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This paper introduces a class of graphical independence models that
is closed under marginalization and conditioning but that contains all DAG
independence models. This class of graphs, called maximal ancestral graphs,
has two attractive features: there is at most one edge between each pair
of vertices; every missing edge corresponds to an independence relation.
These features lead to a simple parameterization of the corresponding set
of distributions in the Gaussian case.
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1. Introduction. The purpose of this paper is to develop a class of graphical
Markov models that is closed under marginalizing and conditioning, and to
describe a parameterization of this class in the Gaussian case.

A graphical Markov model uses a graph, consisting of vertices and edges to
represent conditional independence relations holding among a set of variables
[Lauritzen (1979), Darroch, Lauritzen and Speed (1980)]. Three basic classes of
graphs have been used: undirected graphs (UGs), directed acyclic graphs (DAGs)
and chain graphs which are a generalization of the first two. [See Lauritzen (1996),
Whittaker (1990), Edwards (1995).]

The associated statistical models have many desirable properties: they are
identified; the models are curved exponential families, with a well-defined
dimension; methods for fitting these models exist; unique maximum likelihood
estimates exist.

All of these properties are common to classes of models based on DAGs and
UGs. However, as we will now describe, there is a fundamental difference between
these two classes.

Markov models based on UGs are closed under marginalization in the following
sense: if an undirected graph represents the conditional independencies holding
in a distribution then there is an undirected graph that represents the conditional
independencies holding in any marginal of the distribution. For example consider
the graph U1 in Figure 1(i) which represents a first-order Markov chain. If
we suppose that y2 is not observed, then it is self-evident that the conditional
independence, y1 |= y4 | y3, which is implied by U1 is represented by the
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FIG. 1. (i) An undirected graph U1; (ii) an undirected graph U2 representing the conditional
independence structure induced on {y1, y3, y4} by U1 after marginalizing y2.

undirected graph U2 in Figure 1(ii), which does not include y2. In addition,
U2 does not imply any additional independence relations that are not also implied
by U1.

By contrast Markov models based on DAGs are not closed in this way. Consider
the DAG, D1, shown in Figure 2(i). This DAG implies the following independence
relations:

t1 |= {t2, y2}, t2 |= {t1, y1}(‡)

DAG D1 could be used to represent two successive experiments where:

• t1 and t2 are two completely randomized treatments, and hence there are no
edges that point toward either of these variables;

• y1 and y2 represent two outcomes of interest;
• h0 is the underlying health status of the patient;
• the first treatment has no effect on the second outcome hence there is no edge

t1 → y2.

There is no DAG containing only the vertices {t1, y1, t2, y2} which represents
the independence relations (‡) and does not also imply some other independence
relation that is not implied by D1. Consequently, any DAG model on these vertices
will either fail to represent an independence relation, and hence contain “too many”
edges, or will impose some additional independence restriction that is not implied
by D1.

Suppose that the patient’s underlying health status h is not observed, and
the generating structure D1 is unknown. In these circumstances, a conventional
analysis would consider DAG models containing edges that are consistent with
the known time order of the variables. Given sufficient data, any DAG imposing
an extra independence relation will be rejected by a likelihood-ratio test, and
a DAG representing some subset of the independence relations, such as the

FIG. 2. (i) A directed acyclic graph D1, representing a hypothesis concerning two completely
randomized treatments and two outcomes (see text for further description); (ii) the DAG model D2
resulting from a conventional analysis of {t1, y1, t2, y2}.
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DAG in Figure 2(ii), will be chosen. However, any such graph will contain the
extra edge t1 → y2, and fail to represent the marginal independence of these
variables. Thus such an analysis would conceal the fact that the first treatment
does not affect the second outcome. This is also an undesirable result from a
purely predictive perspective, since a model which incorporated this marginal
independence constraint would be more parsimonious.

Moreover, even if we were to consider DAGs that were compatible with
a nontemporal ordering of {y1, y2, t1, t2}, we would still be unable to find a DAG
which represented all and only the independence relations in (‡). An analysis based
on undirected graphs, or chain graphs, under the LWF global Markov property,
would still include additional edges. (It is possible to represent the independence
structure of D1 via a chain graph with the AMP Markov property, but this does
not hold for an arbitrary DAG under marginalization. See Section 9.4.)

One response to this situation is to consider latent variable (LV) models, since
h is a hidden variable in the model described by D1. Though this is certainly
a possible approach in circumstances where much is known about the generating
process, it seems unwise in other situations since LV models lack almost all of
the desirable statistical properties attributed to graphical models (without hidden
variables) above. In particular:

• LV models are not always identified;
• the likelihood may be multi-modal;
• any inference may be very sensitive to assumptions made about the unobserved

variables;
• LV models with hidden variables have been proved not to be curved exponential

families even in very simple cases [Geiger et al. (2001)];
• LV models do not in general have a well-defined dimension for use in scores

such as BIC, or χ2-tests (this follows from the previous point);
• the set of distributions associated with an LV model may be difficult to

characterize [see Settimi and Smith (1999, 1998), Geiger et al. (2001) for recent
results];

• LV models do not form a tractable search space: an arbitrary number of hidden
variables may be incorporated, so the class contains infinitely many different
structures relating a finite set of variables.

This presents the modeller with a dilemma: in many contexts it is clearly
unrealistic to assume that there are no unmeasured confounding variables, and
misleading analyses may result (as shown above). However, models that explicitly
include hidden variables may be very hard to work with for the reasons just given.

The class of ancestral graph Markov models described in this paper is intended
to provide a partial resolution to this conundrum. This class extends the class of
DAG models, but is closed under marginalization. In addition, as we show in this
paper, at least in the Gaussian case these models retain many of the desirable
properties possessed by standard graphical models. It should be noted however
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that two different DAG models may lead to the same ancestral graph, so in this
sense information is lost.

Up to this point we have considered closure under marginalization. There is
a similar notion of closure under conditioning that is motivated by considering
selection effects [see Cox and Wermuth (1996), Cooper (1995)]. UG Markov
models are closed under conditioning, DAG models are not. The class of Markov
models described here is also closed under conditioning.

The remainder of the paper is organized as follows:
We introduce basic graphical notation and definitions in Section 2. Section 3

introduces the class of ancestral graphs and the associated global Markov property.
We also define the subclass of maximal ancestral graphs, which obey a pairwise
Markov property.

In Section 4 we formally define the operation of marginalizing and conditioning
for independence models, and a corresponding graphical transformation. Theo-
rem 4.18 establishes that the independence model associated with the transformed
graph is the same as the model resulting from applying the operations of marginal-
izing and conditioning to the independence model given by the original graph. It
is also shown that the graphical transformations commute (Theorem 4.20).

Two extension results are proved in Section 5. First, it is shown that by adding
edges a nonmaximal graph may be made maximal and this extension is unique
(Theorem 5.1). Second, it is demonstrated that a maximal graph may be made
complete (so that there is an edge between every pair of vertices) by a sequence
of edge additions that preserve maximality (Theorem 5.6). In Section 6 it is
shown that every maximal ancestral graph may be obtained by transforming
a DAG, the structure of which bears a simple relation to the original ancestral
graph (Theorem 6.4). Consequently, every independence model associated with
an ancestral graph may be obtained by applying the operations of marginalizing
and conditioning to some independence model given by a DAG.

Section 7 relates the operations of marginalizing and conditioning that have
been defined for independence models to probability distributions. Theorem 7.6
then shows that the global Markov property for ancestral graphs is complete.

In Section 8 we define a Gaussian parameterization of an ancestral graph. It is
shown in Theorem 8.7 that each parameter is either a concentration, a regression
coefficient, or a residual variance or covariance. Theorem 8.14 establishes that if
the graph is maximal then the set of Gaussian distributions associated with the
parameterization is exactly the set of Gaussian distributions which obey the global
Markov property for the graph.

Section 9 contrasts the class of ancestral graphs to summary graphs, introduced
by Wermuth, Cox and Pearl (1994), and MC-graphs introduced by Koster (1999a).
Finally, Section 10 contains a brief discussion.

2. Basic definitions and concepts. In this section we introduce notation and
terminology for describing independence models and graphs.



ANCESTRAL GRAPH MARKOV MODELS 967

2.1. Independence models. An independence model I over a set V is a set
of triples 〈X,Y | Z〉 where X, Y and Z are disjoint subsets of V ; X and Y are
nonempty. The triple 〈X,Y | Z〉 is interpreted as saying that X is independent
of Y given Z. In Section 7 we relate this definition to conditional independence
in a probability distribution. (As defined here, an “independence model” need
not correspond to the set of independence relations holding in any probability
distribution.)

2.1.1. Graphical independence models. A graph G is an ordered pair (V,E)

where V is a set of vertices and E is a set of edges. A separation criterion C

associates an independence model IC(G) with graph G:

〈X,Y | Z〉 ∈ IC(G) ⇐⇒ X is separated from Y by Z in G under criterion C.

Such a criterion C is also referred to as a global Markov property. The d-separation
criterion introduced by Pearl (1988) is an example of such a criterion.

2.2. Mixed graphs. A mixed graph is a graph containing three types of
edge, undirected (−), directed (→) and bidirected (↔). We use the following
terminology to describe relations between variables in such a graph:

If


α − β

α ↔ β

α → β

α ← β

 in G then α is a


neighbor
spouse
parent
child

 of β and


α ∈ neG(β)

α ∈ spG(β)

α ∈ paG(β)

α ∈ chG(β)

 .

Note that the three edge types should be considered as distinct symbols, and in
particular,

α − β �= α � β �= α ↔ β.

If there is an edge α → β , or α ↔ β then there is said to be an arrowhead at β on
this edge. If there is at least one edge between a pair of vertices then these vertices
are adjacent. We do not allow a vertex to be adjacent to itself.

A graph G′ = (V ′,E′) is a subgraph of G = (V,E) if V ′ ⊆ V and every edge
in G′ is present in G. The induced subgraph of G over A, denoted GA has vertex
set A, and contains every edge present in G between the vertices in A. (See the
Appendix for more formal statements of these definitions.)

2.3. Paths and edge sequences. A sequence of edges between α and β in G
is an ordered (multi)set of edges 〈ε1, . . . ,εn〉, such that there exists a sequence of
vertices (not necessarily distinct) 〈α ≡ ω1, . . . ,ωn+1 ≡ β〉 (n ≥ 0), where edge εi
has endpoints ωi,ωi+1. A sequence of edges for which the corresponding sequence
of vertices contains no repetitions is called a path. We will use bold Greek (µ)
to denote paths and single edges, and fraktur (s) to denote sequences. Note that
the result of concatenating two paths with a common endpoint is not necessarily
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a path, though it is always a sequence. Paths and sequences consisting of a single
vertex, corresponding to a sequence of no edges, are permitted for the purpose of
simplifying proofs; such paths will be called empty as the set of associated edges
is empty.

We denote a subpath of a path π , by π(ωj ,ωk+1) ≡ 〈εj , . . . ,εk〉, and likewise
for sequences. Unlike a subpath, a subsequence is not uniquely specified by the
start and end vertices, hence the context will also make clear which occurrence of
each vertex in the sequence is referred to.

We define a path as a sequence of edges rather than vertices because the latter
does not specify a unique path when there may be two edges between a given pair
of vertices. (However, from Section 3 on we will only consider graphs containing
at most one edge between each pair of vertices.) A path of the form α → · · · → β ,
on which every edge is of the form →, with the arrowheads pointing toward β , is
a directed path from α to β .

2.4. Ancestors and anterior vertices. A vertex α is said to be an ancestor of
a vertex β if either there is a directed path α → · · · → β from α to β , or α = β .

A vertex α is said to be anterior to a vertex β if there is a path µ on which every
edge is either of the form γ − δ, or γ → δ with δ between γ and β , or α = β; that
is, there are no edges γ ↔ δ and there are no edges γ ← δ pointing toward α. Such
a path is said to be an anterior path from α to β .

We apply these definitions disjunctively to sets:

an(X) = {α | α is an ancestor of β for some β ∈ X};
ant(X) = {α | α is anterior to β for some β ∈ X}.

Our usage of the terms “ancestor” and “anterior” differs from Lauritzen (1996),
but follows Frydenberg (1990a).

PROPOSITION 2.1. In a mixed graph G,

(i) if X ⊆ Y then ant(X) ⊆ ant(Y ) and an(X) ⊆ an(Y );
(ii) X ⊆ ant(X) = ant(ant(X)) and X ⊆ an(X) = an(an(X));

(iii) ant(X ∪ Y ) = ant(X) ∪ ant(Y ) and an(X ∪ Y ) = an(X) ∪ an(Y ).

PROOF. These properties follow directly from the definitions of an(·) and
ant(·). �

PROPOSITION 2.2. If X and Y are disjoint sets of vertices in a mixed graph G
then:

(i) ant(ant(X) \ Y ) = ant(X);
(ii) an(an(X) \ Y ) = an(X).
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FIG. 3. (a) Mixed graphs that are not ancestral; (b) ancestral mixed graphs.

PROOF. (i) Since X and Y are disjoint, X ⊆ ant(X)\Y . By Proposition 2.1(i),
ant(X) ⊆ ant(ant(X) \ Y ). Conversely, ant(X) \ Y ⊆ ant(X) so ant(ant(X) \ Y ) ⊆
ant(ant(X)) = ant(X), by Proposition 2.1(i) and (ii).

The proof of (ii) is very similar. �

A directed path from α to β together with an edge β → α is called a (fully)
directed cycle. An anterior path from α to β together with an edge β → α is called
a partially directed cycle. A directed acyclic graph (DAG) is a mixed graph in
which all edges are directed, and there are no directed cycles.

3. Ancestral graphs. The class of mixed graphs is much larger than required
for our purposes, in particular, under natural separation criteria, it includes
independence models that do not correspond to DAG models under marginalizing
and conditioning. We now introduce the subclass of ancestral graphs.

3.1. Definition of an ancestral graph. An ancestral graph G is a mixed graph
in which the following conditions hold for all vertices α in G:

(i) α /∈ ant(pa(α) ∪ sp(α));
(ii) if ne(α) �= ∅ then pa(α) ∪ sp(α) = ∅.

In words, condition (i) requires that if α and β are joined by an edge with an
arrowhead at α, then α is not anterior to β . Condition (ii) requires that there be
no arrowheads present at a vertex which is an endpoint of an undirected edge.
Condition (i) implies that if α and β are joined by an edge with an arrowhead at α,
then α is not an ancestor of β . This is the motivation for terming such graphs
“ancestral.” (See also Corollary 3.10.) Examples of ancestral and nonancestral
mixed graphs are shown in Figure 3.

LEMMA 3.1. In an ancestral graph for every vertex α the sets ne(α), pa(α),
ch(α) and sp(α) are disjoint, thus there is at most one edge between any pair of
vertices.

PROOF. ne(α), pa(α) and ch(α) are disjoint by condition (i). ne(α)∩
sp(α) = ∅ by (ii) since at most one of these sets is nonempty. Finally (i) implies
that sp(α) ∩ pa(α) ⊆ sp(α) ∩ ant(α) = ∅, and likewise sp(α) ∩ ch(α) = ∅. �
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LEMMA 3.2. If G is an ancestral graph then the following hold:

(a) If α and β are adjacent in G and α ∈ an(β) then α → β .
(b) The configurations α − β ↔ γ and α − β ← γ do not occur (regardless of

whether α and γ are adjacent).
(c) There are no directed cycles or partially directed cycles.

PROOF. (a) follows because condition (i) rules out α ← β or α ↔ β , while
(ii) rules out α − β .

(b) is simply a restatement of condition (ii).
(c) follows because (i) rules out fully directed cycles, while the configuration

→ γ− occurs in any partially directed cycle. �

If there is at most one edge between two vertices in a graph then conditions (a),
(b) and (c) in Lemma 3.2 are sufficient for G to be ancestral.

COROLLARY 3.3. In an ancestral graph an anterior path from α to β takes
one of three forms: α − · · · − β , α → · · · → β , or α − · · · − → · · · → β .

PROOF. The proof follows from the definition of an anterior path and
Lemma 3.2(b). �

PROPOSITION 3.4. If G is an undirected graph, or a directed acyclic graph,
then G is an ancestral graph.

PROPOSITION 3.5. If G is an ancestral graph and G′ is a subgraph of G,
then G′ is ancestral.

PROOF. The definition of an ancestral graph only forbids certain configura-
tions of edges. If these do not occur in G then they do not occur in a subgraph G′.

�

3.2. Undirected edges in an ancestral graph. Let unG ≡ {α | paG(α)∪
spG(α) = ∅} be the set of vertices at which no arrowheads are present in G. Note
that if neG(α) �= ∅ then, by condition (ii) in the definition of an ancestral graph,
α ∈ unG, so unG contains all endpoints of undirected edges in G.

PROPOSITION 3.6. If G is an ancestral graph, and G′ is a subgraph with the
same vertex set, then unG ⊆ unG′ .

PROOF. Since G′ has a subset of the edges in G, paG(α)∪ spG(α) = ∅ implies
paG′(α) ∪ spG′(α) = ∅. �
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FIG. 4. Schematic showing decomposition of an ancestral graph into an undirected graph and
a graph containing no undirected edges.

LEMMA 3.7. If G is an ancestral graph with the vertex set V ,

and


α ↔ β

α − β

α → β

 in G then


α,β ∈ V \ unG

α,β ∈ unG

β ∈ V \ unG

 .

PROOF. The proof follows directly from the definition of unG and Lem-
ma 3.2(b). �

Lemma 3.7 shows that any ancestral graph can be split into an undirected
graph GunG , and an ancestral graph containing no undirected edges GV \unG ; any
edge between a vertex α ∈ unG and a vertex β ∈ V \ unG takes the form α → β .
See Figure 4. This result is useful in developing parameterizations for the resulting
independence models (see Section 8).

LEMMA 3.8. For an ancestral graph G,

(i) if α ∈ unG then β ∈ antG(α) ⇒ α ∈ antG(β);
(ii) if α and β are such that α �= β , α ∈ antG(β) and β ∈ antG(α) then

α,β ∈ unG, and there is a path joining α and β on which every edge is undirected;
(iii) antG(α) \ anG(α) ⊆ unG.

PROOF. (i) follows from Lemma 3.2(b) and Corollary 3.3. (ii) follows since
by Lemma 3.2(c) there are no partially directed cycles and thus the anterior paths
between α and β consist only of undirected edges, so α,β ∈ unG by Lemma 3.7.
(iii) follows because if a vertex β is anterior to α, but not an ancestor of α, then
by Corollary 3.3 any anterior path starts with an undirected edge, and the result
follows from Lemma 3.7. �

LEMMA 3.9. If G is an ancestral graph, and α, β are adjacent vertices in G
then:

(i) α − β ⇔ α ∈ antG(β), β ∈ antG(α);
(ii) α → β ⇔ α ∈ antG(β), β /∈ antG(α);

(iii) α ↔ β ⇔ α /∈ antG(β), β /∈ antG(α).
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FIG. 5. Two pairs of graphs that share the same adjacencies and anterior relations between
adjacent vertices, and yet are not equivalent.

