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Abstract: Spirtes et al. (1993) described a pointwise consistent estimator of the Markov equivalence class of any causal structure that can be represented by a directed acyclic graph for any parametric family with a uniformly consistent test of conditional independence, under the Causal Markov and Causal Faithfulness Assumptions. Robins et al. (2003) however proved that there are no uniformly consistent estimators of Markov equivalence classes of causal structures under those assumptions. Subsequently, Kalisch & Bühlmann (2007) described a uniformly consistent estimator of the Markov equivalence class of a linear Gaussian causal structure under the Causal Markov and Strong Causal Faithfulness Assumptions. However, the Strong Faithfulness Assumption may be false with high probability in many domains. We describe a uniformly consistent estimator of both the Markov equivalence class of a linear Gaussian causal structure and the identifiable structural coefficients in the Markov equivalence class under the Causal Markov Assumption and the k-Triangle-Faithfulness Assumption, which is considerably weaker than the Strong Faithfulness Assumption.  
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Introduction
A principal aim of many sciences is to model causal systems well enough to provide sound insight into their structures and mechanisms and to provide reliable predictions about the effects of policy interventions. The modeling process is typically divided into two distinct phases: a model specification phase in which some model (with free parameters) is specified, and a parameter estimation and statistical testing phase in which the free parameters of the specified model are estimated and various hypotheses are put to a statistical test. Both model specification and parameter estimation can fruitfully be thought of as search problems. 
As pointed out in Robins et al. (2003), common statistical wisdom dictates that causal effects cannot be consistently estimated from observational studies alone unless one observes and adjusts for all possible confounding variables, and knows the time order in which events occurred. However, Spirtes et al. (1993) and Pearl (2000) developed a framework in which causal relationships are represented by edges in a directed acyclic graph. They also described asymptotically consistent procedures for determining features of causal structure from data even if we allow for the possibility of unobserved confounding variables and/or an unknown time order, under two assumptions: the Causal Markov Assumption (roughly, given no unmeasured common causes, each variable is independent of its non-effects conditional on its direct causes) and the Causal Faithfulness Assumption (all conditional independence relations that hold in the distribution are entailed by the Causal Markov Assumption). Under these assumptions, the procedures they propose (e.g. the SGS and the PC algorithms assuming no unmeasured common causes, and the FCI algorithm which does not assume no unmeasured common causes) can infer the existence or absence of causal relationships. In particular, Spirtes et al. (1993, Ch. 5, 6) proved the Fisher consistency of these procedures. Pointwise consistency follows from the Fisher consistency and the uniform consistency of the test procedures for conditional independence relationships in certain parametric families that the procedures use.
Robins et al. (2003) proved that under the Causal Markov and Faithfulness Assumptions made in Spirtes et al. (1993) there are no uniformly consistent procedures for estimating features of the causal structure from data, even when there are no unmeasured common causes. Spirtes et al. (2000), Kalisch & Bühlmann (2007), and Colombo et al. (2012) introduced a Strong Causal Faithfulness Assumption that assumes that there are no “almost” conditional independence relations not entailed by the Causal Markov Assumption. Kalisch & Bühlmann (2007), and Colombo et al. (2012) showed that under this strengthened Causal Faithfulness Assumption, some modifications of the pointwise consistent procedures developed in Spirtes et al. (1993) are uniformly consistent. Maathuis et al. (2010) have also successfully applied these procedures to various biological data sets, experimentally confirming some of the causal inferences made by the procedures. 
However, the question remains whether the Strong Causal Faithfulness Assumption made by Kalisch & Bühlmann (2007) is too strong. Is it likely to be true? Some analysis done by Uhler et al. (2012) indicates that the strengthened Causal Faithfulness Assumption is likely to be false, especially when there is a large number of variables.
In this paper we investigate a number of different ways in which the strengthened Causal Faithfulness Assumption can be weakened, while still retaining the guarantees of uniformly consistent estimation by modifying the causal estimation procedures. It is not clear whether the ways we propose to weaken the Strong Causal Faithfulness Assumption make it substantially more likely to hold, nor is it clear that all of the modifications that we propose to the estimation procedures make them substantially more accurate in practice. Nevertheless, we believe that the modifications that we propose are a useful first step towards investigating fruitful modifications of the Causal Faithfulness Assumption and causal estimation procedures.
In section 2, we describe the basic setup and assumptions for causal inference. In section 3, we examine various ways to weaken the Causal Faithfulness Assumption and modifications of the estimation procedures that preserve pointwise consistency. In section 4, we examine weakening the Strong Causal Faithfulness Assumption and modification of the estimation procedures that preserves uniform consistency. Finally, in section 5 we summarize the results and describe areas of future research.
