is nontrivial, either

(i) for some PµV
G
, lim
n�2

Pn{wn(On )=0}=1, or
(ii) for some PµV

G
, lim
n�2

Pn{wn(On )=1}=1.
Suppose that (ii) is the case. If PµV

G
z

then w is not uniformly consistent. Suppose then that
PµV

G
dz

. By Theorem A2, for every distribution PµV
G
dz

there is a distribution D
n
µV

G
z

with a
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marginal for O such that the Kullback–Leibler distance  (PB
n
; DB
n
)<e2, where PB

n
is the marginal

of P over O and DB
n

is the marginal of D
n

over O. Now,

sup
A
|PB
n
(A)−DB n

n
(A) |∏

1

2
√ (PB

n
; DB n
n
)=
e

2
.

Since w is O-measurable,

Pn{w
n
(On )=1}=PB

n
{w
n
(On )=1}∏DB n

n
{w
n
(On )=1}+e/2=Dn

n
{w
n
(On )=1}+e/2.

Since Pn{w
n
(On )=1}�1, for all e/2>0 there exists an N such that, for all n>N,

Pn{w
n
(On )=1}>1− (e/2). Hence, for all e>0 there exists an N such that, for all n>N,

Dn
n
{w
n
(On )=1}>1− (e/2)− (e/2)=1−e.

Since each D
n
µV

Gz
, it follows that

lim
n�2

sup
PµVGdz

Pn{w
n
(On )=1}=1

and hence w is not uniformly consistent. The proof for case (i) is similar. %

A 2
Definitions and glossary

Definition of d-separation. Let a ‘directed path’ d in a directed acyclic graph G be a sequence of
distinct vertices V1 . . . Vn such that, for 1∏ i<n, there is an edge V

i
�V
i+1

in G. A vertex X is an
‘ancestor’ of Y if X=Y or there is a directed path from X to Y. Let an ‘undirected path’ U
in a directed acyclic graph be a sequence of distinct vertices V1 . . . Vn such that, for 1∏ i∏n,
there is either an edge V1�V

i+1
or V
i
÷V
i+1

in G. Here V
i
is a ‘collider’ on U if there are edges

V
i−1
�V
i
÷V
i+1

on U; otherwise V
i
is a ‘non-collider’ on U. For three disjoint sets of vertices X, Y

and Z, X is ‘d-separated’ from Y given Z if there is no undirected path U from a vertex in X to
a vertex in Y such that every collider on U is an ancestor of a member of Z, and no non-collider
on U is in Z. Pearl (1988) states that if PµP(G) and X is d-separated from Y given Z then
X))Y |Z.

Glossary of notation. Let G be a set of directed acyclic graphs and let G denote a member of G.
Then P(G) means all distributions Markov to G, V(G) means all distributions faithful to G and

P(G)= p
GµG

G(G), V(G)= p
GµG
V(G),

P
G0
= p
GµG

{PµP(G); T (P, G)=h
0
}, P

G1
= p
GµG

{PµP(G); T (P, G)Nh
0
},

V
G0
= p
GµG

{PµV(G); T (P, G)=h
0
}, V

G1
= p
GµG

{PµV(G); T (P, G)Nh
0
},

P
Gd
= p
GµG

{PµP(G); |T (P, G)−h0 |>d}, VGd= p
GµG

{PµV(G); |T (P, G)−h0 |>d},

PG= p
GµG

{(P, G); PµP(G)}, VG= p
GµG

{(P, G); PµV(G)}.
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