PROOF. (i)(⇒) follows by the definition of anterior; (i)(⇐) by Lemma 3.8(ii)
and Lemma 3.2(b). Claim (ii)(⇒) follows by the definition of anterior and
property (i) of an ancestral graph; (ii)(⇐) follows because from Lemma 3.8(i),
β /∈ unG, and so by Lemma 3.7 and property (i) of an ancestral graph, α → β .
(iii)(⇒) follows by property (i) of an ancestral graph. (iii)(⇐) follows by definition
of anterior. �

A direct consequence of Lemma 3.9 is that an ancestral graph is uniquely
determined by its adjacencies (or “skeleton”) and anterior relations. More
formally:

COROLLARY 3.10. If G1 and G2 are two ancestral graphs with the same
vertex set V , and adjacencies, then if ∀α,β ∈ V , adjacent in G1 and G2,

α ∈ antG1(β) ⇐⇒ α ∈ antG2(β)

then G1 = G2.

PROOF. The proof follows directly from Lemma 3.9. �

Note that this does not hold in general for nonancestral graphs. See Figure 5 for
an example.

3.3. Bidirected edges in an ancestral graph. The following lemma shows
that the ancestor relation induces a partial ordering on the bidirected edges in an
ancestral graph.

LEMMA 3.11. Let G be an ancestral graph. The relation ≺ defined by

α ↔ β ≺ γ ↔ δ if α,β ∈ an({γ, δ}) and {α,β} �= {γ, δ}
defines a strict (irreflexive) partial order on the bidirected edges in G.

PROOF. Transitivity of the relation ≺ follows directly from transitivity of the
ancestor relation. Suppose for a contradiction that α ↔ β ≺ γ ↔ δ ≺ α ↔ β , but
{α,β} �= {γ, δ}. Either α /∈ {γ, δ} or β /∈ {γ, δ}. Without loss of generality, suppose
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FIG. 6. An ancestral graph which cannot be arranged in ordered blocks with bidirected edges
within blocks and edges between blocks directed in accordance with the ordering.

the former. Since α ∈ an({γ, δ}) and γ, δ ∈ an({α,β}) it then follows that either
α ∈ an(β), or there is a directed cycle containing α and γ or δ. In both cases
condition (i) in the definition of an ancestral graph is violated. �

Note that the relation given by

α ↔ β ≺∗ γ ↔ δ if (α ∈ an({γ, δ}) or β ∈ an({γ, δ})) and {α,β} �= {γ, δ}
does not give an ordering on the bidirected edges as shown by the ancestral graph
in Figure 6. This is significant since it means that in an ancestral graph it is not
possible in general to construct ordered blocks of vertices such that all bidirected
edges are within blocks and all directed edges are between vertices in different
blocks and are directed in accordance with the ordering.

3.4. The pathwise m-separation criterion. We now extend Pearl’s d-separa-
tion criterion [see Pearl (1988)], defined originally for DAGs, to ancestral graphs.

A nonendpoint vertex ζ on a path is a collider on the path if the edges preceding
and succeeding ζ on the path have an arrowhead at ζ , that is, → ζ ←, ↔ ζ ↔,
↔ ζ ←, → ζ ↔. A nonendpoint vertex ζ on a path which is not a collider is a non-
collider on the path. A path between vertices α and β in an ancestral graph G is
said to be m-connecting given a set Z (possibly empty), with α,β /∈ Z, if:

(i) every noncollider on the path is not in Z, and
(ii) every collider on the path is in antG(Z).

If there is no path m-connecting α and β given Z, then α and β are said to be
m-separated given Z. Sets X and Y are m-separated given Z, if for every pair α, β ,
with α ∈ X and β ∈ Y , α and β are m-separated given Z (X,Y,Z are disjoint sets;
X,Y are nonempty). We denote the independence model resulting from applying
the m-separation criterion to G, by Im(G).

This is an extension of Pearl’s d-separation criterion to mixed graphs in that in
a DAG D , a path is d-connecting if and only if it is m-connecting. See Figure 7(a)
for an example. The formulation of this property leads directly to:

PROPOSITION 3.12. If G is an ancestral graph, and G′ is a subgraph with the
same vertex set, then Im(G) ⊆ Im(G

′).
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FIG. 7. Example of global Markov properties. (a) An ancestral graph G, thicker edges form
a path m-connecting x and y given {z}; (b) the subgraph Gant({x,y,z}); (c) the augmented graph
(Gant({x,y,z}))a , in which x and y are not separated by {z}.

PROOF. This holds because any path in G′ exists in G. �

Notice that it follows directly from Corollary 3.3 and Lemma 3.2(b) that if γ

is a collider on a path π in an ancestral graph G then γ ∈ antG(β) ⇔ γ ∈ anG(β).
Since the set of m-connecting paths will not change, strengthening condition (ii)
in the definition of m-connection to:

(ii)′ every collider on the path is in anG(Z)

will not change the resulting independence model Im(G). This formulation is
closer to the original definition of d-separation as originally defined for directed
acyclic graphs, since it does not use the anterior relation. The only change is that
the definitions of “collider” and “noncollider” have been extended to allow for
edges of the form − and ↔. [Also see the definition of “h-separation” introduced
in Verma and Pearl (1990).]

3.4.1. Properties of m-connecting paths. We now prove two lemmas giving
properties of m-connecting paths that we will exploit in Section 3.6.

LEMMA 3.13. If π is a path m-connecting α and β given Z in an ancestral
graph G then every vertex on π is in ant({α,β} ∪ Z).

PROOF. Suppose γ is on π and is not anterior to α or β . Then, on each of
the subpaths π(α, γ ) and π(γ,β), there is at least one edge with an arrowhead
pointing toward γ along the subpath. Let φαγ and φγβ be the vertices at which
such arrowheads occur that are closest to γ on the respective subpaths. There are
now three cases:

Case 1. If γ �= φγβ then π(γ,φγβ) is an anterior path from γ to φγβ . It further
follows from Lemma 3.2(b) and Corollary 3.3 that φγβ is a collider on π , hence
anterior to Z, since π is m-connecting given Z. Hence γ ∈ ant(Z).

Case 2. If γ �= φαγ then by a symmetric argument to the previous case it follows
that γ is anterior to φαγ , and φαγ is a collider on π and thus anterior to Z. Thus
in this case, γ ∈ ant(Z).
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FIG. 8. Illustration of Lemma 3.14: (a) a path on which every vertex is an ancestor of α or β;
(b) a path m-connecting α and β given ∅.

Case 3. If φαγ = γ = φγβ then γ is a collider on π , hence anterior to Z. �

LEMMA 3.14. Let G be an ancestral graph containing disjoint sets of vertices
X, Y , Z (Z may be empty). If there are vertices α ∈ X and β ∈ Y joined by a pathµ
on which no noncollider is in Z and every collider is in ant(X ∪ Y ∪Z) then there
exist vertices α∗ ∈ X,β∗ ∈ Y such that α∗ and β∗ are m-connected given Z in G.

PROOF. Let µ∗ be a path which contains the minimum number of colliders
of any path between some vertex α∗ ∈ X and some vertex β∗ ∈ Y on which no
noncollider is in Z and every collider is in ant(X ∪ Y ∪ Z). µ∗ is guaranteed to
exist since the path µ described in the lemma has this form. In order to show
that µ∗ m-connects α∗ and β∗ given Z it is sufficient to show that every collider
on µ∗ is in ant(Z).

Suppose for a contradiction that there is a collider γ on µ∗ and γ /∈ ant(Z).
By construction γ ∈ ant(X ∪ Y ∪ Z), so either γ ∈ ant(X) \ ant(Z) or γ ∈
ant(Y ) \ ant(Z). Suppose the former, then there is a directed path π from γ to
some vertex α′ ∈ X. Let δ be the vertex closest to β∗ on µ∗ which is also on π .
By construction the paths µ∗(δ, β∗) and π(δ,α′) do not intersect except at δ.
Hence concatenating these subpaths forms a path which satisfies the conditions
on µ∗ but has fewer colliders than µ∗, which is a contradiction. The case where
γ ∈ ant(Y ) \ ant(Z) is symmetric. �

COROLLARY 3.15. In an ancestral graph G, there is a path µ between
α and β on which no noncollider is in a set Z(α,β /∈ Z) and every collider is
in ant({α,β} ∪ Z) if and only if there is a path m-connecting α and β given Z

in G.

PROOF. One direction is immediate and the other is a special case of
Lemma 3.14 with X = {α}, Y = {β}. �

This corollary shows that condition (ii) in the definition of m-connection can be
weakened to:

(ii)′′ every collider on the path is in ant({α,β} ∪ Z)

without changing the resulting independence model (for ancestral graphs).
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3.4.2. Formulation via sequences. Koster (2000) shows that if the separation
criterion is applied to sequences of edges (which may include repetitions of the
same edge) as opposed to paths, then some simplification is possible. Under this
formulation vertices α and β in a mixed graph G are said to be m-connecting given
a set Z if there is a sequence s for which:

(i)∗ every noncollider on s is not in Z, and
(ii)∗ every collider on s is in Z.

The definitions of collider and noncollider remain unchanged, but are applied
to edges occurring in sequences, so α → β ← α forms a collider. Koster (2000)
proves that this criterion is identical to the m-separation criterion defined here for
paths: the proof is based on the fact that there is a directed path from a collider γ
to a vertex ζ ∈ Z if and only if there is a sequence of the form γ → · · · → ζ ←
· · · ← γ .

We do not make use of this criterion in this paper, as paths, rather than
sequences, are fundamental to our main construction (see Section 4.2.3).

3.5. The augmentation m∗-separation criterion. The global Markov property
for DAGs may be formulated via separation in an undirected graph, obtained from
the original DAG by first forming a subgraph and then adding undirected edges
between nonadjacent vertices that share a common child, a process known as
“moralizing.” [See Lauritzen (1996), page 47, for details.] In this subsection we
formulate the global Markov property for ancestral mixed graphs in a similar way.
In the next subsection the resulting independence model is shown to be equivalent
to that obtained via m-separation. It is useful to have two formulations of the
Markov property because some proofs are simpler using one while other proofs
are simpler using the other.

3.5.1. The augmented graph (G)a . Two vertices α and β in an ancestral
graph G are said to be collider connected if there is a path from α to β in G
on which every vertex except the endpoints is a collider; such a path is called
a collider path. [Koster (1999b) refers to such a path as a “pure collision path.”]
Note that if there is a single edge between α and β in the graph then α and β are
(vacuously) collider connected.

The augmented graph, denoted (G)a , derived from the mixed graph G is an
undirected graph with the same vertex set as G such that

γ − δ in (G)a ⇐⇒ γ and δ are collider connected in G.

3.5.2. Definition of m∗-separation. Sets X, Y and Z are said to be
m∗-separated if X and Y are separated by Z in (Gant(X∪Y∪Z))

a (X, Y , Z are dis-
joint sets; X, Y are nonempty). Otherwise X and Y are said to be m∗-connected
given Z. The resulting independence model is denoted by Im∗(G). See Figure 7(b),
(c) for an example.
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When applied to DAGs, or UGs, the augmentation criterion presented here
is equivalent to the Lauritzen–Wermuth–Frydenberg moralization criterion. (See
Section 9.4 for a discussion of chain graphs.)

3.5.3. Minimal m∗-connecting paths. If there is an edge γ − δ in (G)a , but
there is no edge between γ and δ in G, then the edge is said to be augmented.
A path connecting x and y given Z is said to be minimal if there is no other such
path which connects x and y given Z but has fewer edges than µ.

We now prove a property of minimal paths that is used in the next section:

LEMMA 3.16. Let G be an ancestral graph. If µ is a minimal path
connecting α and β given Z in (G)a , then a collider path in G associated with
an augmented edge γ − δ on µ has no vertex in common with µ, or any collider
path associated with another augmented edge on µ, except possibly γ or δ.

PROOF. Suppose that γ − δ and ε − φ are two augmented edges, occurring
in that order on µ, and that the associated collider paths have in common a vertex
which is not an endpoint of these paths. Then γ and φ are adjacent in (G)a . Thus
a shorter path may be constructed by concatenating µ(α, γ ), γ − φ and µ(φ,β),
which is a contradiction. Likewise suppose that κ is a vertex on a collider path
between γ and δ which also occurs on µ. κ either occurs before or after γ on the
path. Suppose the former, then since κ − δ in (G)a , a shorter path may be formed
by concatenating µ(α, κ), κ − δ and µ(δ, β). The case where κ occurs after δ is
similar. �

3.6. Equivalence of m-separation and m∗-separation.

LEMMA 3.17. In an ancestral graph G suppose that µ is a path which
m-connects α and β given Z. The sequence of noncolliders on µ forms a path
connecting α and β in (Gant({α,β}∪Z))

a .

PROOF. By Lemma 3.13, all the vertices on µ are in Gant({α,β}∪Z). Suppose
that ωi and ωi+1 (1 ≤ i ≤ k − 1) are the successive noncolliders on µ. The
subpath µ(ωi,ωi+1) consists entirely of colliders, hence ωi and ωi+1 are adjacent
in (Gant({α,β}∪Z))

a . Similarly ω1 and ωk are adjacent to α and β respectively in
(Gant({α,β}∪Z))

a . �

THEOREM 3.18. For an ancestral graph G, Im∗(G) = Im(G).

PROOF. We divide the proof into two parts.

(i) Im∗(G) ⊆ Im(G). We proceed by showing that if 〈X,Y | Z〉 /∈ Im(G) then
〈X,Y | Z〉 /∈ Im∗(G). If 〈X,Y | Z〉 /∈ Im(G) then there are vertices α ∈ X, β ∈ Y

such that there is an m-connecting path µ between α and β given Z in G. By
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Lemma 3.17 the noncolliders on µ form a path µ∗ connecting α and β in
(Gant(X∪Y∪Z))

a . Since µ is m-connecting, no noncollider on µ is in Z hence no
vertex on µ∗ is in Z. Thus 〈X,Y | Z〉 /∈ Im∗(G).

(ii) Im(G) ⊆ Im∗(G). We show that if 〈X,Y | Z〉 /∈ Im∗(G) then 〈X,Y | Z〉 /∈
Im(G). If 〈X,Y | Z〉 /∈ Im∗(G) then there are vertices α ∈ X, β ∈ Y such that
there is a minimal path π connecting α and β in (Gant(X∪Y∪Z))

a on which
no vertex is in Z. Our strategy is to replace each augmented edge on π with
a corresponding collider path in Gant(X∪Y∪Z) and replace the other edges on π
with the corresponding edge in G. It follows from Lemma 3.16 that the resulting
sequence of edges forms a path from α to β in G, which we denote ν. Further, any
noncollider on ν is a vertex on π and hence not in Z. Finally, since all vertices
in ν are in Gant(X∪Y∪Z) it follows that every collider is in ant(X ∪ Y ∪ Z). Thus
by Lemma 3.14 there are vertices α∗ ∈ X and β∗ ∈ Y such that α∗ and β∗ are
m-connected given Z in G. Thus 〈X,Y | Z〉 /∈ Im(G). �

3.7. Maximal ancestral graphs. Independence models described by DAGs
and undirected graphs satisfy pairwise Markov properties with respect to these
graphs, hence every missing edge corresponds to a conditional independence [see
Lauritzen (1996), page 32]. This is not true in general for an arbitrary ancestral
graph, as shown by the graph in Figure 9(a).

This motivates the following definition: an ancestral graph G is said to be
maximal if for every pair of vertices α, β if α and β are not adjacent in G then there
is a set Z (α,β /∈ Z), such that 〈{α}, {β} | Z〉 ∈ Im(G). Thus a graph is maximal if
every missing edge corresponds to at least one independence in the corresponding
independence model.

PROPOSITION 3.19. If G is an undirected graph, or a directed acyclic graph
then G is maximal.

PROOF. The proof follows directly from the existence of pairwise Markov
properties for DAGs and undirected graphs. �

The use of the term “maximal” is motivated by the following:

PROPOSITION 3.20. If G = (V,E) is a maximal ancestral graph, and G is
a subgraph of G∗ = (V,E∗), then Im(G) = Im(G

∗) implies G = G∗.

PROOF. If some pair α,β are adjacent in G∗ but not G, then in G∗, α and β are
m-connected by any subset of V \ {α,β}. Hence Im(G) �= Im(G

∗). �

Hence maximal ancestral graphs are maximal in the sense that no additional
edge may be added to the graph without changing the independence model. The
following theorem gives the converse.
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FIG. 9. (a) The simplest example of a nonmaximal ancestral graph: γ and δ are not adjacent, but
are m-connected given every subset of {α,β}, hence Im(G) = ∅; (b) an extension of the graph in
(a) with the same (trivial) independence model.

THEOREM 5.1. If G is an ancestral graph then there exists a unique maximal
ancestral graph Ḡ formed by adding ↔ edges to G such that Im(G) = Im(Ḡ).

We postpone the proof of this theorem until Section 5.1 since it follows directly
from another result. In Corollary 5.3 we show that a maximal ancestral graph
satisfies the following:

PAIRWISE MARKOV PROPERTY. If there is no edge between α and β in G
then 〈{α}, {β} ∣∣ ant({α,β}) \ {α,β}〉∈ Im(G).

3.8. Complete ancestral graphs. An ancestral graph is complete if there is
an edge between every pair of distinct vertices. A graph is said to be transitive
if α → β → γ implies α → γ . Andersson et al. (1995, 1997) and Andersson
and Perlman (1998) study properties of independence models based on transitive
DAGs.

LEMMA 3.21. If G is a complete ancestral graph then:
(i) G is transitive;

(ii) the induced subgraph GunG is a complete undirected graph;
(iii) if α ∈ V \ unG then antG(α) = paG(α) ∪ {α};
(iv) if α ∈ unG then antG(α) = unG.

PROOF. If α → β → γ in G then α → γ since if α − γ , α ← γ , or α ↔ γ

then G would not be ancestral, establishing (i).
If α,β ∈ unG then by Lemma 3.7, α − β , which establishes (ii). Suppose

α ∈ V \ unG, β ∈ antG(α). If β ∈ unG then β → α, by Lemma 3.7; if β ∈ V \ unG

then β ∈ anG(α) and so β → α by (i). Hence (iii) holds. (iv) follows directly
from (ii). �
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4. Marginalizing and conditioning. In this section we first introduce mar-
ginalizing and conditioning for an independence model. We then define a graph-
ical transformation of an ancestral graph. We show that the independence model
corresponding to the transformed graph is the independence model obtained by
marginalizing and conditioning the independence model of the original graph. In
the remaining subsections we derive several useful consequences.