The Basic Assumptions for Causal Inference
First we will introduce standard graph terminology that we will use. Individual variables are denoted with italicized capital letters, and sets of variables are denoted with bold-faced capital letters. A graph G = <V,E> consists of a set of vertices V, and a set of edges E  V  V, where for each <X, Y> E, X ≠ Y. If <X,Y>  E, and <Y,X>  E, there is an undirected edge between X and Y, denoted by X – Y. If <X,Y>  E, and <Y,X> E, there is a directed edge from X to Y, denoted by X  Y, where X is the tail of the edge, and Y is the head of the edge. If there is a directed edge from X to Y, or from Y to X, or there is an undirected edge between X and Y, then X and Y are adjacent in G. If all of the edges in a graph G are directed edges, then G is a directed graph. A path between X1 and Xn in G is an ordered sequence of vertices <X1,…,Xn> such that for 1 < i ≤ n, Xi-1 and Xi are adjacent in G. A path between X1 and Xn in G is a directed path if for 1 < i ≤ n, the edge between Xi-1 and Xi is a directed edge from Xi-1 to Xi. A path is acyclic if no vertex occurs on the path twice. A directed graph is acyclic (DAG) if all directed paths are acyclic. X is a parent of Y and Y is a child of X if there is an edge X  Y. <X,Y,Z> is a triangle in G if X is adjacent to Y and Z, and Y is adjacent to Z.
Suppose G is a graph. Parents(G,X) is the set of parents of X in G. X is an ancestor of Y (and Y is a descendant of X) if there is a directed path from X to Y. X is an ancestor of Y (and Y is a descendant of X) if any member of X is an ancestor of any member of Y. A subset of V is ancestral, if it is closed under the ancestor relation. A triple of vertices <X,Y,Z> is unshielded if and only if X is adjacent to Y and Y is adjacent to Z, but X is not adjacent to Z. A triple of vertices <X,Y,Z> is a collider if and only if there are edges X  Y  Z. A triple of vertices <X,Y,Z> is a non-collider if and only if X is adjacent to Y, and Y is adjacent to Z, but it is not a collider.
A probability distribution P over a set of variables V satisfies the (local directed) Markov condition for a DAG G iff each variable V in V is independent of the set of variables that are neither parents nor descendants of V in G, conditional on the parents of V in G. A Bayesian network is an ordered pair <P, G> where P satisfies the local directed Markov condition for G. If M = <P, G>, PM denotes P, and GM denotes G. Two DAGs G1 and G2 over the same set of variables V are Markov equivalent iff all of the conditional independence relations entailed by satisfying the local directed Markov condition for G1 are also entailed by satisfying the local directed Markov condition for G2, and vice-versa. Two DAGs are Markov equivalent if and only if they have the same adjacencies, and the same unshielded colliders (Verma and Pearl, 1990). A Markov equivalence class M is a set of DAGs that contains all DAGs that are Markov equivalent to each other. A Markov equivalence class M can be represented by a graph called a pattern; a pattern O is a graph such that (i) if X  Y in every DAG in M then X  Y in O; and (ii) if X  Y in some DAG in M and Y  X in some other DAG in M, then X – Y in O. In that case O is said to represent M and each DAG in M. 
If X is independent of Y conditional on Z we write I(X,Y|Z), or if X, Y, and Z are individual variables I(X,Y|Z). In a DAG G, a vertex A is active on an acyclic path U between X and Y conditional on set Z\{X,Y} of vertices if A = X or A = Y or A is a non-collider on U and not in Z, or A is a collider on U that is in Z or has a descendant in Z. An acyclic path U is active conditional on a set Z of vertices if every vertex on the path is active relative to Z. X is d-separated from Y conditional on Z not containing X or Y if there is no active acyclic path between X and Y conditional on Z; otherwise X and Y are d-connected conditional on Z. For three disjoint sets X, Y, and Z, X is d-separated from Y conditional on Z if there is no acyclic active path between any member of X and any member of Y conditional on Z; otherwise X and Y are d-connected conditional on Z. If X is d-separated from Y conditional on Z in DAG G, then I(X,Y|Z) in every probability distribution that satisfies the local directed Markov condition for G (Pearl, 1988). Any conditional independence relation that holds in every distribution that satisfies the local directed Markov condition for DAG G is entailed by G. Note, however, that in some distributions that satisfy the local directed Markov condition for G the conditional independence relation I(X,Y|Z) may hold even if X is not d-separated from Y conditional on Z in G – such distributions are said to be unfaithful to G. 
There are a number of different parametizations of a DAG G, which map G onto distributions that satisfy the local directed Markov condition for G. One common parameterization is a recursive linear Gaussian structural equation model. A recursive linear Gaussian structural equation model is an ordered triple <G, Eq, >, where G is a DAG over a set of vertices X1,…Xn, Eq is a set of equations, one for each Xi such that

 
where the bj,i are real constants known as the structural coefficients, and the i are multivariate Gaussian that are jointly independent of each other with covariance matrix . The i are referred to as “error terms”.  In vector notation, where X is the vector of X1,…,Xn, B is the matrix of structural coefficients, and  is the vector of error terms,

 
The covariance matrix  over the error terms, together with the structural equations determine a distribution over the variables in X, which satisfies the local directed Markov condition for G. Hence, the DAG in a recursive linear Gaussian structural equation model M together with the probability distribution generated by the equations and the covariance matrix over the error terms form a Bayesian network. Because the joint distribution over the non-error terms of a linear Gaussian structural equation model is multivariate Gaussian, X is independent of Y conditional on Z in PM iff M(X,Y|Z) = 0, where M(X,Y|Z) denotes the conditional or partial correlation between X and Y conditional on Z according to PM. Let eM(X  Z) denote the structural coefficient of the X  Z edge in GM. If there is no edge X  Z in GM, then eM(X  Z) = 0. If X and Z are adjacent in GM, then eM(X – Z) = eM(X  Z) if there is an X  Z edge in GM, and otherwise eM(X – Z) = eM(Z  X). 
There is a causal interpretation of recursive linear Gaussian structural equation models, in which setting (as in an experiment, as opposed to observing) the value of Xi to the fixed value x is represented by replacing the structural equation for Xi with the equation Xi = x. Under the causal interpretation, a recursive linear structural equation model is a causal model, the DAG GM is a causal DAG, and the pattern that represents GM is a causal pattern. A causal model with a set of variables V is causally sufficient when every common direct cause of any two variables in V is also in V. Informally, under a causal interpretation, an edge X  Y in GM represents that X is a direct cause of Y relative to V. A causal model of a population is true when the model correctly predicts the results of all possible settings of any subset of the variables (Pearl, 2000). 
There are two assumptions made about the relationship between the causal DAG and the population probability distribution that play a key role in causal inference from observational data. A discussion of the implications of these assumptions, arguments for them, and a discussion of conditions when they should not be assumed are given in Spirtes et al. (1993, pp. 32-42). In this paper, we will consider only those cases where the causal relations in a given population can be represented by a model whose graph is a DAG.
Causal Markov Assumption (CMA): If the true causal model M of a population is causally sufficient, every variable in V is independent of the variables that are neither its parents nor descendants in GM conditional on its parents in GM.
Causal Faithfulness Assumption (CFA): Every conditional independence relation that holds in the population probability distribution is entailed by the true causal DAG of the population. 
The Causal Markov and Causal Faithfulness Assumptions together entail that X is independent of Y conditional on Z in the population if and only if X is d-separated from Y conditional on Z in the true causal graph.
Weakening the Causal Faithfulness Assumption
A number of algorithms for causal estimation have been proposed that rely on the assumption of the causal sufficiency of the observed variables, the Causal Markov Assumption, and the Causal Faithfulness Assumption. The SGS algorithm (Spirtes et al., 1993, p. 82), for example, is a Fisher consistent estimator of causal patterns under these assumptions. (This together with a uniformly consistent test of conditional independence entails that the SGS algorithm is a pointwise consistent estimator of causal patterns.) 
In this section, we explore ways to weaken the Causal Faithfulness Assumption that still allow pointwise consistent estimation of (features of) causal structure, and we illustrate the ideas by going through a sequence of generalizations of the population version of the SGS algorithm. None of the results in this section depend upon assuming Normality or linearity. The basic idea is that although the Causal Faithfulness Assumption is not fully testable (without knowing the true causal structure), it has testable components given the Causal Markov Assumption. Under the Causal Markov Assumption, the Causal Faithfulness Assumption entails that the probability distribution admits a perfect DAG representation, i.e., a DAG that entails all and only those conditional independence relations true of the distribution. Whether there is such a DAG depends only on the distribution, and so is, in theory, testable. In principle, then, one may adopt a weaker-than-faithfulness assumption, and test (rather than assume) the testable part of the faithfulness condition.
The SGS algorithm takes an oracle of conditional independence as input, and outputs a graph on the given set of variables with both directed edges and undirected edges.
      SGS algorithm
      S1. Form the complete undirected graph H on the given set of variables V.
      S2. For each pair of variables X and Y in V, search for a subset S of V\{X, Y} such that X and Y are independent conditional on S. Remove the edge between X and Y in H iff such a set is found.
      S3. Let K be the graph resulting from S2. For each unshielded triple <X, Y, Z> (i.e., X and Y are adjacent, Y and Z are adjacent, but X and Z are not adjacent), 
(i) If X and Z are not independent conditional on any subset of V\{X, Z} that contains Y, then orient the triple as a collider: X  Y  Z.
(ii) If X and Z are not independent conditional on any subset of V\{X, Z} that does not contain Y, then mark the triple as a non-collider (i.e., not X  Y  Z). 
       S4. Execute the following orientation rules until none of them applies: 
a. If X  Y  Z, and the triple <X, Y, Z> is marked as a non-collider, then orient Y  Z as Y  Z.
b. If X  Y  Z and X  Z, then orient X  Z as X  Z.
c. If X  Y  Z, another triple <X, W, Z> is marked as a non-collider, and W  Y, then orient W  Y as W  Y. [footnoteRef:3] [3:  This rule was not in the original SGS or PC algorithm, but added by Meek (1995). ] 

Assuming the oracle of conditional independence is perfectly reliable (which we will do throughout this section), the SGS algorithm is correct under the Causal Markov and Faithfulness assumptions, in the sense that its output is the pattern that represents the Markov equivalence class containing the true causal DAG (Spirtes et al., 1993, p. 82; Meek, 1995).   