4.1. Marginalizing and conditioning independence models (I[SL). An inde-
pendence model I with vertex set V after marginalizing out a subset L is simply
the subset of triples which do not involve any vertices in L. More formally we
define

I[L≡ {〈X,Y | Z〉 ∣∣ 〈X,Y | Z〉 ∈ I; (X ∪ Y ∪ Z) ∩ L = ∅
}
.

If I contains the independence relations present in a distribution P , then
I[L contains the subset of independence relations remaining after marginalizing
out the “Latent” variables in L; see Theorem 7.1. (Note the distinct uses of the
vertical bar in 〈·, · | ·〉 and {· | ·}.)

An independence model I with vertex set V after conditioning on a subset S is
the set of triples defined as follows:

I[S≡ {〈X,Y | Z〉 ∣∣ 〈X,Y | Z ∪ S〉 ∈ I; (X ∪ Y ∪ Z) ∩ S = ∅
}
.

Thus if I contains the independence relations present in a distribution P then
I[S constitutes the subset of independencies holding among the remaining
variables after conditioning on S; see Theorem 7.1. (Note that the set S is
suppressed in the conditioning set in the independence relations in the resulting
independence model.) The letter S is used because Selection effects represent one
context in which conditioning may occur.

Combining these definitions we obtain

I[SL≡ {〈X,Y | Z〉 ∣∣ 〈X,Y | Z ∪ S〉 ∈ I; (X ∪ Y ∪ Z) ∩ (S ∪ L) = ∅
}
.

PROPOSITION 4.1. For an independence model I over V containing disjoint
subsets S1, S2, L1, L2:

(i) I[∅∅= I,

(ii) (I[S1
L1

)[S2
L2

= I[S1∪S2
L1∪L2

.

4.1.1. Example. Consider the following independence model:

I
∗ = {〈{a, x}, {b, y} | {t}〉, 〈{a, x}, {b} | ∅〉, 〈{b, y}, {a} | ∅〉, 〈{a, b}, {t} | ∅〉}.

In fact, I∗ ⊂ Im(D), where D is the DAG in Figure 10(i). In this case,

I
∗[∅{t}=

{〈{a, x}, {b} | ∅〉, 〈{b, y}, {a} | ∅〉}, I
∗[{t}∅ = {〈{a, x}, {b, y} | ∅〉}.
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4.2. Marginalizing and conditioning for ancestral graphs. Given an ancestral
graph G with vertex set V , for arbitrary disjoint sets S, L (both possibly empty)
we now define a transformation:

G $→ G[SL.
The main result of this section will be:

THEOREM 4.18. If G is an ancestral graph over V , and S∪̇L ⊂ V , then

Im(G)[SL= Im(G[SL)
(where A ∪̇ B denotes the disjoint union of A and B).

In words, the independence model corresponding to the transformed graph is the
independence model obtained by marginalizing and conditioning the independence
model of the original graph.

Though we define this transformation for any ancestral graph G, our primary
motivation is the case in which G is a DAG, representing some data generating
process that is partially observed (corresponding to marginalization) and where
selection effects may be present (corresponding to conditioning). See Cox and
Wermuth (1996) for further discussion of data-generating processes, marginalizing
and conditioning.

4.2.1. Definition of G[SL. Graph G[SL has vertex set V \ (S ∪̇ L), and edges
specified as follows:

If α,β, are s.t. ∀Z, with Z ⊆ V \ (S ∪ L ∪ {α,β}),
〈{α}, {β} | Z ∪ S〉 /∈ Im(G)

and 
α ∈ antG({β} ∪ S);β ∈ antG({α} ∪ S)

α /∈ antG({β} ∪ S);β ∈ antG({α} ∪ S)

α ∈ antG({β} ∪ S);β /∈ antG({α} ∪ S)

α /∈ antG({β} ∪ S);β /∈ antG({α} ∪ S)

 then


α − β

α ← β

α → β

α ↔ β

 in G[SL.

In words, G[SL is a graph containing the vertices that are not in S or L. Two vertices
α, β are adjacent in G[SL if α and β are m-connected in G given any subset that
contains all vertices in S and no vertices in L. If α and β are adjacent in G[SL then
there is an arrowhead at α if and only if α is not anterior to either β or S in G, and
a tail otherwise.

Note that if G is not maximal then G[∅∅ �= G. (See Corollary 5.2.) We will show
in Corollary 4.19 that G[SL is always maximal.
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FIG. 10. (i) A simple DAG model, D; (ii) the graph D[∅{t}; (iii) the graph D[{t}
∅

.

4.2.2. Examples. Consider the DAG, D , shown in Figure 10(i). The indepen-
dence model Im(D) ⊃ I∗, given in Section 4.1.1. Suppose that we set L = {t},
S = ∅. First consider the adjacencies that will be present in the transformed
graph D[∅{t}. It follows directly from the definition that vertices that are adjacent in
the original graph will also be adjacent in the transformed graph, if they are present
in the new graph, since adjacent vertices are m-connected given any subset of the
remaining vertices. Hence the pairs (a, x) and (b, y) will be adjacent in D[∅{t}. In
addition, x and y will be adjacent since any set m-separating x and y in D con-
tains t , hence there is no set Z ⊆ {a, b} such that 〈{x}, {y} | Z〉 ∈ Im(D). Since
〈{a}, {b, y} | ∅〉, 〈{b}, {a, x} | ∅〉 ∈ Im(D) there are no other adjacencies. It re-
mains to determine the types of these three edges in D[∅{t}. Since x /∈ antD(y), and
y /∈ antD(x), the edge between x and y is of the form x ↔ y. Similarly the other
edges are a → x and b → y. Thus the graph D[∅{t} is as shown in Figure 10(ii).

Observe that I∗[∅{t}⊂ Im(D[∅{t}).
Now suppose that L = ∅, S = {t}. Since 〈{a, x}, {b, y} | {t}〉 ∈ Im(D), it

follows that (a, x) and (b, y) are the only pairs of adjacent vertices present in the
transformed graph D[{t}∅ , hence this graph takes the form shown in Figure 10(iii).

Note that I∗[{t}∅ ⊂ Im(D[{t}∅ ).
Another example of this transformation is given in Figure 11, with a more

complex DAG D ′. Note the edge between a and c that is present in D ′[{s}{l1,l2}.

4.2.3. Adjacencies in G[SL and inducing paths. A path π between α and β on
which every collider is an ancestor of {α,β} ∪ S and every noncollider is in L, is
called an inducing path with respect to S and L. This is a generalization of the
definition introduced by Verma and Pearl (1990). An inducing path with respect
to S = ∅,L = ∅ is called primitive. Note that if α,β ∈ V \ (S ∪ L), and α,β are
adjacent in G then the edge joining α and β is (trivially) an inducing path w.r.t. S
and L in G.

In Figure 10(i) the path x ← t → y forms an inducing path w.r.t. S = ∅,
L = {t}; in Figure 11(i) the path a → l1 → b ← l2 → c forms an inducing path
w.r.t. S = {s}, L = {l1, l2}; in Figure 9(a), γ ↔ β ↔ α ↔ δ forms a primitive
inducing path between γ and δ. (Other inducing paths are also present in these
graphs.)

THEOREM 4.2. If G is an ancestral graph, with vertex set V = O ∪̇ S ∪̇ L,
and α,β ∈ O then the following six conditions are equivalent:
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FIG. 11. (i) Another DAG, D ′; (ii) the graph D ′[{s}
∅

; (iii) the graph D ′[∅{l1,l2}; (iv) the

graph D ′[{s}
{l1,l2}.

(i) There is an edge between α and β in G[SL.
(ii) There is an inducing path between α and β w.r.t. S and L in G.

(iii) There is a path between α and β in (Gant({α,β}∪S))
a on which every vertex,

except the endpoints, is in L.
(iv) The vertices in ant({α,β} ∪S) that are not in L∪ {α,β} do not m-separate

α and β in G: 〈{α}, {β} ∣∣ ant({α,β} ∪ S) \ (L ∪ {α,β})〉 /∈ Im(G).

(v) ∀Z,Z ⊆ V \ (S ∪ L ∪ {α,β}), 〈{α}, {β} | Z ∪ S〉 /∈ Im(G).
(vi) ∀Z,Z ⊆ V \ (S ∪ L ∪ {α,β}), 〈{α}, {β} | Z〉 /∈ Im(G)[SL.

PROOF. Let Z∗ = ant({α,β} ∪ S) \ (L ∪ {α,β}). By Proposition 2.2(i),

ant({α,β} ∪ Z∗) = ant
({α,β} ∪ (

ant({α,β} ∪ S) \ (L ∪ {α,β})))(†)

= ant
(
ant({α,β} ∪ S) \ L

)
= ant({α,β} ∪ S).

In addition, let T ∗ = ant({α,β} ∪ S) ∩ (L ∪ {α,β}), so

T ∗ ∪̇ Z∗ = ant({α,β} ∪ Z∗).(‡)

(iii)⇔(iv) Since, by Theorem 3.18, Im∗(G) = Im(G), (iv) holds if and only if
there is a path µ in (Gant({α,β}∪Z∗))a on which no vertex is in Z∗, and hence by (‡)
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every vertex is in T ∗. Further, by (†), Gant({α,β}∪Z∗) = Gant({α,β}∪S), hence by the
definition of T ∗, µ satisfies the conditions given in (iii).

(ii)⇒(iv) If there is an inducing path π in G w.r.t. S and L, then no noncollider
on π is in Z∗, since Z∗ ∩ L = ∅, and any collider on π is in an({α,β} ∪ S) ⊆
ant({α,β} ∪ S) = ant({α,β} ∪ Z∗) by (†). Hence by Corollary 3.15 there is
a path π∗ which m-connects α and β given Z∗ in G as required.

(iv)⇒(ii) Let ν be a path which m-connects α and β given Z∗. By Lemma 3.13
and (†), every vertex on ν is in ant({α,β} ∪ S), hence by Lemma 3.2(b)
and Corollary 3.3, every collider is in an({α,β} ∪ S). Every noncollider is in
ant({α,β} ∪ S) \ Z∗ ⊆ L ∪ {α,β}, so every noncollider is in L. Hence ν is an
inducing path w.r.t. S and L in G.

(iii)⇒(v) Every edge present in (Gant({α,β}∪S))
a is also present in

(Gant({α,β}∪Z∪S))
a . The implication then follows since every nonendpoint vertex

on the path is in L.
(v)⇒(iv) This follows trivially taking Z = Z∗ \ S.
(v)⇔(i) Definition of G[SL.
(v)⇔(vi) Definition of Im(G)[SL. �

An important consequence of condition (iv) in this theorem is that a single test
of m-separation in G is sufficient to determine whether or not a given adjacency
is present in G[SL; it is not necessary to test every subset of V \ (S ∪ L ∪
{α,β}). Likewise properties (ii) and (iii) provide conditions that can be tested in
polynomial time.

4.2.4. Primitive inducing paths and maximality.

COROLLARY 4.3. If G is an ancestral graph, then there is no set Z,
(α,β /∈ Z), such that 〈{α}, {β} | Z〉 ∈ Im(G) if and only if there is a primitive
inducing path between α and β in G.

PROOF. The result follows from (ii)⇔(v) in Theorem 4.2 with S = ∅, L = ∅.
�

COROLLARY 4.4. Every nonmaximal ancestral graph contains a primitive
inducing path between a pair of nonadjacent vertices.

PROOF. Immediate by the definition of maximality and Corollary 4.3. �

Primitive inducing paths with more than one edge take a very special form, as
described in the next lemma, and illustrated by the inducing path γ ↔ β ↔ α ↔ δ

in Figure 9(a).

LEMMA 4.5. Let G be an ancestral graph. If π is a primitive inducing path
between α and β in G, and π contains more than one edge, then:
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(i) every nonendpoint vertex on π is a collider and in antG({α,β});
(ii) α /∈ antG(β) and β /∈ antG(α);

(iii) every edge on π is bidirected.

PROOF. Part (i) is a direct consequence of the definition of a primitive
inducing path. Consider the vertex γ which is adjacent to α on π . By (i), γ is
a collider on π , so γ ∈ spG(α)∪chG(α), so γ /∈ antG(α) as G is ancestral. Hence by
(i) γ ∈ antG(β). If β ∈ antG(α) then γ ∈ antG(α), but this is a contradiction. Thus
β /∈ antG(α). By a similar argument α /∈ antG(β), establishing (ii). (iii) follows
directly from (i) and (ii), since G is ancestral. �

Lemma 4.5 (ii) has the following consequence:

COROLLARY 4.6. In a maximal ancestral graph G, if there is a primitive
inducing path between α and β containing more than one edge, then there is an
edge α ↔ β in G.

PROOF. Since G is maximal, by Corollary 4.3, α and β are adjacent in G. By
Lemma 4.5(ii), α /∈ antG(β) and β /∈ antG(α), hence by Lemma 3.9, it follows that
α ↔ β in G. �

Note that if G is a maximal ancestral graph and G′ is a subgraph formed by
removing an undirected or directed edge from G then G′ is also maximal.

4.2.5. Anterior relations in G[SL. The next lemma characterizes the vertices
anterior to α in G[SL.

LEMMA 4.7. For an ancestral graph G with vertex set V = O ∪̇ S ∪̇ L, if
α ∈ O then

antG(α) \ (antG(S) ∪ L
) ⊆ antG[SL(α) ⊆ antG({α} ∪ S) \ (S ∪ L).

In words, if β , α are in G[SL and β is anterior to α but not S in G, then β is also
anterior to α in G[SL. Conversely, if β is anterior to α in G[SL then β is anterior to
either α or S in G.

PROOF OF LEMMA 4.7. Letµ be an anterior path from a vertex β ∈ antG(α)\
(L∪antG(S)) to α in G. Note that no vertex on µ is in S. Consider the subsequence
〈β ≡ ωm, . . . ,ωi, . . . ,ω1 ≡ α〉 of vertices on µ that are in V \ (S ∪ L). Now the
subpathµ(ωi+1,ωi) is an anterior path on which every vertex except the endpoints
is in L. Hence ωi and ωi+1 are adjacent in G[SL. Further since ωi+1 ∈ antG(ωi)

it follows that either ωi+1 − ωi or ωi+1 → ωi , hence β ≡ ωm ∈ antG[SL(α), as
required.
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To prove the second assertion, let ν ≡ 〈φn, . . . , φ1 ≡ α〉 be an anterior path from
a vertex φn ∈ antG[SL(α) to α in G[SL. For 1 ≤ i < n, either φi+1 − φi or φi+1 → φi

on ν. By definition of G[SL, in either case φi+1 ∈ antG({φi} ∪ S) \ (S ∪ L). Thus
φn ∈ antG({α} ∪ S) \ (S ∪ L). �

Taking S = ∅ in Lemma 4.7 we obtain the following:

COROLLARY 4.8. In an ancestral graph G = (V,E) if α ∈ V \ L then
antG(α) \ L = antG[∅L (α).

4.2.6. The undirected subgraph of G[SL.

LEMMA 4.9. If G is an ancestral graph with vertex set V = O ∪̇ S ∪̇ L, then(
unG ∪ antG(S)

) \ (S ∪ L) ⊆ unG[SL .

In words, any vertex in the undirected subgraph of G which is also present in G[SL
will also be in the undirected subgraph of G[SL. Likewise any vertex anterior to S

in G will be in the undirected component of G[SL if present in this graph.

PROOF OF LEMMA 4.9. Suppose for a contradiction that α ∈ (unG ∪ antG(S))
\(S ∪ L), but α /∈ unG[SL . Hence there is a vertex β such that either β ↔ α or

β → α in G[SL. In both cases α /∈ antG({β} ∪ S). Thus α /∈ antG(S). Since α and
β are adjacent in G[SL by Theorem 4.2(ii) there is an inducing path π between α

and β w.r.t. S and L, hence every vertex on π is in antG({α,β} ∪S). If there are no
colliders on π then since α ∈ unG, π is an anterior path from α to β so α ∈ antG(β),
which is a contradiction. If there is a collider on π then let γ be the collider on π
closest to α. Now π(α, γ ) is an anterior path from α to γ so α ∈ antG(γ ) but
γ /∈ unG, hence by Lemma 3.8(ii), γ /∈ antG(α). Thus γ ∈ antG({β} ∪ S), and thus
α ∈ antG({β} ∪ S), again a contradiction. �

COROLLARY 4.10. If G is an ancestral graph with V = O ∪̇S ∪̇L and α ∈ O

then

antG(α) \ (S ∪ L) ⊆ unG[SL ∪ antG[SL(α).

Thus the vertices anterior to α ∈ G that are also in G[SL either remain anterior to
α ∈ G[SL, or are in unG[SL (or both).

PROOF OF COROLLARY 4.10.
(antG(α)) \ (S ∪ L) ⊆ (

antG(α) \ (antG(S) ∪ L
)) ∪̇ (

antG(S) \ (S ∪ L)
)

(∗) ⊆ antG[SL(α) ∪ unG[SL .

The step marked (∗) follows from Lemmas 4.7 and 4.9. �
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LEMMA 4.11. In an ancestral graph G, if α ∈ antG[SL(β) and α /∈ unG[SL then
α ∈ anG(β), and α /∈ antG(S).

PROOF. If α /∈ unG[SL , but α ∈ V \ (S ∪ L) then by Lemma 4.9, α /∈ unG ∪
antG(S). Since α ∈ antG[SL(β) it follows from Lemma 4.7 that α ∈ antG({β} ∪ S).
So α ∈ antG(β). Further, since α /∈ unG, by Lemma 3.8(iii), α ∈ anG(β). �

Consequently, if in G[SL α is anterior to β and there is an arrowhead at α then
α is an ancestor of β in G.

4.2.7. G[SL is an ancestral graph.

THEOREM 4.12. If G is an arbitrary ancestral graph, with vertex set V =
O ∪̇ S ∪̇ L, then G[SL is an ancestral graph.

PROOF. Clearly G[SL is a mixed graph. Suppose for a contradiction that α ∈
antG[SL(paG[SL(α)∪spG[SL(α)). Suppose α ∈ antG[SL(β) with β ∈ paG[SL(α)∪spG[SL(α).
Then by Lemma 4.7, α ∈ antG({β} ∪ S). However if β ∈ paG[SL(α) ∪ spG[SL(α) then

α /∈ antG(β ∪S) by definition of G[SL, which is a contradiction. Hence G[SL satisfies
condition (i) for an ancestral graph.

Now suppose that neG[SL(α) �= ∅. Let β ∈ neG[SL(α). Then by the definition

of G[SL, α ∈ antG({β} ∪ S) and β ∈ antG({α} ∪ S). Thus either α ∈ antG(S) or,
by Lemma 3.8(ii), α ∈ unG. It follows by Lemma 4.9 that α ∈ unG[SL , hence

paG[SL(α)∪ spG[SL(α) = ∅. So G[SL satisfies condition (ii) for an ancestral graph. �

We will show in Section 4.2.10 that G[SL is a maximal ancestral graph.