The correctness of SGS follows from the following three properties of d-separation (Spirtes et al. 1993):
1. X is adjacent to Y in DAG G iff X is not d-separated from Y conditional on any subset of the other variables in G.
2. If <X, Y, Z> is an unshielded collider in DAG G, then X is not d-separated from Z conditional on any subset of the other variables in G that contains Y.
3. If <X, Y, Z> is an unshielded non-collider in DAG G, then X is not d-separated from Z conditional on any subset of the other variables in G that does not contain Y.
We shall not reproduce the full proof here, but a few points are worth stressing. First, S2 is the step of inferring adjacencies and non-adjacencies. The inferred adjacencies, represented by the remaining edges in the graph resulting from S2, are correct because of the Causal Markov Assumption alone: every DAG Markov to the given oracle must contain at least these adjacencies. On the other hand, the inferred non-adjacencies (via removal of edges) are correct because of the Causal Faithfulness Assumption, or more precisely, because of the following consequence of the Causal Faithfulness Assumption, which we, following Ramsey et al. (2006), will refer to as Adjacency-Faithfulness.
Adjacency-Faithfulness Assumption: Given a set of variables V whose true causal DAG is G, if two variables X, Y are adjacent in G, then they are not independent conditional on any subset of V\{X, Y}. 
Under the Adjacency-Faithfulness Assumption, any edge removed in S2 is correctly removed, because any DAG with the adjacency violates the Adjacency-Faithfulness Assumption. 
Second, the key step of inferring orientations is step S3, in which unshielded colliders and non-colliders are inferred. Given that the adjacencies and non-adjacencies are all correct, the clauses (i) and (ii) in step S3, as formulated here, are justified by the Causal Markov Assumption alone. Take clause (i) for example. If the unshielded triple <X, Y, Z> is not a collider in the true causal DAG, then the Causal Markov Assumption entails that X and Z are independent conditional on some set that contains Y. That is why clause (i) is sound. A similar argument shows clause (ii) is sound. This does not mean, however, that the Causal Faithfulness Assumption does not play any role in justifying S3. Notice that the antecedent of (i) and that of (ii) do not exhaust the logical possibilities. They leave out the possibility that X and Z are independent conditional on some set that contains Y and independent conditional on some set that does not contain Y. This omission is justified by the Causal Faithfulness Assumption, or more precisely, by the following consequence of the Causal Faithfulness Assumption (Ramsey et al., 2006):
Orientation-Faithfulness Assumption: Given a set of variables V whose true causal DAG is G, let <X, Y, Z> be any unshielded triple in G. 
1. If X  Y  Z, then X and Z are not independent conditional on any subset of V\{X, Z} that contains Y; 
2. Otherwise, X and Z are not independent conditional on any subset of V\{X, Z} that does not contain Y. 
Obviously, the possibility left out by S3 is indeed ruled out by the Orientation-Faithfulness Assumption. 
The Orientation-Faithfulness Assumption, if true, justifies a much simpler and more efficient step than S3: for every unshielded triple <X, Y, Z>, we need check only the set found in S2 that renders X and Z independent; the triple is a collider if and only if the set does not contain Y. This simplification is used in the PC algorithm, a well-known, more computationally efficient rendition of the SGS procedure (Spirtes et al., 1993, pp. 84-85). Moreover, the Adjacency-Faithfulness condition also justifies a couple of measures to improve the efficiency of S2, used by the PC algorithm. Here we are concerned with showing how the basic, SGS procedure may be modified to be correct under increasingly weaker assumptions of faithfulness, so we will not go into the details of the optimization measures in the PC algorithm. Whether these or similar measures are available to the modified algorithms we introduce below is an important question to be addressed in future work.
Let us start with the modification proposed by Ramsey et al. (2006), who observed that assuming the Causal Markov and Adjacency-Faithfulness Assumptions are true, any failure of the Orientation-Faithfulness Assumption is detectable, in the sense that the probability distribution in question is not both Markov and Faithful to any DAG (Zhang and Spirtes, 2008). In our formulation of the SGS algorithm, it is easy to see how failures of Orientation-Faithfulness can be detected. As already mentioned, the role of the Orientation-Faithfulness Assumption in justifying the SGS algorithm is to guarantee that at the step S3, either the antecedent of (i) or that of (ii) will obtain. Therefore, if it turns out that for some unshielded triple neither antecedent is satisfied, the Orientation-Faithfulness Assumption is detected to be false for that triple.
This suggests a simple modification to S3 in the SGS algorithm.
     S3*. Let K be the undirected graph resulting from S2. For each unshielded triple <X, Y, Z>, 
(i) If X and Z are not independent conditional on any subset of V\{X, Z} that contains Y, then orient the triple as a collider: X  Y  Z.
(ii) If X and Z are not independent conditional on any subset of V\{X, Z} that does not contain Y, then mark the triple as a non-collider. 
(iii) Otherwise, mark the triple as ambiguous (or unfaithful).
Ramsey et al. (2006) applied essentially this modification to the PC algorithm[footnoteRef:4] and called the resulting algorithm the Conservative PC (CPC) algorithm. We will thus call the algorithm that results from replacing S3 with S3* the Conservative SGS (CSGS) algorithm.  [4:  Their results show that the main optimization measures used in the PC algorithm still apply to this generalization of SGS (because the Adjacency-Faithfulness condition is still assumed). ] 

It is straightforward to prove that the CSGS algorithm is correct under the Causal Markov and the Adjacency-Faithfulness Assumptions alone, in the sense that if the Causal Markov and Adjacency-Faithfulness Assumptions are true and if the oracle of conditional independence is perfectly reliable, then every adjacency, non-adjacency, orientation, and marked non-collider in the output of the CSGS are correct. As pointed out in Ramsey et al. (2006), the output of the CSGS can be understood as an extended pattern that represents a set of patterns. For example, a sample output used in Ramsey et al. (2006) is given in Figure 1(a). There are two ambiguous unshielded triples in the output: <Y, X, Z> and <Z, U, Y>, which are marked by crossing straight lines. Note that there is no explicit mark for non-colliders, with the understanding that all and only unshielded triples that are not oriented as colliders or marked as ambiguous are (implicitly) marked non-colliders. Figure 1(a) represents a set of three patterns, depicted in Figures 1(b)-1(d). Each pattern results from some disambiguation of the ambiguous triples in Figure 1(a). The pattern in Figure 1(b), for example, results from taking the triple <Y, X, Z> as a non-collider and taking the triple <Z, U, Y> as a collider. Note that not every disambiguation results in a pattern. Taking both ambiguous triples as non-colliders would force a directed cycle: Z  U  Y  X  Z, and so would not lead to a pattern. That is why there are only three instead of four patterns in the set represented by Figure 1(a).
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Figure 1: (a) is a sample output of the CSGS algorithm. The ambiguous (or unfaithful) unshielded triples are marked by straight lines crossing the two edges. There is no explicit mark for non-colliders, with the understanding that all and only unshielded triples that are not oriented as colliders or marked as ambiguous are (implicitly) marked non-colliders. (b)-(d) are the three patterns represented by (a).  
It is easy to see that when the Orientation-Faithfulness Assumption happens to hold, the CSGS output will be a single pattern (i.e., without ambiguous triples), which is the same as the SGS output. In other words, CSGS is as informative as SGS when the stronger assumption needed for the output of the latter to be guaranteed to be correct happens to be true. 
The Adjacency-Faithfulness Assumption may be further weakened. In an earlier paper (Zhang and Spirtes, 2008), we showed that some violations of the Adjacency-Faithfulness Assumption are also detectable, and we specified some conditions weaker than the Adjacency-Faithfulness Assumption under which any violation of Faithfulness (and so any violation of Adjacency-Faithfulness) is detectable. One of the weaker conditions is known as the Causal Minimality Assumption (Spirtes et al., 1993, p. 31), which states that the true causal DAG is a minimal DAG that satisfies the Markov condition with the true probability distribution, minimal in the sense that no proper subgraph satisfies the Markov condition. This condition is a consequence of the Adjacency-Faithfulness Assumption. If the Adjacency-Faithfulness Assumption is true, then no edge can be taken away from the true causal DAG without violating the Markov condition. 
The other weaker condition is named Triangle-Faithfulness: 
Triangle-Faithfulness Assumption: Suppose the true causal DAG of V is G. Let X, Y, Z be any three variables that form a triangle in G (i.e., each pair of vertices is adjacent):
(1) If Y is a non-collider on the path <X, Y, Z>, then X and Z are not independent conditional on any subset of V\{X, Z} that does not contain Y;
(2) If Y is a collider on the path <X, Y, Z>, then X and Z are not independent conditional on any subset of V\{X, Z} that contains Y.

Clearly the Adjacency-Faithfulness Assumption entails the Triangle-Faithfulness Assumption, and the latter, intuitively, is much weaker. Our result in (Zhang and Spirtes, 2008) is that given the Causal Markov, Minimality, and Triangle-Faithfulness Assumptions, any violation of faithfulness is detectable. But we did not propose any algorithm that is provably correct under the Markov, Minimality, and Triangle-Faithfulness assumptions.
What need we modify in the SGS algorithm if all we can assume are the Markov, Minimality, and Triangle-Faithfulness Assumptions? In the step S2, the inferred adjacencies are still correct, which, as already mentioned, is guaranteed by the Causal Markov Assumption alone. The inferred non-adjacencies, however, are not necessarily correct, because the Adjacency-Faithfulness Assumption might fail. So the first modification we need make is to acknowledge that the non-adjacencies resulting from S2 are only ‘apparent’ but not ‘definite’: there might still be an edge between two variables even though the edge between them was removed in S2 because a screen-off set was found.   