4.2.8. Introduction of undirected and bidirected edges. As stated earlier, we
are particularly interested in considering the transformation G $→ G[SL in the
case where G is a DAG, and hence contains no bidirected or undirected edges.
The following results show that the introduction of undirected edges is naturally
associated with conditioning, while bidirected are associated with marginalizing.

PROPOSITION 4.13. If G is an ancestral graph which contains no undirected
edges, then neither does G[∅L .

PROOF. If α − β in G[∅L then, by construction, α ∈ antG(β), β ∈ antG(α).
Hence by Lemma 3.8(ii) there is a path composed of undirected edges which joins
α and β in G, which is a contradiction. �

In particular, if we begin with a DAG, then undirected edges will only be present
in the transformed graph if S �= ∅; likewise it follows from the next Proposition
that bidirected edges will only be present if L �= ∅.
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PROPOSITION 4.14. If G is an ancestral graph which contains no bidirected
edges then neither does G[S

∅
.

PROOF. If α ↔ β in G[S
∅

then α /∈ antG({β} ∪S) and β /∈ antG({α} ∪S). Since
there are no bidirected edges in G it follows that α and β are not adjacent in G.
Since L = ∅, it further follows that any inducing path has the form α → σ ← β ,
where σ ∈ antG(S), contradicting α,β /∈ antG(S). �

4.2.9. The independence model Im(G[SL). The following lemmas and corol-
lary are required to prove Theorem 4.18.

LEMMA 4.15. If G is an ancestral graph with V = O ∪̇ S ∪̇ L, and β ∈
paG[SL(α)∪ spG[SL(α) then α is not anterior to any vertex on an inducing path (w.r.t.
S and L) between α and β in G.

PROOF. If β ∈ paG[SL(α) ∪ spG[SL(α), then α /∈ unG[SL . It then follows by

Lemma 4.9 that α /∈ unG, and by construction of G[SL that α /∈ antG({β} ∪ S).
A vertex γ on an inducing path between α and β is in antG({α,β} ∪ S). If
α ∈ antG(γ ) then by Lemma 3.8(ii) γ /∈ antG(α), since α /∈ unG. Thus γ ∈
antG({β} ∪ S) but then α ∈ antG({β} ∪ S), which is a contradiction. �

COROLLARY 4.16. If α ↔ β or α ← β in G[SL and 〈α,φ1, . . . , φk, β〉 is an
inducing path (w.r.t. S and L) in G then φ1 ∈ paG(α) ∪ spG(α).

PROOF. By Lemma 4.15, α /∈ antG(φ1), hence φ1 ∈ paG(α) ∪ spG(α). �

The next lemma forms the core of the proof of Theorem 4.18.

LEMMA 4.17. If G is an ancestral graph with V = O ∪̇S ∪̇L, Z ∪̇ {α,β} ⊆ O

then the following are equivalent:

(i) There is an edge between α and β in ((G[SL)ant
G[S

L
({α,β}∪Z))

a .

(ii) There is a path between α and β in (GantG({α,β}∪Z∪S))
a on which every

vertex, except the endpoints, is in L.
(iii) There is a path which m-connects α and β in G given

antG({α,β} ∪ Z ∪ S) \ (L ∪ {α,β}).
Figure 12 gives an example of this lemma, continued below, to illustrate the

constructions used in two of the following proofs.

PROOF OF LEMMA 4.17. (i)⇒(ii) By (i) there is a path π between α and β

in G[SL on which every nonendpoint vertex is a collider and an ancestor of
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FIG. 12. Example of Lemma 4.17: (i) an ancestral graph G; (ii) the augmented graph
(GantG({α,β}∪Z∪S))

a ; (iii) the graph G[SL; (iv) the augmented graph ((G[SL)ant
G[S

L
({α,β}∪Z))

a (where

Z = {ζ }, S = {s} and L = {l1, l2, l3, l4, l5}).

Z ∪ {α,β} in G[SL. Let the vertices on π be denoted by 〈ω0, . . . ,ωn+1〉, (α = ω0,
β = ωn+1). By Lemma 4.7 ωi ∈ antG({α,β} ∪ Z ∪ S). By Theorem 4.2 there is
a path νi between ωi and ωi+1 in Gant({ωi ,ωi+1}∪S) on which every noncollider is
in L. The path νi exists in Gant({α,β}∪Z∪S) as it is a supergraph of Gant({ωi ,ωi+1}∪S).
Let s be the sequence of vertices formed by concatenating the sequences of vertices
on each of the paths νi . (The same vertex may occur more than once in s.) Let
〈ψ1, . . . ,ψr〉 be the subsequence of vertices in s each of which is a noncollider on
some path νi , and let ψ0 = α,ψr+1 = β . Since ψ1, . . . ,ψr ∈ L, it is sufficient to
show that for 0 ≤ j < r + 1, if ψj �= ψj+1 then ψj − ψj+1 in (Gant({α,β}∪Z∪S))

a .
Suppose ψj �= ψj+1, there are now two cases:

(a) ψj and ψj+1 both occur on the same path νi . In this case ψj and ψj+1

are connected in (Gant({α,β}∪Z∪S))
a by the augmented edge corresponding to the

collider path νi(ψj ,ψj+1).
(b) ψj and ψj+1 occur on different paths, νij and νij+1 . Consider the sub-

sequence s(ψj ,ψj+1), denoted by 〈φ0, φ1, . . . , φq,φq+1〉, with φ0 = ψj ,φq+1 =
ψj+1. For 1 ≤ k ≤ q any vertex φk is either on νi or is an endpoint ωi of νi with
ij < i ≤ ij+1. In the former case since ψj and ψj+1 are consecutive noncollid-
ers in s, φk is a collider on νi . In the latter case by Corollary 4.16, φk−1, φk+1 ∈
paG(ωi) ∪ spG(ωi) since ωi is a collider on π . Thus for 1 ≤ k < q , φk ↔ φk+1,
moreover, ψj → φ1 or ψj ↔ φ1, and φq ← ψj+1 or φq ↔ ψj+1. Hence ψj

and ψj+1 are collider connected in Gant({α,β}∪Z∪S), and consequently adjacent in
(Gant({α,β}∪Z∪S))

a .
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Applying the construction in the previous proof to the example in Figure 12,
we have π = 〈α, ζ,β〉 = 〈ω0,ω1,ω2〉 in G[SL, hence n = 1. Further, ν0 =
〈α,γ, l1, l2, l4, ζ 〉 and ν1 = 〈ζ, l4, l2, l1, l3, l5, β〉, hence s = 〈α,γ, l1, l2, l4, ζ, l4,
l2, l1, l3, l5, β〉. Now, 〈ψ0, . . . ,ψ9〉 = 〈α, l1, l2, l4, l4, l2, l1, l3, l5, β〉, so r = 8. For
j �= 3, case (a) applies since ψj and ψj+1 occur on the same path νi ; for j = 3,
ψj = ψj+1.

(ii)⇔(iii) This follows from Proposition 2.2 together with the definition and
equivalence of m-separation and m∗-separation (Theorem 3.18).

(iii)⇒(i) Let Z∗ = antG({α,β}∪Z∪S)\ (L∪{α,β}), and let π be a path which
m-connects α and β given Z∗ in G. By Lemma 3.13 every noncollider on π is in
antG({α,β} ∪Z∗) = antG({α,β} ∪Z∪S) by Propositions 2.1(iii) and 2.2(i). Every
noncollider on π is in L and every collider is an ancestor of Z∗. Let 〈ψ1, . . . ,ψt〉
denote the sequence of colliders on π that are not in antG(S), and let ψ0 = α

and ψt+1 = β . For 1 ≤ i ≤ t let φi be the first vertex in O on a shortest directed
path from ψi to a vertex ζi ∈ Z∗ \ antG(S) ⊂ antG(Z ∪ {α,β}) \ (antG(S) ∪ L),
denoted νi . Again let φ0 = α, φt+1 = β . Denote the sequence 〈φ0, . . . , φt+1〉 by t.
Finally, let s be a subsequence of t constructed as follows:

• i(0) = 0, so φi(0) = α;
• i(k + 1) is the greatest j > i(k) with {φi(k), . . . , φj } ⊆ antG({φi(k), φj }).

Note that if i(k) < t then i(k + 1) is guaranteed to exist since

{φi(k), φi(k)+1} ⊆ antG({φi(k), φi(k)+1}).
In addition, the vertices in s are distinct. Let s be such that i(s + 1) = t + 1, so
φi(s+1) = β .

We now show that there is a path connecting φi(k) and φi(k+1) in
(GantG({φi(k),φi(k+1)}∪S))

a on which every vertex except the endpoints is
in L: φi(k) and ψi(k) are connected by the path corresponding to νi(k) in
(GantG({φi(k),φi(k+1)}∪S))

a , and likewise φi(k+1) and ψi(k+1) are connected by the path
corresponding to νi(k+1). In addition, excepting the endpoints φi(k) and φi(k+1),
every vertex on νi(k) and νi(k+1) is in L. By construction, every collider on
π(ψi(k),ψi(k+1)) is either in antG({φi(k), φi(k+1)}) or antG(S). Further, every non-
collider γ on π(ψi(k),ψi(k+1)) is either anterior to ψj (i(k) ≤ j ≤ i(k + 1)) or
is anterior to a collider that is in antG(S). Thus every vertex on π(ψi(k),ψi(k+1))

is in antG({φi(k), φi(k+1)} ∪ S), so this path exists in GantG({φi(k),φi(k+1)}∪S). The se-
quence of noncolliders on π(ψi(k),ψi(k+1)), all of which are in L, connect ψi(k)

and ψi(k+1) in (GantG({φi(k),φi(k+1)}∪S))
a . It now follows from Theorem 4.2 (iii)⇔(i)

that φi(k) and φi(k+1) are adjacent in G[SL.
Next we show that φ0 → φi(1) or φ0 ↔ φi(1), φi(s) ← φi(s+1) or φi(s) ↔

φi(s+1) and 1 ≤ k < s, φi(k) ↔ φi(k+1) in G[SL, from which it follows that α

and β are collider connected as required. By construction {φi(k−1), . . . , φi(k)} ⊆
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antG({φi(k−1), φi(k)}), hence if φi(k) ∈ antG({φi(k−1)}) then {φi(k−1), . . . , φi(k),

φi(k)+1} ⊆ antG({φi(k−1), φi(k)+1}), and thus i(k) is not the greatest j such that

{φi(k−1), . . . , φj } ⊆ antG({φi(k−1), φj }).
Thus φi(k) /∈ antG({φi(k−1)}) (1 ≤ k ≤ s). Further, since

{φi(k), . . . , φi(k+1)} ⊆ antG({φi(k), φi(k+1)}),
if φi(k) ∈ antG({φi(k+1)}) then

{φi(k−1), . . . , φi(k+1)} ⊆ antG({φi(k−1), φi(k+1)}),
but in that case φi(k) is not the last such vertex after φi(k−1) in t, which is a contra-
diction. By construction, ψi(k) ∈ antG(φi(k)) for 1 ≤ k ≤ s, and ψi(k) /∈ antG(S), so
φi(k) /∈ antG(S). We have now shown that φi(k) /∈ antG({φi(k−1), φi(k+1)} ∪ S), for
1 ≤ k ≤ s. The required orientations now follow from the definition of G[SL.

Finally, since {φi(1), . . . , φi(s)} ⊆ antG(Z ∪ {α,β})\ (antG(S)∪L), it follows by
Lemma 4.7 that {φi(1), . . . , φi(s)} ⊆ antG[SL(Z ∪ {α,β}). Hence every vertex in the

sequence s occurs in (G[SL)ant
G[S

L
({α,β}∪Z), and thus α and β are collider connected

in this graph, as required. �

We now apply the construction in the previous proof to the example in
Figure 12. The path π = 〈α,γ, l1, l3, l5, β〉 m-connects α and β given Z∗ =
antG({α,β}∪Z∪S)\(L∪{α,β}) = {γ, δ, s, ζ }. It follows that 〈ψ0,ψ1,ψ2,ψ3〉 =
〈α, l1, l5, β〉, so t = 2; t = 〈φ0, φ1, φ2, φ3〉 = 〈α, ζ, δ,β〉, ν1 = 〈l1, l2, l4, ζ 〉, and
ν2 = 〈l5, δ〉. It then follows that s = 〈φi(0), φi(1), φi(2)〉 = 〈α, ζ,β〉, so s=1. For
k = 0,1 the graph (GantG({φi(k),φi(k+1)}∪S))

a is the graph shown in Figure 12(ii).
Finally, note that t does not constitute a collider path between α and β in G[SL,
though the subsequence s does, as proved.

We are now ready to prove the main result of this section:

THEOREM 4.18. If G is an ancestral graph over V , and S ∪̇ L ⊂ V , then

Im(G)[SL= Im(G[SL).

PROOF. Let X ∪̇ Y ∪̇ Z ⊆ O. We now argue as follows:

〈X,Y | Z〉 /∈ Im(G)[SL
⇐⇒ 〈X,Y | Z ∪ S〉 /∈ Im(G)

⇐⇒ for some α ∈ X, β ∈ Y there is a path π connecting α and β

in (GantG({α,β}∪Z∪S))
a , on which no vertex is in Z ∪ S

⇐⇒ for some α ∈ X, β ∈ Y there is a path µ connecting α and β

in
(
(G[SL)ant

G[S
L
({α,β}∪Z)

)a on which no vertex is in Z

⇐⇒ 〈X,Y | Z〉 /∈ Im(G[SL).

(∗)



992 T. RICHARDSON AND P. SPIRTES

The equivalence (∗) is justified thus:
Let the subsequence of vertices on π that are in O be denoted 〈ω1, . . . ,ωn〉.

Since ωi,ωi+1 ∈ antG({α,β} ∪ Z ∪ S),

(GantG({α,β}∪Z∪S))
a = (GantG({ωi ,ωi+1}∪({α,β}∪Z)∪S))

a.

By Lemma 4.17, ωi and ωi+1 are adjacent in((
G[SL

)
ant

G[S
L
({ωi,ωi+1}∪({α,β}∪Z))

)a
,

since any vertices occurring between ωi and ωi+1 on π are in L.
We now show by induction that for 1 ≤ i ≤ n, ωi ∈ antG[SL({α,β} ∪ Z). Since

ω1 = α, the claim holds trivially for i = 1. Now suppose that ωi ∈ antG[SL({α,β} ∪
Z). If ωi+1 /∈ antG(S) then by Lemma 4.7, ωi+1 ∈ antG[SL({α,β} ∪Z). On the other

hand, if ωi+1 ∈ antG(S) then by Lemma 4.9, ωi+1 ∈ unG[SL . It follows that in G[SL
either ωi+1 − ωi , ωi+1 → ωi , or ωi+1 → γ , where γ is a vertex on a collider
path between ωi and ωi+1 in (G[SL)ant

G[S
L
({ωi ,ωi+1}∪({α,β}∪Z)). Consequently, ωi+1 ∈

antG[SL({ωi,α,β} ∪ Z) = antG[SL({α,β} ∪ Z), by the induction hypothesis. It now
follows that for 1 ≤ i ≤ n, ωi and ωi+1 are adjacent in((

G[SL
)
ant

G[S
L
({α,β}∪Z)

)a =
((

G[SL
)
ant

G[S
L
({ωi,ωi+1}∪({α,β}∪Z))

)a
,

hence α and β are connected in this graph by a path on which no vertex is in Z.
Conversely, suppose that the vertices on µ are 〈υ1 . . . , υm〉. Since υj ,υj+1 ∈

antG[SL({α,β} ∪ Z), by Lemma 4.7 υj ,υj+1 ∈ antG({α,β} ∪ Z ∪ S). As υj and
υj+1 are adjacent in((

G[SL
)
ant

G[S
L
({α,β}∪Z)

)a =
((

G[SL
)
ant

G[S
L
({υj ,υj+1}∪({α,β}∪Z))

)a
,

it follows by Lemma 4.17 that υj and υj+1 are connected by a path νj in

(GantG({υj ,υj+1}∪({α,β}∪Z)∪S))
a = (GantG({α,β}∪Z∪S))

a

on which no vertex is in Z ∪ S. Hence α and β are also connected by such a path.
�

4.2.10. G[SL is a maximal ancestral graph.

COROLLARY 4.19. If G is an ancestral graph with vertex set V = O ∪̇ S ∪̇ L

then G[SL is a maximal ancestral graph.

PROOF. By definition there is an edge between α and β in G[SL if and only if
for all sets Z ⊆ O \ {α,β}, 〈{α}, {β} | Z ∪ S〉 /∈ Im(G), or equivalently 〈{α}, {β} |
Z〉 /∈ Im(G)[SL. Hence by Theorem 4.18, there is an edge between α and β in G[SL
if and only if for all sets Z ⊆ O \ {α,β}, 〈{α}, {β} | Z〉 /∈ Im(G[SL). Hence G[SL is
maximal. �
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4.2.11. Commutativity.

THEOREM 4.20. If G is an ancestral graph with vertex set V , and S1, S2,
L1, L2 are disjoint subsets of V , then G[S1∪S2

L1∪L2
= (G[S1

L1
)[S2

L2
. Hence the following

diagram commutes:

G G[S2
L2

G[S1
L1

G[S1∪S2
L1∪L2

Figure 11 gives an example of this theorem.

PROOF. We first show that G[S1∪S2
L1∪L2

and (G[S1
L1

)[S2
L2

have the same adjacencies.
Let α, β be vertices in V \ (S1 ∪ S2 ∪ L1 ∪ L2).

There is an edge between α and β in G[S1∪S2
L1∪L2

⇐⇒ ∀Z ⊆ V \ ((S1 ∪ S2) ∪ (L1 ∪ L2) ∪ {α,β}),
〈{α}, {β} | Z ∪ (S1 ∪ S2)〉 /∈ Im(G)

⇐⇒ ∀Z ⊆ (
V \ (S1 ∪ L1)

) \ (S2 ∪ L2 ∪ {α,β}),
〈{α}, {β} | Z ∪ S2〉 /∈ Im(G)[S1

L1

⇐⇒ ∀Z ⊆ (
V \ (S1 ∪ L1)

) \ (S2 ∪ L2 ∪ {α,β}),
〈{α}, {β} | Z ∪ S2〉 /∈ Im

(
G[S1

L1

)
⇐⇒ there is an edge between α and β in

(
G[S1

L1

)[S2
L2

.