Since we do not assume the Orientation-Faithfulness Assumption, obviously we need at least modify S3 into S3*. A further worry is that the unshielded triples resulting from S2 are only ‘apparent’: they might be shielded in the true causal DAG but appear to be unshielded due to a failure of Adjacency-Faithfulness. Fortunately, this possibility does not affect the soundness of S3*. Take clause (i) for example. For an apparently unshielded triple <X, Y, Z>, either X and Z are really non-adjacent in the true DAG or they are adjacent. In the former case, clause (i) is sound by the Markov condition. In the latter case, clause (i) is still sound by the Triangle-Faithfulness Assumption. A similar argument shows clause (ii) is sound. So S3* is still sound. Moreover, clause (iii) can now play a bigger role than simply conceding ignorance or ambiguity. If the antecedent of clause (iii) is satisfied, then one can infer that X and Z are really non-adjacent, for otherwise the Triangle-Faithfulness Assumption would be violated no matter whether <X, Y, Z> is a collider or not. 
The soundness of S4 is obviously not affected. Therefore, if we only assume the Causal Markov, Minimality, and Triangle-Faithfulness Assumptions, the CSGS algorithm is still correct if we take the non-adjacencies in its output as uninformative (except for those warranted by S3*). 
The question now is whether we can somehow test the Adjacency-Faithfulness Assumption in the procedure, and confirm the non-adjacencies when the test returns affirmative. The following Lemma gives a sufficient condition for verifying the Adjacency-Faithfulness Assumption and hence the non-adjacencies in the CSGS output. (Recall that the CSGS output in general represents a set of patterns, and each pattern represents a set of Markov equivalent DAGs.) A pattern O is Markov to an oracle when for every DAG represented by O, each vertex is independent of the set of variables that are neither descendants nor parents in the DAG conditional on the parents in the DAG according to the oracle. 
Lemma 1: Suppose the Causal Markov, Minimality, and Triangle-Faithfulness Assumptions are true, and E is the output of CSGS given a perfectly reliable oracle of conditional independence. If every pattern in the set represented by E is Markov to the oracle, then the true causal DAG has exactly those adjacencies present in E. 
Proof: As we already pointed out, the true causal DAG, GT, must have at least the adjacencies in E (in order to satisfy the Causal Markov Assumption), and must have the colliders and non-colliders in E (in order to satisfy the Causal Markov and the Triangle-Faithfulness Assumptions). Now suppose every pattern in the set represented by E is Markov to the oracle, and suppose, for the sake of contradiction, that GT has still more adjacencies. Let G be the proper subgraph of GT with just the adjacencies in E. Then every unshielded collider and every unshielded non-collider in E are also present in G, and other unshielded triples in G, if any, are ambiguous in E. Thus the pattern that represents the Markov equivalence class of G is in the set represented by E. It follows that G is Markov to the oracle, which shows that GT is not a minimal graph that is Markov to the oracle. This contradicts the Causal Minimality Assumption. Therefore, GT has exactly the adjacencies present in E.  Q.E.D.
So we have the following Very Conservative SGS (VCSGS): 
      VCSGS algorithm
      V1. Form the complete undirected graph H on the given set of variables V.
      V2. For each pair of variables X and Y in V, search for a subset S of V\{X, Y} such that X and Y are independent conditional on S. Remove the edge between X and Y in H and mark the pair <X, Y> as ‘apparently non-adjacent’, if and only if such a set is found.
      V3. Let K be the graph resulting from V2. For each apparently unshielded triple <X, Y, Z> (i.e., X and Y are adjacent, Y and Z are adjacent, but X and Z are apparently non-adjacent), 
(i) If X and Z are not independent conditional on any subset of V\{X, Z} that contains Y, then orient the triple as a collider: X  Y  Z.
(ii) If X and Z are not independent conditional on any subset of V\{X, Z} that does not contain Y, then mark the triple as a non-collider.
(iii) Otherwise, mark the triple as ambiguous (or unfaithful), and mark the pair <X, Z> as ‘definitely non-adjacent’.  
       V4. Execute the same orientation rules as in S4, until none of them applies.
V5. Let M be the graph resulting from V4. For each consistent disambiguation of the ambiguous triples in M (i.e., each disambiguation that leads to a pattern), test whether the resulting pattern satisfies the Markov condition.[footnoteRef:5] If every pattern does, then mark all the ‘apparently non-adjacent’ pairs as ‘definitely non-adjacent’.  [5:  An obvious way to test the Markov condition on a given pattern is to extend the pattern to a DAG, and test the local Markov condition. That is, we need to test, for each variable X, whether X is independent of the variables that are neither its descendants nor its parents conditional on its parents. In linear Gaussian models, this can be done by regressing X on its non-descendants and testing whether the regression coefficients are zero for its non-parents. More generally, assuming composition, we need only run a conditional independence test for each non-adjacent pair, and thus in the worse case the number of conditional independence tests is O(n2), where n is the number of vertices. The number of patterns to be tested in V5 is O(2a), where a is the number of ambiguous unshielded triples.        ] 

As we already explained, steps V1-V4 are sound under the Causal Markov, Minimality, and Triangle-Faithfulness Assumptions. Lemma 1 shows that V5 is also sound. Hence the VCSGS algorithm is correct under the Causal Markov, Minimality, and Triangle-Faithfulness Assumptions, in the sense that given a perfectly reliable oracle of conditional independence, all the adjacencies, definite non-adjacencies, directed edges, and marked non-colliders are correct. Moreover, when the Causal Faithfulness Assumption happens to hold, the CSGS output will be a single pattern and this single pattern will satisfy the Markov condition; hence the VCSGS algorithm will return a single pattern with full information about non-adjacencies. Therefore, VCSGS is also as informative as SGS when the Causal Faithfulness Assumption happens to be true.
One might think (or hope) that the VCSGS algorithm is as informative as the CSGS algorithm when Adjacency-Faithfulness (but not Orientation-Faithfulness) happens to hold. Unfortunately this is not true in general because the sufficient condition given in Lemma 1 (and checked in V5) is not necessary for the Adjacency-Faithfulness Assumption. 
To illustrate, consider the following example. Suppose the true causal DAG is the one given in Figure 2(a). Suppose the causal Markov Assumption and the Adjacency-Faithfulness Assumption are satisfied. And suppose that, besides the conditional independence relations entailed by the graph, the true distribution features one and only one extra conditional independence: I(X, Z | Y), due, for example, to some sort of balancing-out of the path <X, Y, Z> (active conditional on {Y}) and the path <X, W, Z> (active conditional on {Y}). This violates the Orientation-Faithfulness Assumption. The CSGS output will thus be the graph in Figure 2(b), in which both the triple <X, Y, Z> and the triple <X, W, Z> are ambiguous. This output represents a set of three patterns, as shown in Figures 2(c)-2(e). (Again, the two ambiguous triples cannot be non-colliders at the same time.) However, only the patterns in 2(c) and 2(d) satisfy the Markov condition. The pattern in 2(e) violates the Markov condition because it entails that I(X, Z | ), which is not true. 
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Figure 2

For this example, then, the VCSGS will not return the full information of non-adjacencies, even though the Adjacency-Faithfulness Assumption is true. 
In light of this example, it is natural to consider the following variant of step V5 in VCSGS:
V5*. Let M be the graph resulting from V4. If some disambiguation of the ambiguous triples in M leads to a pattern that satisfies the Markov condition, then mark all remaining ‘apparently non-adjacent’ pairs as ‘definitely non-adjacent’. 
We suspect that V5* is also sound under the Causal Markov, Minimality, and Triangle-Faithfulness Assumptions, but we have not found a proof. In other words, we conjecture that the sufficient condition presented in Lemma 1 can be weakened to that some pattern in the set represented by the CSGS output satisfies the Markov condition.[footnoteRef:6] Note that if the Adjacency-Faithfulness Assumption happens to hold, then at least one pattern (i.e., the pattern representing the true causal DAG) satisfies the Markov condition. Therefore, if our conjecture is true, we can replace V5 with V5* in the VCSGS algorithm, and the condition tested in V5* is both sufficient and necessary for Adjacency-Faithfulness. The resulting algorithm will then be as informative as the CSGS algorithm whenever the Adjacency-Faithfulness Assumption happens to hold, and as informative as the SGS algorithm whenever both the Adjacency-Faithfulness Assumption and the Orientation-Faithfulness Assumption happen to hold. [6:  This is a consequence of the following conjecture: Suppose a DAG G and a distribution P satisfy the Markov, Minimality, and Triangle-Faithfluness conditions. Then no DAG with strictly fewer adjacencies than in G is Markov to P. We thank an anonymous referee for making the point and the conjecture. ] 

It is worth noting that if we adopt a natural, interventionist conception of causation (e.g., Woodward, 2003), the Causal Minimality Assumption is guaranteed to be true if the probability distribution is positive (Zhang and Spirtes, 2011). Since positivity is a property of the probability distribution alone, we may also try to incorporate a test of positivity at the beginning of VCSGS, and proceed only if the test returns affirmative. We then need not assume the Causal Minimality Assumption in order to justify the procedure.    
Weakening the Strong Causal Faithfulness Assumption 
In this section, we consider sample versions of the CSGS and VCSGS algorithms, assuming Normality and linearity, and prove some positive results on uniform consistency, under a generalization and strengthening of the Triangle-Faithfulness assumption, which we call the k-Triangle-Faithfulness Assumption. 
If a model M does not satisfy the Causal Faithfulness Assumption, then M contains a zero partial correlation M(X,Y|W) even though the Causal Markov Assumption does not entail that M(X,Y|W) is zero. If M(X,Y|W) = 0 but is not entailed to be zero for all values of the parameters, the parameters of the model satisfy an algebraic constraint. A set of parameters that satisfies such an algebraic constraint is a “surface of unfaithfulness” in the parameter space that is of a lower dimension than the full parameter space. Lying on such a surface of unfaithfulness is of Lebesgue measure zero. For a Bayesian with a prior probability over the parameter space that is absolutely continuous with Lebesgue measure, the prior probability of unfaithfulness is zero. 