(∗)

The equivalence marked (∗) follows from Theorem 4.18. Now suppose that α and
β are adjacent in G[S1∪S2

L1∪L2
and (G[S1

L1
)[S2

L2
:

α ∈ ant
G[S1∪S2

L1∪L2

(β)

'⇒ α ∈ antG({β} ∪ S1 ∪ S2) by Lemma 4.7;

'⇒ α ∈ ant
G[S1

L1

({β} ∪ S2) or α ∈ un
G[S1

L1

by Corollary 4.10

and Lemma 4.9;

'⇒ α ∈ ant
(G[S1

L1
)[S2

L2

(β) or α ∈ un
(G[S1

L1
)[S2

L2

by Corollary 4.10

and Lemma 4.9;

'⇒ α ∈ ant
(G[S1

L1
)[S2

L2

(β) since α and β are

adjacent.
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Arguing in the other direction,

α ∈ ant
(G[S1

L1
)[S2

L2

(β)

'⇒ α ∈ ant
G[S1

L1

({β} ∪ S2) by Lemma 4.7;

'⇒ α ∈ antG({β} ∪ S1 ∪ S2) by Lemma 4.7;

'⇒ α ∈ ant
G[S1∪S2

L1∪L2

(β) or α ∈ un
G[S1∪S2

L1∪L2

by Corollary 4.10
and Lemma 4.9;

'⇒ α ∈ ant
G[S1∪S2

L1∪L2

(β) since α and β are
adjacent.

It then follows from Corollary 3.10 that G[S1∪S2
L1∪L2

= (G[S1
L1

)[S2
L2

as required. �

5. Extending an ancestral graph. In this section we prove two extension
results. We first show that every ancestral graph can be extended to a maximal
ancestral graph, as stated in Section 3.7. We then show that every maximal
ancestral graph may be extended to a complete ancestral graph, and that the edge
additions may be ordered so that all the intermediate graphs are also maximal. This
latter result parallels well known results for decomposable undirected graphs [see
Lauritzen (1996), page 20].

5.1. Extension of an ancestral graph to a maximal ancestral graph.

THEOREM 5.1. If G is an ancestral graph then there exists a unique maximal
ancestral graph Ḡ formed by adding bidirected edges to G such that Im(G) =
Im(Ḡ).

Figure 13 gives a simple example of this theorem.

PROOF OF THEOREM 5.1. Let Ḡ = G[∅∅. It follows from Theorem 4.18 and
Proposition 4.1(i) that

Im(Ḡ) = Im(G[∅
∅
) = Im(G)[∅

∅
= Im(G)

as required. If α and β are adjacent in G then trivially there is a path m-connecting
α and β given any set Z ⊂ V \ {α,β}, hence there is an edge between α and β

FIG. 13. (i) A nonmaximal ancestral graph G; (ii) the maximal extension Ḡ. (Every pair of
nonadjacent vertices in Ḡ is m-separated either by {c} or {d}.)
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in G[∅∅. Now, by Corollary 4.8, antG(α) = antG[∅
∅

(α). Hence by Lemma 3.9 every

edge in G is inherited by Ḡ = G[∅∅. By Corollary 4.19 G[∅∅ is maximal. This
establishes the existence of a maximal extension of G.

Let Ḡ be a maximal supergraph of G. Suppose α and β are adjacent in Ḡ but are
not adjacent in G. By Corollary 4.3 there is a primitive inducing path π between
α and β in G, containing more than one edge. Since π is present in Ḡ, and this
graph is maximal, it follows by Corollary 4.6 that α ↔ β in Ḡ, as required. This
also establishes uniqueness of Ḡ. �

Three corollaries are consequences of this result:

COROLLARY 5.2. G is a maximal ancestral graph if and only if G = G[∅∅.

PROOF. Follows directly from the definition of G[∅∅ and Theorem 5.1. �

The next corollary establishes the pairwise Markov property referred to in
Section 3.7.

COROLLARY 5.3. If G is a maximal ancestral graph and α, β are not adjacent
in G, then 〈{α}, {β} | antG({α,β}) \ {α,β}〉 ∈ Im(G).

PROOF. By Corollary 5.2, G = G[∅∅. The result then follows by contraposition
from Theorem 4.2 and properties (i) and (iv). �

COROLLARY 5.4. If G is an ancestral graph, α ∈ antG(β), and α, β are not
adjacent in G then 〈{α}, {β} | antG({α,β}) \ {α,β}〉 ∈ Im(G).

PROOF. If α ∈ antG(β) then by Corollary 4.8, α ∈ antG[∅
∅

(β). Hence there is

no edge α ↔ β in G[∅∅, since by Theorem 4.12, G[∅∅ is ancestral. It follows from
Theorem 5.1 that α and β are not adjacent in G[∅∅. The conclusion then follows
from Corollary 5.3. �

5.2. Extension of a maximal ancestral graph to a complete graph. For an
ancestral graph G = (V,E), the associated complete graph, denoted G̃, is defined
as follows:

G̃ has vertex set V and an edge between every pair of distinct vertices α, β ,
specified as:

α − β if α,β ∈ unG,

α → β if α ∈ unG ∪ antG(β) and β /∈ unG,

α ↔ β otherwise.
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Thus between each pair of distinct vertices in G̃ there will be exactly one edge.
Note that although G̃ is unique as defined, in general there will be other complete
ancestral graphs of which a given graph G is a subgraph.

LEMMA 5.5. If G = (V,E) is an ancestral graph, then: (i) G is a subgraph
of G̃; (ii) unG̃ = unG; (iii) for all ν ∈ V , antG̃(ν) = antG(ν) ∪ unG; (iv) G̃ is an
ancestral graph.

PROOF. (i) This follows from the construction of G̃, Lemma 3.7, and paG(ν) ⊆
antG(ν).

(ii) By construction, if α ∈ unG then paG̃(α) ∪ spG̃(α) = ∅ hence α ∈ unG̃.
Conversely, if α /∈ unG then paG(α) ∪ spG(α) �= ∅. By (i), paG̃(α) ∪ spG̃(α) �= ∅,
so α /∈ unG̃. Thus unG̃ = unG as required.

(iii) By (i), antG(ν) ⊆ antG̃(ν), further, by construction, unG̃ ⊆ antG̃(ν), thus
antG(ν) ∪ unG ⊆ antG̃(ν). Conversely, if α ∈ antG̃(ν0) then either α ∈ unG = unG̃

by (ii) or α /∈ unG. In the latter case, by construction of G̃ there is a directed path
α → νn → · · · → ν0 in G̃, and every vertex on the path is in V \ unG. Hence
α ∈ antG(νn), and νi ∈ antG(νi−1) (i = 1, . . . , n), so α ∈ antG(ν0).

(iv) If β → α in G̃ then, by the construction of G̃, α /∈ unG and β ∈ antG(α) ∪
unG. Hence, by Lemma 3.8(ii), α /∈ antG(β) and thus α /∈ antG̃(β), by (iii).
Similarly, if β ↔ α in G̃ then by construction, α /∈ unG ∪ antG(β), hence again
by (iii), α /∈ antG̃(β). Thus α /∈ antG̃(paG̃(α) ∪ spG̃(α)), so (i) in the definition of

an ancestral graph holds. By the construction of G̃, if neG̃(α) �= ∅ then α ∈ unG,
and thus, again by construction, spG̃(α) ∪ paG̃(α) = ∅, hence (ii) in the definition
holds as required. �

THEOREM 5.6. If G is a maximal ancestral graph with r pairs of vertices that
are not adjacent, and G∗ is any complete supergraph of G with unG = unG∗ then
there exists a sequence of maximal ancestral graphs

G∗ ≡ G0, . . . ,Gr ≡ G

where Gi+1 is a subgraph of Gi containing one less edge εi than Gi , and unGi+1 =
unGi

.
The sequence of edges removed, 〈ε0, . . . ,εr−1〉, is such that no undirected edge

is removed after a directed edge and no directed edge is removed after a bidirected
edge.

Two examples of this theorem are shown in Figure 14. (The existence of at least
one complete ancestral supergraph G∗ of G is guaranteed by the previous lemma.)

PROOF OF THEOREM 5.6. Let Ẽ be the set of edges that are in G0 ≡ G∗ but
not G. Place an ordering ≺ on Ẽ as follows:
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FIG. 14. Two simple examples of the extension described in Theorem 5.6. In (ii) if the α ↔ β edge
were added prior to the γ ↔ δ edge the resulting graph would not be maximal.

(i) if α − β,γ → δ ∈ Ẽ then α − β ≺ γ → δ;
(ii) if α → β,γ ↔ δ ∈ Ẽ then α → β ≺ γ ↔ δ;

(iii) if α ↔ β,γ ↔ δ ∈ Ẽ and α,β ∈ anG({γ, δ}) then α ↔ β ≺ γ ↔ δ.

The ordering on bidirected edges is well-defined by Lemma 3.11. Now let Gi be
the graph formed by removing the first i edges in Ẽ under the ordering ≺. Since G0
is ancestral, it follows from Proposition 3.5 that Gi is too. Since G0 is complete, it
is trivially maximal.

Suppose for a contradiction that Gi is maximal, but Gi+1 is not. Let the
endpoints of εi be α and β . Since, by hypothesis, Gi is maximal, for any pair
of vertices γ , δ that are not adjacent in Gi , for some set Z (γ, δ /∈ Z), 〈γ, δ | Z〉 ∈
Im(Gi) ⊆ Im(Gi+1) (by Proposition 3.12). Since α, β are the only vertices that are
not adjacent in Gi+1, but are adjacent in Gi , it follows by Corollaries 4.3 and 4.4
that there is a primitive inducing path π between α and β in Gi+1 and hence also
in Gi .

By Corollary 4.6 it then follows that εi = α ↔ β in Gi . Since all directed edges
in Ẽ occur prior to εi , anG(ν) = anGi+1(ν) for all ν ∈ V . By Lemma 4.5 every edge
on π is bidirected and every vertex on the path is in anGi+1({α,β}) = anG({α,β}).
It then follows that π exists in G since, if any edge on π were in Ẽ, it would
occur prior to εi . But in this case, since G is maximal, εi is present in G, which is
a contradiction.

Finally, by Proposition 3.6, unGi
⊆ unGi+1 , as Gi+1 is a subgraph of Gi . Now

unGr ≡ unG = unG∗ ≡ unG0 , hence unGi
= unGi+1 . �

Note that the proof shows that between G and any complete supergraph G0 of G
there will exist a sequence of maximal graphs, each differing from the next by
a single edge.
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6. Canonical directed acyclic graphs. In this section we show that for every
maximal ancestral graph G there exists a DAG D(G) and sets S, L such that
D(G)[SL= G. This result is important because it shows that every independence
model represented by an ancestral graph corresponds to some DAG model under
marginalizing and conditioning.

6.1. The canonical DAG D(G) associated with G. If G is an ancestral graph
with vertex set V , then we define the canonical DAG, D(G) associated with G as
follows:

(i) let SD(G) = {σαβ | α − β in G};
(ii) let LD(G) = {λαβ | α ↔ β in G};

(iii) DAG D(G) has vertex set V ∪ LD(G) ∪ SD(G) and edge set defined as:

If


α → β

α ↔ β

α − β

 in G then


α → β

α ← λαβ → β

α → σαβ ← β

 in D(G).

Figure 15 shows an ancestral graph and the associated canonical DAG.
Wermuth, Cox and Pearl (1994) introduced the idea of transforming a graph into

a DAG in this way by introducing additional “synthetic” variables, as a method of
interpreting particular dependence models. [See also Verma and Pearl (1990).]

A minipath is a path in D(G) containing one or two edges, with endpoints
in V , but no other vertices in V . The construction of D(G) sets up a one to
one correspondence between edges in G, and minipaths in D(G). If α and β are
adjacent in G then denote the corresponding minipath in D(G), δαβ . Conversely
if δ is a minipath in D(G), then let δG denote the corresponding edge in G.

Observe that if δαβ and δφψ are minipaths corresponding to two different
adjacencies in G, then no nonendpoint vertices are common to these paths.

Given a path µ in D(G), with endpoints in V , the path may be decomposed into
a sequence of minipaths 〈δα1α2, . . . , δαn−1αn〉, from which we may construct a path
〈α1, . . . , αn〉 in G by replacing each minipath by the corresponding edge. We will
denote this path by µG. Note that since D(G) is a DAG, anD(G)(·) = antD(G)(·),

FIG. 15. (i) An ancestral graph; (ii) the associated canonical DAG.
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and by definition a path µ is m-connecting if and only if it is d-connecting. Since
it helps to make clear that we are referring to a path in a DAG, we will only
use the term “d-connecting” when referring to a path which is m-connecting (and
d-connecting) in D(G).

6.1.1. Graphical properties of D(G).

LEMMA 6.1. Let G be an ancestral graph with vertex set V .

(i) If β ∈ V then anD(G)(β) ∩ V = anG(β).
(ii) anD(G)(SD(G)) = paD(G)(SD(G)) ∪ SD(G), so anD(G)(SD(G)) ⊆ SD(G) ∪

unG.
(iii) anD(G)(SD(G)) ∩ LD(G) = ∅.

PROOF. (i) If α,β ∈ V and α ∈ anD(G)(β) then there is a directed path δ from
α to β in D(G). Every nonendpoint vertex on δ has at least one parent and at least
one child in D(G), hence every vertex on δ is in V [since chD(G)(SD(G)) = ∅ =
paD(G)(LD(G))]. It then follows from the construction of D(G) that δ exists in G,
so α ∈ anG(β). It also follows from the construction of D(G) that any directed
path in G exists in D(G).

(ii) By construction, paD(G)(σαβ) = {α,β} ⊆ unG (by Lemma 3.7). But
again, by construction, paD(G)(unG) = ∅. Hence anD(G)(σαβ) = {α,β,σαβ} ⊆
unG ∪ {σαβ}, so anD(G)(SD(G)) ⊆ unG ∪SD(G).

(iii) This follows from the previous property:

anD(G)(SD(G)) ∩ LD(G) ⊆ (unG ∪SD(G)) ∩ LD(G)

⊆ (V ∪ SD(G)) ∩ LD(G) = ∅. �

Note that antG(β) �= antD(G)(β) for β ∈ V , because an undirected edge α − β

in G is replaced by α → σαβ ← β in D(G).

LEMMA 6.2. G is a subgraph of D(G)[SD(G)

LD(G)
.

PROOF. First recall that anD(G)(·) = antD(G)(·) since D(G) is a DAG. We now
consider each of the edges occurring in G:

(i) If α − β in G then α → σαβ ← β in D(G), so α,β ∈ antD(G)(SD(G)). It

then follows that α − β in D(G)[SD(G)

LD(G)
.

(ii) If α → β in G then α → β in D(G), so α ∈ antD(G)(β). By Lemma 6.1(i),
β /∈ antD(G)(α), and since further, β /∈ SD(G) ∪ unG, by Lemma 6.1(ii), β /∈
antD(G)(SD(G)). It then follows from the definition of the transformation that

α → β in D(G)[SD(G)

LD(G)
.
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(iii) Likewise, if α ↔ β in G then α ← λαβ → β in D(G). By Lemma 6.1(i)
and (ii), it follows as in case (ii) that β /∈ antD(G)({α} ∪ SD(G)), and by symmetry,

α /∈ antD(G)({β} ∪ SD(G)). Hence α ↔ β in D(G)[SD(G)

LD(G)
. �

6.2. The independence model Im(D(G)[SD(G)

LD(G)
).

THEOREM 6.3. If G is an ancestral graph then

Im(G) = Im

(
D(G)

)[SD(G)

LD(G)
= Im

(
D(G)[SD(G)

LD(G)

)
.

It follows from this result that the global Markov property for ancestral graphs
may be reduced to that for DAGs: X is m-separated from Y given Z in G if and
only if X is d-separated from Y given Z ∪ SD(G). (However, see Section 8.6 for
related comments concerning parameterization.)

It also follows from this result that the class of independence models associated
with ancestral graphs is the smallest class that contains the DAG independence
models and is closed under marginalizing and conditioning.

PROOF OF THEOREM 6.3. We break the proof into three parts:

Part 1. Im(D(G))[SD(G)

LD(G)
= Im(D(G)[SD(G)

LD(G)
) by Theorem 4.18.

Part 2. Im(G) ⊆ Im(D(G))[SD(G)

LD(G)
. Suppose G has vertex set V , containing

vertices α, β , and set Z (α,β /∈ Z). It is sufficient to prove that if there is a path µ
which d-connects α and β given Z ∪ SD(G) in D(G) then µG m-connects α and β

given Z in G.
Suppose that γ is a collider on µG. In this case γ is a collider on µ since

the corresponding minipaths collide at γ in D(G). Since µ is d-connecting given
Z ∪ SD(G) and γ ∈ V ,

γ ∈ (
anD(G)(Z ∪ SD(G))

) ∩ V = (
anD(G)(Z) ∩ V

) ∪ (
anD(G)(SD(G)) ∩ V

)
,

by Proposition 2.1. But γ /∈ unG, so by Lemma 6.1(ii), γ /∈ anD(G)(SD(G)). Hence
γ ∈ (anD(G)(Z) ∩ V ) = anG(Z), the equality following from Lemma 6.1(i).

If γ is a noncollider on µG then γ is a noncollider on µ, so γ /∈ Z ∪ SD(G), thus
γ /∈ Z as required.

Part 3. Im(D(G)[SD(G)

LD(G)
) ⊆ Im(G). By Lemma 6.2 G is a subgraph of

D(G)[SD(G)

LD(G)
, and the result then follows by Proposition 3.12. �

6.2.1. If G is maximal then D(G)[SD(G)

LD(G)
= G. We now prove the result

mentioned at the start of this section:

THEOREM 6.4. If G is a maximal ancestral graph then

D(G)[SD(G)

LD(G)
= G.
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PROOF. By Lemma 6.2 G is a subgraph of D(G)[SD(G)

LD(G)
, while by Theorem 6.3

these graphs correspond to the same independence model. It then follows from the

maximality of G that D(G)[SD(G)

LD(G)
= G. �

7. Probability distributions. In this section we relate the operations of
marginalizing and conditioning that have been defined for independence models
and graphs to probability distributions.

7.1. Marginalizing and conditioning distributions. For a graph G with vertex
set V we consider collections of random variables (Xν)ν∈V taking values in
probability spaces (Xν)ν∈V . In all the examples we consider, the probability spaces
are either real finite-dimensional vector spaces or finite discrete sets. For A ⊆ V

we let XA ≡ ×v∈A(Xν), X ≡ XV and XA ≡ (Xν)ν∈A.
If P is a probability measure on XV then as usual we define the distribution after

marginalizing over XL, here denoted P [XL
or PXV \L , to be a probability measure

on XV \L, such that

P [XL
(E) ≡ PXV \L(E) = P (〈XV \L,XL〉 ∈ E × XL).

We will assume the existence of a regular conditional probability measure, denoted
P [XS=xS (·) or P (· | XS = xS), for all xS ∈ XS so that∫

F
P [XS=xS (E)dPXS

(xS) = P
(〈XV \S,XS〉 ∈ E × F

)
.

This defines P [XS=xS (·) up to almost sure equivalence under PXS
. Likewise we

define

P [XS=xS
XL

(·) ≡ (P [XS=xS )[XL
(·).

7.2. The set of distributions obeying an independence model [P (I)]. We
define conditional independence under P as follows:

A |= B | C[P ] ⇐⇒ P [XC=xC
XV \(A∪C)

(·) = P [XB=xB,XC=xC
XV \(A∪B∪C)

(·) (PXB∪C
a.e.)

where we have used the usual shorthand notation: A denotes both a vertex set and
the random variable XA.

For an independence model I over V let P (I) be the set of distributions P on X

such that for arbitrary disjoint sets A, B , Z (Z may be empty),

if 〈A,B | Z〉 ∈ I then A |= B | Z[P ].
Note that if P ∈ P (I) then there may be independence relations that are not in I

that also hold in P .
A distribution P is said to be faithful or Markov perfect with respect to an

independence model I if

〈A,B | Z〉 ∈ I if and only if A |= B | Z[P ].
An independence model I is said to be probabilistic if there is a distribution P that
is faithful to I.
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7.3. Relating P (Im(G)) and P (Im(G[SL)).

THEOREM 7.1. Let I be an independence model over V with S ∪̇ L ⊂ V . If
P ∈ P (I) then

P [XS=xs
XL

∈ P
(
I[SL

)
(PXS

a.e.).

PROOF. Suppose 〈X,Y | Z〉 ∈ I[SL. It follows that 〈X,Y | Z ∪ S〉 ∈ I and
(X ∪ Y ∪ Z) ⊆ V \ (S ∪ L). Hence, if P ∈ P (I) and 〈X,Y | Z〉 ∈ I[SL then

X |= Y | Z ∪ S [P ],
hence

X |= Y | Z [
P [XS=xs

XL

]
(PXS

a.e.).

[The last step follows from the assumption that regular conditional probability
measures exist. See Koster (1999a), Appendix A and B.] Since there are finitely
many triples 〈X,Y | Z〉 ∈ I[SL, it follows that

P [XS=xS
XL

∈ P
(
I[SL

)
(PXS

a.e.),

as required. �

Two corollaries follow from this result:

COROLLARY 7.2. If G is an ancestral graph and P ∈ P (Im(G)) then

P [XS=xS
XL

∈ P
(
Im(G)[SL

) = P
(
Im

(
G[SL

))
(PXS

a.e.).

PROOF. This follows directly from Theorem 7.1 and Theorem 4.18. �

COROLLARY 7.3. If N is a normal distribution, faithful to an independence
model I over vertex set V then N [XS=xs

XL
is faithful to I[SL.

PROOF. Since N ∈ P (I), by normality and Theorem 7.1, N [XS=xs
XL

∈ P (I[SL).
Now suppose 〈X,Y | Z〉 /∈ I[SL where X ∪̇ Y ∪̇ Z ⊆ V \ (S ∪ L). Hence 〈X,Y |
Z ∪ S〉 /∈ I. Since N is faithful to I

X /|= Y | Z ∪ S [N ] which implies X /|= Y | Z [
N [XS=xs

XL

]
for any xS ∈ R

|S|, by standard properties of the normal distribution. �

Note that the analogous result is not true for the multinomial distribution as
context-specific (or asymmetric) independence relations may be present.
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FIG. 16. (i) An ancestral graph G; (ii) the graph G[∅{ψ} . (See Section 7.3.1.)

7.3.1. A nonindependence restriction. The following example due to Verma
and Pearl (1991) and Robins (1997) shows that there are distributions Q ∈
P (Im(G)[SL) for which there is no distribution P ∈ P (Im(G)) such that Q = P [SL.
In other words, a set of distributions defined via a set of independence relations
may impose constraints on a given margin that are not independence relations.

Consider the graph G in Figure 16(i). Marginalizing over ψ produces the
complete graph G[∅{ψ} shown in Figure 16(ii), so P (Im(G[∅{ψ})) is the saturated
model containing every distribution over {α,β, γ, δ}. However, if P ∈ P (Im(G))

then, almost surely under P (Xα,Xγ ),∫
Xβ

P (Xδ|xα, xβ, xγ ) dP (xβ |xα)

=
∫
Xβ

∫
Xψ

P (Xδ|xα, xβ, xγ , xψ) dP(xψ |xα, xβ, xγ ) dP (xβ |xα)

=
∫
Xβ

∫
Xψ

P (Xδ|xα, xβ, xγ , xψ) dP(xψ |xα, xβ) dP (xβ |xα)

since γ |= ψ | {α,β}
=

∫
Xβ×Xψ

P (Xδ|xα, xβ, xγ , xψ) dP(xβ, xψ |xα)

=
∫
Xβ×Xψ

P (Xδ|xα, xγ , xψ) dP (xβ, xψ |xα) since β |= δ | {α,γ,ψ}

=
∫
Xψ

P (Xδ|xα, xγ , xψ) dP (xψ |xα)

=
∫
Xψ

P (Xδ|xγ , xψ) dP(xψ) since α |= ψ , α |= δ | {γ,ψ}.

This will not hold in general for an arbitrary distribution since the last expression
is not a function of xα . However, faithfulness is preserved under marginalization
for arbitrary distributions.
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7.4. Independence models for ancestral graphs are probabilistic. The exis-
tence of distributions that are faithful to Im(G) for an ancestral graph G follows
from the corresponding result for DAGs:

THEOREM 7.4 [Building on results of Geiger (1990), Geiger and Pearl (1990),
Frydenberg (1990b), Spirtes et al. (1993) and Meek (1995b)]. For an arbitrary
DAG, D , Im(D) is probabilistic, in particular there is a normal distribution that
is faithful to Im(D).

THEOREM 7.5. If G is an ancestral graph then Im(G) is probabilistic, in
particular there is a normal distribution which is faithful to Im(G).

PROOF. By Theorem 6.3 there is a DAG D(G) such that

Im(G) = Im

(
D(G)[SD(G)

LD(G)

)
.

By Theorem 7.4 there is a normal distribution N that is faithful to Im(D(G)). By

Corollary 7.3,N [XS=xS
XL

is faithful to Im(D(G))[SD(G)

LD(G)
= Im(D(G)[SD(G)

LD(G)
) = Im(G).

�

7.4.1. Completeness of the global Markov property. A graphical separation
criterion C is said to be complete if for any graph G and independence model I∗,

if IC(G) ⊆ I∗ and P (IC(G)) = P (I∗) then IC(G) = I∗.

In other words, the independence model IC(G) (see Section 2.1.1) cannot be
extended without changing the associated set of distributions P (IC(G)).

THEOREM 7.6. The global Markov property for ancestral graphs is complete.

PROOF. The existence of a distribution that is faithful to Im(G) is clearly
a sufficient condition for completeness. �

8. Gaussian parameterization. There is a natural parameterization of the
set of all nonsingular normal distributions satisfying the independence relations
in Im(G). In the following sections we first introduce the parameterization, then
define the set of normal distributions satisfying the relations in the independence
model, and then prove equivalence.

Let Np(µ,<) denote a p-dimensional multivariate normal distribution with
mean µ and covariance matrix <. Likewise let Np be the set of all such
distributions, with nonsingular covariance matrices.

Throughout this section we find it useful to make the following convention:
<−1

AA = (<AA)
−1, where <AA is the submatrix of < restricted to A.



ANCESTRAL GRAPH MARKOV MODELS 1005

8.1. Parameterization. A Gaussian parameterization of an ancestral graph G,
with vertex set V and edge set E is a pair 〈µ,>〉, consisting of a mean function

µ :V → R

which assigns a number to every vertex, together with a covariance function

> :V ∪ E → R

which assigns a number to every edge and vertex in G, subject to the restriction
that the matrices ?, @ defined below are positive definite (p.d.):

(?)αβ
α,β∈unG

= λαβ =

>(α), if α = β,

>(α − β), if α − β in G,

0, otherwise;

(@)αβ
α,β∈V \unG

= ωαβ =

>(α), if α = β,

>(α ↔ β), if α ↔ β in G,

0 otherwise.

Let �(G) be the set of all such parameterizations 〈µ,>〉 for G. We further define:

(B)αβ
α,β∈V

= bαβ =


1, if α = β,
>(α ← β), if α ← β in G,
0, otherwise.

PROPOSITION 8.1. If ? and @ are given by a parameterization of G then:

(i) ?, @ are symmetric;
(ii) for ν ∈ unG, λνν > 0 and for ν ∈ V \ unG, ωνν > 0.

PROOF. Both properties follow from the requirement that ?, @ be positive
definite. �

PROPOSITION 8.2. Let G be an ancestral graph with vertices V , edges E. The
values taken by >(·) on the sets, unG ∪{α −β ∈ E}, (V \ unG)∪ {α ↔ β ∈ E} and
{α → β ∈ E} are variation independent as >(·) varies in �(G). Likewise, µ(·)
and >(·) are variation independent.

PROOF. The proof follows directly from the definition of a parameterization.
�

LEMMA 8.3. Let G be an ancestral graph with vertex set V . Further, let ≺ be
an arbitrary ordering of V such that all vertices in unG precede those in V \ unG,
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and α ∈ an(β) \ {β} implies α ≺ β . Under such an ordering, the matrix B given
by a parameterization of G has the form:

B =
(

I 0
Bdu Bdd

)
and B−1 =

(
I 0

−B−1
dd Bdu B−1

dd

)
,

where Bdd is lower triangular, with diagonal entries equal to 1. Hence B is lower
triangular and nonsingular, as is B−1.

Note that we use u,d as abbreviations for unG,V \ unG respectively.

PROOF OF LEMMA 8.3. If α,β ∈ unG then since G is ancestral, α /∈ chG(β)

and vice versa. Hence by definition of B , bαβ = δ(α,β) (where δ is Kronecker’s
delta function). If α ∈ unG, β ∈ V \ unG then α /∈ chG(β), since G is ancestral,
hence bαβ = 0. If α,β ∈ V \ unG, and α = β then bαβ = 1 by definition. If α �= β ,
and bαβ �= 0 then α ∈ chG(β), so β ≺ α. Finally, since G is ancestral, β /∈ chG(α),
so bβα = 0 as required. �

8.1.1. Definition of the Gaussian model [N (G)]. A parameterization 〈µ,>〉
of G specifies a Gaussian distribution as follows:

NGµ> = N|V |(µ,<G>)

where

(µ)α = µ(α) and <G> = B−1
(
?−1 0

0 @

)
B−).(1)

The Gaussian model, N (G) associated with G is the set of normal distributions
obtained from parameterizations of G:

N (G) = {NGµ> | 〈µ,>〉 ∈�(G)}.
Note that it follows from the conditions on B , ? and @ that <G> is positive

definite. The mean function µ does not play a significant role in what follows.

LEMMA 8.4. If 〈µ,>〉 is a parameterization of an ancestral graph G then

<G> =
(

?−1 −?−1B)
duB

−)
dd

−B−1
dd Bdu?

−1 B−1
dd (Bdu?

−1B)
du + @)B−)

dd

)
,

<−1
G> =

(
? + B)

du@
−1Bdu B)

du@
−1Bdd

B)
dd@

−1Bdu B)
dd@

−1Bdd

)
.

PROOF. The proof is immediate from the definition of <G> and Lemma 8.3.
�
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8.1.2. Parameterization of a subgraph.

LEMMA 8.5. Let 〈µ,>〉 be a parameterization of an ancestral graph G =
(V,E). If A ⊂ V such that ant(A) = A, and 〈µA,>A〉 is the parameterization
of the induced subgraph GA, obtained by restricting µ to A and > to A ∪ E∗,
where E∗ is the set of edges in GA, then

?−1
A = (?−1)A∩uA∩u, @A = (@)A∩d A∩d, B−1

A = (B−1)AA,

hence

<GA>A
= (<G>)AA,

where ?A,@A,BA are the matrices associated with >A.

In words, if all vertices that are anterior to a set A in G are contained in A

then the covariance matrix parameterized by the restriction of > to the induced
subgraph GA is just the submatrix (<G>)AA.

Note the distinction between matrices indexed by two subsets which indicate
submatrices in the usual way (e.g., <̃AA) and matrices indexed by one subset which
are obtained from a parameterization of an induced subgraph on this set of vertices
(e.g., BA).

PROOF OF LEMMA 8.5. For @ there is nothing to prove. Since A = ant(A),
no vertex in unG ∩A is adjacent to a vertex in unG \A. Thus

? =
(
?A∩u A∩u 0

0 ?u\A u\A

)
,

so (?−1)A∩uA∩u = ?−1
A as required.

Since A is anterior,

B =
(
BAA 0
BAA BAA

)
,

where A = V \ A. The result then follows by partitioned inversion since BA =
(B)AA = BAA. �

If G = (V,E) is a subgraph of an ancestral graph G∗ = (V,E∗), then there is
a natural mapping 〈µ,>〉 $→ 〈µ∗,>∗〉 from �(G) to �(G∗), defined by

µ∗(·) = µ(·), >∗(x) =
{
>(x), if x ∈ V ∪ E,

0, if x ∈ E∗ \ E.

>∗ simply assigns 0 to edges in G∗ that are not in G (both graphs have the same
vertex set). It is simple to see that

NGµ> = NG∗µ∗>∗ .

The next proposition is an immediate consequence.
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PROPOSITION 8.6. If G = (V,E) is a subgraph of an ancestral graph G∗ =
(V,E∗) then N (G) ⊆ N (G∗).

8.1.3. Interpretation of parameters.

THEOREM 8.7. If G = (V,E) is an ancestral graph, 〈µ,>〉 ∈ �(G), and
<̃ = <G>, then for all vertices α for which pa(α) �= ∅,

B{α} pa(α) = −<̃{α} pa(α)<̃
−1
pa(α)pa(α); further,

(
?−1 0

0 @

)
= B<̃B).(2)

Regarding <̃ as the covariance matrix for a (normal) random vector XV , the
theorem states that >(α ← ν) is −1 times the coefficient of Xν in the regression
of Xα on Xpa(α). @ is the covariance matrix of the residuals from this set of
regressions. ? is just the inverse covariance matrix for XunG . Hence if <̃ is
obtained from some unknown covariance function > for an ancestral graph G,
then equation (2) allows us to reconstruct > from G and <̃.

PROOF OF THEOREM 8.7. Suppose that <̃ = <G> for some parameterization
〈µ,>〉. If every vertex has no parents then B is the identity matrix and the claim
holds trivially.

Suppose that α is a vertex with pa(α) �= ∅, hence by definition α ∈ V \ unG. Let
A = ant(α), e = ant(α) \ (pa(α) ∪ {α}), p = pa(α). By Lemma 8.5,

<̃AA = B−1
A

(
?−1

A 0
0 @A

)
B−)
A .(3)

Since G is ancestral, neG(α)∩A = ∅. Thus partitioning A into e,p, {α}, we obtain

BA =
 Bee 0 0

Bpe Bpp 0

0 Bαp 1

 and @A =
@e∩d e∩d @e∩d p∩d 0

@p∩d e∩d @p∩d p∩d 0

0 0 ωαα

 .

The expression for B{α} pa(α) = Bαp then follows from (3) by routine calculation.
The second claim is an immediate consequence of (1). �

8.1.4. Identifiability.

COROLLARY 8.8. If G is an ancestral graph, >1,>2 are two covariance
functions for G and <G>1 = <G>2 then >1(·) = >2(·). Hence the mapping
> $→ <G> is one-to-one.

PROOF. This follows directly from Theorem 8.7: both >1 and >2 satisfy
equation (2) and hence are identical. �
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8.1.5. N (G) for a complete ancestral graph is saturated.

THEOREM 8.9. If G = (V,E) is a complete ancestral graph then N (G)=N|V |.

In words, a complete ancestral graph parameterizes the saturated Gaussian
model of dimension |V |.

PROOF OF THEOREM 8.9. Let <̃ be an arbitrary p.d. matrix of dimension |V |.
It is sufficient to show that there exists a covariance function > for G, such that
<̃ = <G>. We may apply equation (2) to obtain matrices B , ? and @ from <̃.
However, it still remains to show that (a) whenever there is a nonzero off-diagonal
entry in ?, @ or B , there is an edge of the appropriate type in G to associate with
it, and (b) ? and @ are positive definite.

By Lemma 3.21(ii), GunG is complete, hence in ? all off-diagonal entries are
permitted to be nonzero.

It follows directly from the construction of B given by (2) that if (B)αβ �= 0 and
α �= β then β ∈ pa(α).

Now suppose α,β ∈ V \ unG, and there is no edge α ↔ β in G. Since G is
complete, it follows from Lemma 3.21(iii) that either α ← β , or α → β . Without
loss of generality suppose the former, and let A = ant(α) = pa(α) ∪ {α} since G is
complete. Then

(B<̃B))αβ = (BA<̃AAB
)
A )αβ

=
[(

Bpp 0
−<̃αp<̃

−1
pp 1

)(
<̃pp <̃pα

<̃αp <̃αα

)(
B)
pp −<̃−1

pp <̃pα

0 1

)]
αβ

= 0

as required. The same argument applies in the case where β ∈ unG, α ∈ V \ unG,
and hence α ← β , thus establishing that B<̃B) is block-diagonal with blocks
?−1 and @. This establishes (a).

Since, by hypothesis, <̃ is p.d. and B is nonsingular, by construction, it follows
that ? and @ are also p.d. hence (b) holds. We now have

<G> = B−1
(
?−1 0

0 @

)
B−) = B−1B<̃B)B−) = <̃. �

8.1.6. Entries in @−1 and G↔. If G = (V,E) is an ancestral graph then we
define G↔ to be the induced subgraph with vertex set V , but including only the
bidirected edges in E.

LEMMA 8.10. If α,β ∈ V \ unG and α is not adjacent to β in (G↔)a then

(@−1)αβ = 0,

for any @ obtained from a covariance function > for G.
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PROOF [Based on the proof of Lemma 3.1.6 in Koster (1999a)]. First recall
that α and β are adjacent in (G↔)a if and only if α and β are collider connected in
G↔. The proof is by induction on |d| = |V \ unG |.

If |d| = 2 then (@−1)αβ = −(@)αβ |@|−1 = 0 as there is no edge α ↔ β in G.
For |d| > 2, note that by partitioned inversion:

(@−1)αβ = −(ωαβ − @{α}c@−1
cc @c{β})|@{α,β}.c|−1(4)

= −
(
ωαβ − ∑

γ,δ∈c

ωαγ (@
−1
cc )γ δωδβ

)
|@{α,β}.c|−1(5)

where c = d \ {α,β}, @−1
cc = (@cc)

−1, and

@{α,β}.c = @{α,β}{α,β} − @{α,β}c@−1
cc @c{α,β}.

Since α and β are not adjacent in (G↔)a there is no edge α ↔ β in G, hence
ωαβ = 0. Now consider each term in the sum (5). If there is no edge α ↔ γ or
no edge δ ↔ β then ωαγ (@

−1
cc )ωδβ = 0. If there are edges α ↔ γ and δ ↔ β in G

then γ �= δ as otherwise α and β would be collider connected in G↔, and further
γ and δ are not collider connected in (Gc)↔. Hence by the inductive hypothesis,
(@−1

cc )γ δ = 0. Thus every term in the sum is zero and we are done. �

An alternative proof follows from the Markov properties of undirected graphical
Gaussian models [see Lauritzen (1996)]: view the specification of @ formally as
if it were an inverse covariance matrix for a model represented by an undirected
graph U. Then α and β are not collider connected in G if and only if α and β are
not connected in U. Hence by the global Markov property for undirected graphs,
α and β are marginally independent, so (@−1)αβ = 0. (We thank S. Lauritzen for
this observation.)

It also follows directly from the previous lemma (and this discussion) that @−1

will be block diagonal. (We thank N. Wermuth for this observation.)

COROLLARY 8.11. Let G be an ancestral graph with α ↔ β in G. Let G′ be
the subgraph formed by removing the α ↔ β edge in G. If α and β are not adjacent
in (G′↔)a then

(@−1)αβ = −>(α ↔ β)|@{α,β}.c|−1,

where c = d \ {α,β}, > is a covariance function for G, and @ is the associated
matrix.

Note that we adopt the convention: @{α,β}.c = @{α,β} when c = ∅.

PROOF OF COROLLARY 8.11. By the argument used in the proof of
Lemma 8.10, it is clear that the sum in equation (5) is equal to 0. The result then
follows since, by definition, ωαβ = >(α ↔ β). �
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8.2. Gaussian independence models. A Gaussian independence model, N (I),
is the set of nonsingular normal distributions obeying the independence relations
in I:

N (I) ≡ N|V | ∩ P (I)

where V is the set of vertices in I. As noted in Section 7, normal distributions in
N (I) may also satisfy other independence relations.

PROPOSITION 8.12. If G′ is a subgraph of G then N (Im(G
′)) ⊆ N (Im(G)).

PROOF. The proof follows directly from Proposition 3.12. �

THEOREM 8.13. If G1,G2 are two ancestral graphs then

N
(
Im(G1)

) = N
(
Im(G2)

)
if and only if Im(G1) = Im(G2).

PROOF. If Im(G1) = Im(G2), then N (Im(G1)) = N (Im(G2)) by definition.
By Theorem 7.5 there is a normal distribution N1 that is faithful to Im(G1).

Hence

〈A,B | Z〉 ∈ Im(G1) ⇐⇒ A |= B | Z [N1].
Since N (Im(G1)) = N (Im(G2)), N1 ∈ N (Im(G2)), hence Im(G2) ⊆ Im(G1).
The reverse inclusion may be argued symmetrically. �

8.3. Equivalence of Gaussian parameterizations and independence models for
maximal ancestral graphs. The main result of this section is the following:

THEOREM 8.14. If G is a maximal ancestral graph then

N (G) = N
(
Im(G)

)
.

In words, if G is a maximal ancestral graph then the set of normal distributions
that may be obtained by parameterizing G is exactly the set of normal distributions
that obey the independence relations in Im(G).

Note that Wermuth, Cox and Pearl (1994) refer to a “parameterization” of an
independence model when describing a parameterization of a (possibly proper)
subset of N (I). To distinguish their usage from the stronger sense in which the
term is used here, we may say that a parameterization is full if all distributions in
N (I) are parameterized. In these terms Theorem 8.14 states that if G is maximal
then the parameterization of G described in Section 8.1 is a full parameterization
of N (Im(G)).
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8.3.1. N (G) when G is not maximal. If G is not maximal then N (G) is
a proper subset of N (Im(G)), as the following example illustrates: consider
the nonmaximal ancestral graph G shown in Figure 9(a). Since Im(G) = ∅,
N (Im(G)) = N4, the saturated model. However, there are 10 free parameters in
N4 and yet there are only 5 edges and 4 vertices, giving 9 parameters in N (G).
Direct calculation shows that

σγ δ − σγασαδ

σαα

− σγβσβδ

σββ

+ σγασαβσβδ

σαασββ

= 0

where σφψ = (<G>)φψ . This will clearly not hold for all distributions in N4.

8.3.2. If G is maximal then N (Im(G)) ⊆ N (G). We first require two lemmas.

LEMMA 8.15. Let G = (V,E) be an ancestral graph, ε an edge in E with
endpoints (α,β) and V = antG({α,β}). If G′ = (V,E \ {ε}) is maximal, then for
an arbitrary covariance function > for G, (<−1

G>)αβ = 0 implies >(ε) = 0.

In words, if in a graph G, removing an edge, ε, between α and β results
in a graph that is still maximal, then in any distribution NGµ> obtained from
a parameterization 〈µ,>〉 of G, if the partial correlation between α and β given
V \ {α,β} is zero, then > assigns zero to the edge ε.

PROOF OF LEMMA 8.15. There are three cases, depending on the type of the
edge ε:

Case 1. ε is undirected. In this case α,β ∈ unG. Then by Lemma 8.4,

(<−1)αβ = (? + B)
d u@

−1Bd u)αβ.

However, since V = antG({α,β}), d = ∅, hence (<−1)αβ = (?)αβ = >(α − β),
so >(α − β) = 0 as required.

Case 2. ε is directed. Without loss, suppose α ← β . It now follows from
Lemma 8.4, that

(<−1)αβ = B)
d{α}@−1Bd{β}

= ∑
γ,δ∈d

bγα(@
−1)γ δbδβ.

Now, bγα = 0 for α �= γ since chG(α) = ∅, and bαα = 1 by definition. Hence

(<−1)αβ = ∑
δ∈d

(@−1)αδbδβ.

Since β → α, β ∈ antG(α), so V = antG(α). Thus if δ ∈ V , α �= δ, and
α and δ are connected by a path π in G↔, containing more than one edge (see
Subsection 8.1.6), then π is a primitive inducing path between α and δ in G. But
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this is a contradiction, since δ ∈ antG(α), and yet by Lemma 4.5(ii), δ /∈ antG(α).
Hence by Lemma 8.10, (@−1)αδ = 0 for δ �= α. Consequently,

(<−1)αβ = (@−1)ααbαβ = (@−1)αα>(α → β).

As @ is positive definite, (@−1)αα > 0, hence >(α → β) = 0.
Case 3. ε is bidirected. Again it follows from Lemma 8.4, that

(<−1)αβ = B)
d{α}@−1Bd{β}

= ∑
γ,δ∈d

bγα(@
−1)γ δbδβ.

As chG({α,β}) = ∅, bγα = 0 for γ �= α, and likewise bδβ = 0 for δ �= β . By
definition, bββ = bαα = 1. Since, by hypothesis, G′ is maximal, α and β are not
adjacent in (G′↔)a , so

(<−1)αβ = (@−1)αβ = −>(α ↔ β)|@{α,β}.c|−1,

the second equality following by Corollary 8.11. Hence >(α ↔ β) = 0 as
required. �

Note that case 2 could alternatively have been proved by direct appeal to the
interpretation of >(α ← β) as a regression coefficient, as shown by Theorem 8.7.
However, such a proof is not available in Case 3, and we believe that the current
proof provides greater insight into the role played by the graphical structure.

The next lemma provides the inductive step in the proof of the claim which
follows.

LEMMA 8.16. Let G = (V,E) be an ancestral graph and ε an edge in E. If
G′ = (V,E \ {ε}) is maximal, and unG = unG′ , then

N (G) ∩ N (Im(G
′)) ⊆ N (G′).

PROOF. Let N ∈ N (G) ∩ N (Im(G
′)), with covariance matrix <, and para-

metrization >G. Let ε have endpoints α, β . Since unG = unG′ it is sufficient to
show that >G(ε) = 0, because in this case, the restriction of >G to the edges (and
vertices) in G′ is a parameterization of G′, hence N ∈ N (G′).

Let A = antG′({α,β}) = antG({α,β}). Since α, β are not adjacent in G′ and G′
is maximal, it follows from Corollary 5.3 that〈{α}, {β} | ant({α,β}) \ {α,β}〉 ∈ Im(G

′).

Since N ∈ N (Im(G
′)), it then follows from standard properties of the Normal

distribution that (<−1
AA)αβ = 0. By Lemma 8.5 <−1

AA is parameterized by >A, the
restriction of >G to the edges and vertices in the induced subgraph GA. The result
then follows by applying Lemma 8.15 to GA, giving >A(ε) = >G(ε) = 0. �
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We are now in a position to prove that if G is maximal then all distributions
in N (Im(G)) may be obtained by parametrizing G. This constitutes one half of
Theorem 8.14.

CLAIM. If G is maximal then N (Im(G)) ⊆ N (G).

PROOF. Suppose N ∈ N (Im(G)). Let G̃ be the completed graph defined in
Section 5.2. By Theorem 8.9, N|V | = N (G̃), hence N ∈ N (G̃). By Theorem 5.6,
there exists a sequence of maximal ancestral graphs G̃ ≡ G0, . . . ,Gr ≡ G where
r is the number of nonadjacent vertices in G and unG0 = · · · = unGr . Now by
Proposition 8.12,

N (Im(Gr )) ⊂ · · · ⊂ N (Im(G0)) = N|V |
hence N ∈ N (Im(Gi )), for 0 ≤ i ≤ r . We thus may apply Lemma 8.16 r-times to
show successively

N ∈ N (Gi ) ∩ N (Im(Gi+1)) implies N ∈ N (Gi+1)

for i = 0 to r − 1. Hence N ∈ N (Gr ) = N (G) as required. �

8.3.3. N (G) obeys the global Markov property for G. The following lemma
provides a partial converse to Lemma 8.15.

LEMMA 8.17. If > is a covariance function for an ancestral graph G =
(V,E), and α,β ∈ V are not adjacent in (G)a then (<−1

G>)αβ = 0.

PROOF. There are two cases to consider:
Case 1. α /∈ unG or β /∈ unG. By Lemma 8.4,(

<−1
G>

)
αβ = ∑

γ,δ∈d

bγα(@
−1)γ δbδβ.(6)

If bγα �= 0 and bδβ �= 0 then there are edges α → γ , β → δ in G, hence γ �= δ,
β �= γ and α �= δ since otherwise α and β are adjacent in (G)a . Further, there is
no path between γ and δ in G↔ since if there were, α and β would be collider
connected in G, hence adjacent in (G)a . Thus γ and δ are not adjacent in (G↔)a

and so by Lemma 8.10 (@−1)γ δ = 0. Consequently every term in the sum in (6) is
zero as required.

Case 2. α,β ∈ unG. Again by Lemma 8.4:(
<−1

G>

)
αβ = λαβ + ∑

γ,δ∈d

bγα(@
−1)γ δbδβ.(7)

If α, β are not adjacent in (G)a then α and β are not adjacent in G. Hence λαβ = 0.
The argument used in case (1) may now be repeated to show that every term in the
sum in (7) is zero. �
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The next lemma proves the second half of Theorem 8.14. It does not require G
to be maximal, so we state it as a separate lemma.

LEMMA 8.18. If G is an ancestral graph then N (G) ⊆ N (Im(G)).

In words, any normal distribution obtained by parametrizing an ancestral
graph G obeys the global Markov property for G.

PROOF OF LEMMA 8.18. Suppose that 〈X,Y | Z〉 ∈ Im(G). If ν ∈ antG(X ∪
Y ∪ Z) \ (X ∪ Y ∪ Z) then in (Gant(X∪Y∪Z))

a either ν is separated from X by Z,
or from Y by Z. Hence X and Y may always be extended to X∗, Y ∗ respectively,
such that 〈X∗, Y ∗ | Z〉 ∈ Im(G) and X∗ ∪ Y ∗ ∪ Z = antG(X ∪ Y ∪ Z). Since the
multivariate normal density is strictly positive, for an arbitrary N ∈ N|V |,

A |= B | C ∪ D and A |= C | B ∪ D implies A |= B ∪ C | D(C5)

[see Dawid (1980)]. By repeated application of C5 it is sufficient to show that for
each pair α, β with α ∈ X∗, β ∈ Y ∗,

α |= β | (Z ∪ X∗ ∪ Y ∗) \ {α,β} [N ],
or equivalently (<−1

AA)αβ = 0, where A = X∗ ∪ Y ∗ ∪ Z. Since 〈X∗, Y ∗ | Z〉 ∈
Im(G), α and β are not adjacent in (GA)

a . The result then follows from Lemma 8.5
and Lemma 8.17. �

Lemmas 8.17 and 8.18 are based on Lemma 3.1.6 and Theorem 3.1.8 in Koster
(1999a), though these results concern a different class of graphs (see Section 9.2).
An alternative proof of Lemma 8.18 for ancestral graphs without undirected edges
is given in Spirtes et al. (1996, 1998).

8.3.4. Distributional equivalence of Markov equivalent models. The follow-
ing corollary states that two maximal ancestral graphs are Markov equivalent if
and only if the corresponding Gaussian models are equivalent.

COROLLARY 8.19. For maximal ancestral graphs, G1,G2,

Im(G1) = Im(G2) if and only if N (G1) = N (G2).

PROOF.

N (G1) = N (G2) ⇐⇒ N (Im(G1)) = N (Im(G2)) by Theorem 8.14;

⇐⇒ Im(G1) = Im(G2) by Theorem 8.13.
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COROLLARY 8.20. If G = (V,E) is an ancestral graph and S ∪̇ L ⊂ V ,

if N ∈ N (G) then N [XS=xS
XL

∈ N
(
G[SL

)
for all xS ∈ R

|S|.

PROOF. By Lemma 8.18, N (G) ⊆ N (Im(G)). Hence by normality and
Theorem 7.1 N [XS=xS

XL
∈ N (Im(G)[SL). Finally, by Corollary 4.19 G[SL is maximal,

hence

N
(
Im(G)[SL

) = N
(
Im

(
G[SL

)) = N
(
G[SL

)
,

by Theorems 4.18 and 8.14. �

Suppose that we postulate a Gaussian model N (G) with complex structure,
such as a DAG containing latent variables and/or selection variables. This
corollary is significant because it guarantees that if N (G) contains the “true”
distribution N∗, and we then simplify G to a model for the observed variables,
N (G[SL), then the new model will contain the true “observable” distribution
obtained by marginalizing the unobserved variables and conditioning on the
selection variables, N [XS=xS

XL
. [The distribution N [XS=xS

XL
is termed “observable”

because it is the distribution over the observed variables (V \ (S ∪ L)) in the
“selected” subpopulation for which XS = xS . In general this will obviously not
be the distribution observed in a finite sample.]

8.4. Gaussian ancestral graph models are curved exponential families. Let
S be a full regular exponential family of dimension m with natural parameter
space E ⊆ R

m, so S = {Pθ | θ ∈ E}. If U is an open neighborhood in E, then
SU = {Pθ | θ ∈ U }. Let S0 be a subfamily of S, with E0 the corresponding subset
of E.

If A is open in R
m then a function f :A → R

m is a diffeomorphism of A onto
f (A) if f (·) is one-to-one, smooth (infinitely differentiable), and of full rank
everywhere on A. Corollary A.3 in Kass and Vos (1997) states that a function f is
a diffeomorphism if it is smooth, one-to-one, and the inverse f −1 :f (A) → A is
also smooth.

Theorem 4.2.1 in Kass and Vos (1997) states that a subfamily S0 of an
m-dimensional regular exponential family S is a locally parameterized curved
exponential family of dimension k if for each θ0 ∈ E0 there is an open
neighborhood U in E containing θ0 and a diffeomorphism f :U → R

k × R
m−k ,

and

SU
0 = {

Pθ ∈ SU | f (θ) = (ψ,0)
}
.

We use the following fact in the next lemma.
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PROPOSITION 8.21. If f is a rational function defined everywhere on a set D
then f (n) is a rational function defined everywhere on D.

PROOF. The proof is by induction on n. Suppose f (n) = gn/hn, where gn,hn

are polynomials, and hn > 0 on D. Then f (n+1) = (hng
′
n − gnh

′
n)/h

2
n from which

the conclusion follows (since h2
n > 0 on D). �

Let �+
|V | denote the cone of positive definite |V | × |V | matrices.

LEMMA 8.22. If G is a complete ancestral graph then the mapping

fG :�(G) → R
|V | ×�+

|V | given by 〈µ,>〉 $→ 〈µ,<G>〉
is a diffeomorphism from �(G) to R

|V | ×�+
|V |.

PROOF. Corollary 8.8 establishes that fG is one-to-one. Further, by Theo-
rem 8.9, N (G) = N|V | hence

f (�(G)) = R
|V | ×�+

|V |.

It remains to show that fG, f −1
G are smooth. It follows from equation (1) that the

components of fG are rational functions of 〈µ,>〉, defined for all 〈µ,>〉 ∈�(G).
Hence, by Proposition 8.21, fG is smooth. Similarly, equation (2) establishes that
f −1

G is smooth. �

THEOREM 8.23. For an ancestral graph G(V,E), N (G) is a curved
exponential family, with dimension 2|V | + |E|.

PROOF. This follows from the definition of N (G), the existence of a complete
ancestral supergraph of G (Lemma 5.5), Lemma 8.22 and Theorem 4.2.1 of Kass
and Vos (1997), referred to above. �

The BIC criterion for the model N (G) is given by

BIC(G) = −2 lnLG(θ̂) + ln(n)(2|V | + |E|),
where n is the sample size, LG(·) is the likelihood function and θ̂ is the cor-
responding MLE for N (G). A consequence of Theorem 8.23 is that BIC(·) is an
asymptotically consistent criterion for selecting among Gaussian ancestral graph
models [see Haughton (1988)].

By contrast, Geiger et al. (2001) have shown that simple discrete DAG models
with latent variables do not form curved exponential families.
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8.5. Parameterization via recursive equations with correlated errors. The
Gaussian model N (G) can alternatively be parameterized in two pieces via the
factorization of the density

f (xV ) = f (xunG)f (xV \unG|xunG).(8)

The undirected component f (xunG) may be parameterized via an undirected
graphical Gaussian model also known as a covariance selection model [see
Lauritzen (1996) and Dempster (1972)].

The directed component, f (xV \unG | xunG), may be parameterized via a set of
recursive equations as follows:

(i) Associate with each ν in V \unG a linear equation, expressing Xν as a linear
function of the variables for the parents of ν plus an error term:

Xν = µν + ∑
π∈pa(ν)

b∗
νπXπ + εν.

(ii) Specify a nonsingular multivariate normal distribution over the error
variables (εν)ν∈V \unG (with mean zero) satisfying the condition that

if there is no edge α ↔ β in G, then Cov(εα, εβ) = 0,

but otherwise unrestricted.

Note that b∗
αβ = −bαβ under the parameterization specified in Section 8.1. The

conditional distribution, f (xV \unG | xunG), is thus parameterized via a simultaneous
equation model, of the kind used in econometrics and psychometrics since the
1940s. We describe the system as “recursive” because the equations may be
arranged in upper triangular form, possibly with correlated errors. (Note that some
authors only use this term if, in addition, the errors are uncorrelated.) As shown
in Theorem 8.7 the set of recursive equations described here also has the special
property that the linear coefficients may be consistently estimated via regression of
each variable on its parents. This does not hold for recursive equations in general.

8.5.1. Estimation procedures. The parameterization described above thus
breaks N (G) into an undirected graphical Gaussian model and a set of recursive
equations with correlated errors. This result is important for the purposes of
statistical inference because software packages exist for estimating these models:
MIM Edwards (1995) fits undirected Gaussian models via the IPS algorithm;
AMOS Arbuckle (1997), EQS Bentler (1986), Proc CALIS SAS Publishing
(1995) and LISREL Jöreskog and Sörbom (1995) are packages which fit
structural equation models via numerical optimization. Fitting the two components
separately is possible in view of the factorization of the likelihood given by
equation (8) and the variation independence of the parameters in these pieces (see
Proposition 8.2).
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It should be noted that the equations used in the parameterization above are
a very special (and simple) subclass of the much more general class of models
that structural equation modelling packages can fit, for example, they only contain
observed variables. This motivates the future development of special purpose
fitting procedures.

8.5.2. Path diagrams. Path diagrams, introduced by Wright (1921, 1934),
contain directed and bidirected edges, but no undirected edges, and are used to
represent structural equations in exactly the way described in (i) and (ii) above.
Hence we have the following:

PROPOSITION 8.24. If G is an ancestral graph containing no undirected
edges then N (G) is the model obtained by regarding G as a path diagram.

Further results relating path diagrams and graphical models are described in
Spirtes et al. (1998), Koster (1999a, b; 1996) and Spirtes (1995). The relationship
between Gaussian ancestral graph models and Seemingly Unrelated Regression
(SUR) models [see Zellner (1962)] is discussed in Richardson et al. (1999).

8.6. Canonical DAGs do not provide a full parameterization. It was proved
in Section 6 that the canonical DAG D(G) provides a way of reducing the global
Markov property for ancestral graphs to that of DAGs. It is thus natural to consider
whether the associated Gaussian independence model could be parameterized via
the usual parameterization of this DAG. In general, this does not parameterize all
distributions in N (Im(G)) as shown in the following example.

Consider the ancestral graph G1, and the associated canonical DAG, D(G1)

shown in Figure 17(i-a) and (i-b). Since Im(G1) = ∅, N (Im(G1)) = N3 the
saturated model on 3 variables. However, if N is a distribution given by
a parameterization of D(G1), then it follows by direct calculation that

min{ρab, ρbc, ρac} < 1√
2

where ρvw is the correlation between Xv and Xw [see Spirtes et al. (1998)].

FIG. 17. (i-a) An ancestral graph G1; (i-b) the corresponding canonical DAG, D(G1); (ii-a) an
ancestral graph G2; (ii-b) the canonical DAG, D(G2).
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Since this does not hold for all distributions in N3, there are normal distributions
N ∈ N (Im(G1)) for which there is no distribution N∗ ∈ N (D(G1)) such that
N = N∗[{λab,λbc,λac}.

Lauritzen [1998, page 12] gives an analogous example for conditioning, by
considering the graph G2, with canonical DAG, D(G2), shown in Figure 17(ii-a)
and (ii-b). Lauritzen shows that there are normal distributions N ∈ N (Im(G2)), for
which there is no distribution N∗ ∈ N (D(G2)) such that N = N∗[{σxy ,σxz,σzw,σyw}.

These negative results are perhaps surprising given the very simple nature of the
structure in D(G), but serve to illustrate the complexity of the sets of distributions
represented by such models.

9. Relation to other work. The problem of constructing graphical represen-
tations for the independence structure of DAGs under marginalizing and condi-
tioning was originally posed by Wermuth in 1994 in a lecture at CMU. Wermuth,
Cox and Pearl developed an approach to this problem based on summary graphs
[see Wermuth et al. (1994, 1999), Cox and Wermuth (1996), Wermuth and Cox
(2000)]. More recently Koster has introduced another class of graphs, called MC-
graphs, together with an operation of marginalizing and conditioning. [See Koster
(2000), Koster (1999a, b).]

In Figure 18 we show two examples of data generating processes, together
with the maximal ancestral graph, summary graph and MC-graphs resulting after
marginalizing (i) and conditioning (ii).

Simple representations for DAGs under marginalization alone were proposed
by Verma (1993), who defined an operation of projection which transforms a DAG
with latent variables to another DAG in which each latent variable has exactly
two children both of which are observed (called a “semi-Markovian model”). The
operation is defined so that the DAG and its projection are Markov equivalent
over the common set of observed variables. This approach does not lead to
a full parameterization of the independence model for the reasons discussed in
Section 8.6.

In this section we will briefly describe the classes of summary graphs and
MC-graphs. We then outline the main differences and similarities to the class of
maximal ancestral graphs. Finally we discuss the relation between ancestral graphs
and chain graphs.

9.1. Summary graphs. A summary graph is a graph containing three types of
edge →, −, - - - - . Directed cycles may not occur in a summary graph, but it is
possible for there to be a dashed line (α - - - -β) and at the same time a directed
path from α to β . Thus there may be two edges between a pair of vertices, that
is, α - - - -−→ β . This is the only combination of multiple edges that is permitted.
The separation criterion for summary graphs is equivalent to m-separation after
substituting bidirected edges (↔) for dashed edges (- - - -).
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FIG. 18. (i-a) A DAG generating process D1; (i-b) the ancestral graph D1[∅{l1,l2}; the summary
graph (i-c) and MC-graph (i-d) resulting from marginalizing l1, l2 in D1. (ii-a) A DAG generating

process D2; (ii-b) the ancestral graph D2[{s}
∅

; the summary graph (ii-c) and MC-graph (ii-d)
resulting from conditioning on s in D2.

Wermuth, Cox and Pearl (1999) present an algorithm for transforming a sum-
mary graph so as to represent the independence structure remaining among the
variables after marginalizing and conditioning. This procedure will not, in general,
produce a graph that obeys a pairwise Markov property, hence there may be a pair
of vertices α, β that are not adjacent and yet there is no subset Z of the remain-
ing vertices for which the model implies α |= β | Z. The graph in Figure 18(i-c)
illustrates this. There is no edge between a and c, and yet a /|= c and a /|= c | b.
This example also illustrates that there may be more edges than pairs of adjacent
vertices in a summary graph.

Wermuth and Cox (2000) present a new method for constructing a summary
graph based on applying “sweep” operators to matrices whose entries indicate the
presence or absence of edges. Kauermann (1996) analyses the subset of summary
graphs that only involve dashed edges, which are also known as covariance graphs.

9.2. MC-graphs. Koster (1999a, b) considers MC-graphs, which include the
three edge types −, →, ↔, but in addition may also contain undirected self-loops
[see vertex b in Figure 18(ii-d)]. Up to four edges may be present between a pair
of vertices, that is,

α
−
�
↔

β.

The global Markov property used for MC-graphs is identical to the m-separation
criterion (Koster names the criterion “d-separation” because it is a natural gener-
alization of the criterion for DAGs). Koster presents a procedure for transforming
the graph under marginalizing and conditioning. As with the summary graph pro-
cedure the transformed graph will not generally obey a pairwise Markov property,
and may have more edges than there are pairs of vertices.
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9.3. Comparison of approaches. The three classes of graphs: ancestral graphs,
summary graphs and MC-graphs have been developed with similar goals in mind,
hence it is not surprising that in certain respects they are similar. However, there
are also a number of differences between the approaches.

For the rest of this section we will ignore the notational distinction between
dashed lines (- - - -) and bidirected edges (↔) by treating them as if they were the
same symbol.

9.3.1. Graphical and Markov structure. The following (strict) inclusions
relate the classes of graphs:

maximal ancestral ⊂ ancestral ⊂ summary ⊂ MC.

Essentially the same separation criterion is used for ancestral graphs, summary
graphs and MC-graphs. Further, defining I[ · ] to denote a class of independence
models, we have:

I[maximal ancestral] = I[ancestral] = I[summary] ⊂ I[MC].
The first equality is Theorem 5.1, the second equality follows by a construction
similar to the canonical DAG (Section 6). The last inclusion is strict because MC-
graphs include directed cyclic graphs which, in general, are not Markov equivalent
to any DAG under marginalization and conditioning [see Richardson (1996)].
In addition, there are MC-graphs which cannot be obtained by applying the
marginalizing and conditioning transformation to a graph containing only directed
edges: Figure 19 gives an example. Thus the class of MC-graphs is larger than
required for representing directed graphs under marginalizing and conditioning.
The direct analogues to Theorems 6.3 and 6.4 do not hold.

In the summary graph formed by the procedures described in Wermuth, Cox
and Pearl (1999), Wermuth and Cox (2000), the configurations −γ - - - - and −γ ←
never occur. This is equivalent to condition (ii) in the definition of an ancestral
graph. Consequently, as noted by Wermuth, Cox and Pearl (1999) a decomposition
of the type shown in Figure 4 is possible for summary graphs. However, though
directed cycles do not occur in summary graphs, the analogue to condition (i) does

FIG. 19. An MC-graph which cannot be obtained by applying the marginalizing and conditioning
transformation given by Koster (2000) to a graph which contains only directed edges. Further,
the independence model corresponding to this MC-graph cannot be obtained by marginalizing and
conditioning an independence model represented by a directed graph.
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not hold, since it is possible to have an edge α - - - -β and a directed path from α

to β .
The marginalizing and conditioning transformation operations for summary

graphs and MC-graphs are “local” in that they make changes to triples of
adjacent vertices. In contrast the transformation G $→ G[SL requires pairwise tests of
m-separation to be carried out in order to determine the adjacencies present in G[SL.
This may make the transformation harder for a human to carry out. On the
other hand the transformation given by Wermuth is recursive, and tests for the
existence of an m-connecting path can be performed by a recursive procedure that
only examines triples of adjacent vertices. It can be said that the MC-graph and
summary graph transformations may in general be performed in fewer steps than
the ancestral graph transformation.

However, a price is paid for not performing these tests of m-separation:
whereas G[SL always obeys a pairwise Markov property (Corollary 4.19), the
summary graphs and MC graphs resulting from the transformations do not do so
in general. This is a disadvantage in a visual representation of an independence
model insofar as it conflicts with the intuition, based on separation in undirected
graphs, that if two vertices are not connected by an edge then they are not directly
connected and hence may be made independent by conditioning on an appropriate
subset of the other vertices.

9.3.2. Gaussian parameterization. For summary graphs, as for ancestral
graphs, the Gaussian parameterization consists of a conditional distribution and
a marginal distribution. Once again, the marginal parameterization is specified via
a covariance selection model and the conditional distribution via a system of struc-
tural equations of the type used in econometrics and psychometrics as described
in Section 8.5 [see Cox and Wermuth (1996)]. Under this parameterization one
parameter is associated with each edge and vertex in the graph.

As described above, it is possible for a summary graph to contain more
edges than there are pairs of adjacent vertices. Consequently, the Gaussian
model associated with a summary graph will not be identified in general, and
the analogous result to Corollary 8.8 will not hold. Thus the summary graph
model will sometimes contain more parameters than needed to parameterize the
corresponding Gaussian independence model.

On the other hand, as mentioned in the previous section, summary graphs
do not satisfy a pairwise Markov property, and hence the associated model will
not parameterize all Gaussian distributions satisfying the Markov property for
the graph. In particular, the comments concerning nonmaximal ancestral graphs
apply to summary graphs (see Section 8.3.1). In other words, parameterization
of a summary graph does not, in general, lead to a full parameterization of the
independence model (see Theorem 8.14). In this sense the summary graph model
sometimes contains too few parameters.



1024 T. RICHARDSON AND P. SPIRTES

As a consequence, two Markov equivalent summary graphs may represent
different sets of Gaussian distributions, so the analogue to Corollary 8.19 does
not hold. Thus for the purpose of parameterizing Gaussian independence models,
the class of maximal ancestral graphs has advantages over summary graphs (and
nonmaximal ancestral graphs).

It should be stressed, however, that the fact that a summary graph model may
impose additional non-Markovian restrictions can be seen as an advantage insofar
as it may lead to more parsimonious models. For this purpose ideally one would
wish to develop a graphical criterion that would also allow the nonindependence
restrictions to be read from the graph. In addition, one would need to show
that the analogue to Corollary 8.20 held for the transformation operation, so
that any non-Markovian restrictions imposed by the model associated with the
transformed summary graph were also imposed by the original model. Otherwise
there is the possibility that while the original model contained the true population
distribution, by introducing an additional non-Markovian constraint, the model
after transformation no longer contains the true distribution. The approach in
Wermuth and Cox (2000) considers the parameterization as derived from the
original DAG in the manner of structural equation models with latent variables.
Under this scheme the same summary graph may have different parameterizations.
An advantage of this scheme is that the strengths of the associations may be
calculated if we know the parameters of the generating DAG.

Finally, note that the linear coefficients occurring in the equations in a summary
graph model do not always have a population interpretation as regression
coefficients. This is because there may be an edge α - - - -β and a directed path from
α to β . [However, coefficients associated with edges υ → δ where υ is a vertex
in the undirected subgraph do have this interpretation, as noted by Wermuth and
Cox (2000).] Hence the analogue to Theorem 8.7 does not hold for all summary
graphs.

Koster (1999a, b) does not discuss parameterization of MC-graphs, however all
of the above comments will apply to any parameterization which associates one
parameter with each vertex and edge. Indeed, under such a scheme identifiability
will be more problematic than for summary graphs because MC-graphs permit
more edges between vertices in addition to self-loops.

9.4. Chain graphs. A mixed graph containing no partially directed cycles, and
no bidirected edges is called a chain graph. (Recall that a partially directed cycle is
an anterior path from α to β , together with an edge β → α.) There is an extensive
body of work on chain graphs. [See Lauritzen (1996) for a review.]

As was shown in Lemma 3.2(c) an ancestral graph does not contain partially
directed cycles, hence we have the following:

PROPOSITION 9.1. If G is an ancestral graph containing no bidirected edges
then G is a chain graph.
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FIG. 20. Chain graphs that are not Markov equivalent to any ancestral graph under (i) the LWF
property, (ii) the AMP property; (iii) an ancestral graph for which there is no Markov equivalent
chain graph (under either Markov property).

In fact, it is easy to see that the set of ancestral chain graphs are the recursive
“causal” graphs introduced by Kiiveri, Speed and Carlin (1984); see also Lauritzen
and Richardson (2002) and Richardson (2001).

Two different global Markov properties have been proposed for chain graphs.
Lauritzen and Wermuth (1989) and Frydenberg (1990a) proposed the first Markov
property for chain graphs. More recently Andersson, Madigan and Perlman (2001,
1996) have proposed an alternative Markov property. We will denote the resulting
independence models ILWF(G) and IAMP(G) respectively.

The m-separation criterion as applied to chain graphs produces yet another
Markov property. [This observation is also made by Koster (1999a).] In general all
three properties will be different, as illustrated by the chain graph in Figure 20(i).
Under both the AMP and LWF properties a |= b in CG1, but this does not hold
under m-separation because the path a → x − y ← b m-connects a and b given
the empty set. The AMP property implies a |= y, while this is not implied by
m-separation or the LWF property. Note that under m-separation this chain graph
is Markov equivalent to an undirected graph.

However, if we restrict our attention to ancestral graphs then we have the
following proposition:

PROPOSITION 9.2. If G is an ancestral graph which is also a chain graph
then

Im(G) = ILWF(G) = IAMP(G).

This proposition is an immediate consequence of clause (i) in the definition of
an ancestral graph which implies that there are no immoralities, flags or biflags in
an ancestral mixed graph. [See Frydenberg (1990a) and Andersson, Madigan and
Perlman (1996) for the relevant definitions.]

Finally, note that under both the LWF and AMP Markov properties there exist
chain graphs that are not Markov equivalent to any ancestral graph. Examples are
shown in Figure 20(i) and (ii). It follows that these Markov models could not have
arisen from any DAG generating process. [See Lauritzen and Richardson (2002)
and Richardson (1998) for further discussion.] Conversely, Figure 20(iii) shows an
example of an independence model represented by an ancestral graph that is not
Markov equivalent to any chain graph (under either chain graph Markov property).
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10. Discussion. In this paper we have introduced the class of ancestral
graph Markov models. The purpose in introducing this class was to be able
to characterize the Markov structure of a DAG model under marginalizing and
conditioning. To this end we defined a graphical transformation, G $→ G[SL, which
corresponded to marginalizing and conditioning the corresponding independence
model (Theorem 4.18).

If a DAG model containing latent or selection variables is hypothesized as
the generating mechanism for a given system then this transformation will allow
a simple representation of the Markov model induced on the observed variables.

However, often graphical models are used for exploratory data analysis, where
little is known about the generating structure. In such situations the existence of
this transformation provides a guarantee: if the data were generated by an unknown
DAG containing hidden variables then we are ensured that there exists an ancestral
graph which can represent the resulting Markov structure over the observed
variables. Hence the problem of additional and misleading edges encountered
in the introduction may be avoided. In this context the transformation provides
a justification for using the class of ancestral graphs.

However, any interpretation of the types of edge present in an ancestral graph
which was arrived at via an exploratory analysis should take into account that
there may exist (many) different graphs that are Markov equivalent. Spirtes
and Richardson (1997) present a polynomial-time algorithm for testing Markov
equivalence of two ancestral graphs. Spirtes et al. (1995, 1999) describe an
algorithm for inferring structural features that are common to all maximal ancestral
graphs in a Markov equivalence class. For instance, there are Markov equivalence
classes in which every member contains a directed path from some vertex α

to a second vertex β; likewise in other Markov equivalence classes no member
contains a directed path from α to β . At the time of writing there is not yet a full
characterization of common features, such as exists for DAG Markov equivalence
classes [see Andersson, Madigan and Perlman (1997), Meek (1995a)].

Finally, we showed that maximal ancestral graphs lead to a natural para-
metrization of the set of Gaussian distributions obeying the global Markov
property for the graph. Conditions for the existence and uniqueness of maximum
likelihood estimates for these models is currently an open question.

Development of a parameterization for discrete distributions is another area
of current research. Richardson (2003) describes a local Markov property for
a class of graphs that includes all ancestral graphs without undirected edges. This
local Markov property is equivalent to the global Markov property, and may thus
facilitate the development of a discrete parameterization.

APPENDIX

Definition of a mixed graph. Let E = {−,←,→,↔} be the set of edges. Let
P(E) denote the power set of E . Formally, a mixed graph G = (V,E) is an ordered



ANCESTRAL GRAPH MARKOV MODELS 1027

pair consisting of a finite set V , and a mapping E :V × V → P(E), subject to the
following restrictions:

E(α,α) = ∅,

− ∈ E(α,β) ⇐⇒ − ∈ E(β,α),

← ∈ E(α,β) ⇐⇒ → ∈ E(β,α),

↔ ∈ E(α,β) ⇐⇒ ↔ ∈ E(β,α).

The induced subgraph, GA of G on A ⊆ V , is (A,E|A) where E|A is the natural
restriction of E to A × A.
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