However, in practice the SGS (or PC) algorithm does not have access to the population correlation coefficients. Instead it performs statistical tests of whether a partial correlation is zero. If |M(X,Y|W)| is small enough then with high probability a statistical test of whether M(X,Y|W) equals zero will not reject the null hypothesis. If M(X,Y|W)=0 fails to be rejected this can lead to some edges that occur in the true causal DAG not appearing in the output of SGS, and to errors in the orientation of edges in the output of SGS.[footnoteRef:7] Robins et al. (2003) showed that even if it is assumed that there are no unfaithful models, there are always models so “close to unfaithful” (i.e. with M(X,Y|W) non-zero but small enough that a statistical test will probably fail to reject the null hypothesis) that there is no algorithm that is a uniformly consistent estimator of the pattern of a causal model. [7:  Such errors can also lead to the output of the SGS algorithm to fail to be a pattern, either because it contains double-headed edges, or undirected non-chordal cycles.] 

Kalisch and Bühlmann (2007) showed that under a strengthened version of the Causal Faithfulness Assumption, the PC algorithm is a uniformly consistent estimator of the pattern that represents the true causal DAG. Their strengthened set of assumptions were: 
(A1) The distribution Pn is multivariate Gaussian and faithful to the DAG Gn for all n.
(A2) The dimension pn = O(na) for some 0 ≤ a < .
(A3) The maximal number of neighbors in the DAG Gn is denoted by

 
(A4) The partial correlations between X(i) and X( j) given {X(r); r k} for some set k 
{1,…,pn}\{i,j} are denoted by n;i,j|k. Their absolute values are bounded from below and above:

 
We will refer to the assumption that all non-zero partial correlations are bounded below by a number greater than zero (as in the first part of (A4)) as the Strong Causal Faithfulness Assumption. Uhler et al. (2012) provide some reason to believe that unless cn is quite small, the probability of violating Strong Causal Faithfulness Assumption is high, especially when the number of variables is large. (This problem with assumption (A4) is somewhat mitigated by the fact that the size of cn can decrease with sample size. But see Lin et al., 2012 for an interesting analysis of the asymptotics when cn approaches zero.) 
It is difficult to see how a uniformly consistent estimator of a causal pattern would be possible without assuming something like the Strong Causal Faithfulness Assumption. However, what we will show is that it is possible to weaken the Strong Causal Faithfulness Assumption in several ways as long as the standard of success is not finding a uniformly consistent estimator of the causal pattern, but is instead finding a uniformly consistent estimator of (some of) the structural coefficients in a pattern. The latter standard is compatible with missing some edges that are in the true causal graph, as long as the edges that have not been included in the output have sufficiently small structural coefficients. 
We propose to replace the faithfulness assumption in (A1), and the Strong Faithfulness Assumption with the following assumption, where eM(X – Z), as we explained in section 2, denotes the structural coefficient associated with the edge between X and Z.  
k-Triangle-Faithfulness Assumption: Given a set of variables V, suppose the true causal model over V is M = <P,G>, where P is a Gaussian distribution over V, and G is a DAG with vertices V For any three variables X, Y, Z that form a triangle in G (i.e., each pair of vertices is adjacent),
(1) If Y is a non-collider on the path <X, Y, Z>, then  |X, Z|W)| ≥ k  eM(X – Z) for all WV that do not contain Y; and 
(2) If Y is a collider on the path <X, Y, Z>, then |X, Z|W)| ≥ k  eM(X – Z) for all WV that do contain Y.
As k approaches 0, the k-Triangle-Faithfulness Assumption approaches the Triangle-Faithfulness Assumption. For (small) k > 0, the k-Triangle-Faithfulness Assumption prohibits not only exact cancellations of active paths in a triangle, but also almost cancellations.   
The k-Triangle-Faithfulness Assumption is a weakening of the Strong Causal Faithfulness Assumption in two ways. First, it is weaker because Triangle-Faithfulness is significantly weaker than Faithfulness. Second, it does not entail a lower limit on the size of non-zero partial correlations – it only puts a limit on the size of a non-zero partial correlation in relation to the size of the structural coefficient of an edge that occurs in a triangle.
The Strong Causal Faithfulness Assumption entails that there are no very small structural coefficients (which, if present, entail the existence of some partial correlation that is very small). In contrast, the k-Triangle-Faithfulness Assumption does not entail that there are no non-zero but very small structural coefficients. However, there is a price to be paid for weakening the Strong Causal Faithfulness Assumption – the estimator we propose is both computationally more intensive than the PC algorithm used in Kalisch & Bühlmann (2007), and also requires testing partial correlations conditional on larger sets of variables, which means some of the tests performed have lower power than the tests performed in the PC algorithm.
Our results also depend on the following assumptions. First, we assume a fixed upper bound to the size of the set of variables that does not change as sample size increases. We have no reason to think that there are not analogous results that would hold even if, as in Kalisch & Bühlmann (2007), the number of variables and the degree of the graph increased with the sample size; however we have not proved any such results yet. We also make the assumption of non-vanishing variance (NVV) and the assumption of upper bound for partial correlations (UBC): 

        Assumption NVV(J): 

       Assumption UBC(C): . 
The assumption NVV is a slight strengthening of the positivity requirement, which, as we noted in the previous section, is needed to guarantee the Causal Minimality Assumption. Uniform consistency requires that the distributions be bounded away from non-positivity.
The assumption UBC (cf. the second part of assumption A(4)) is used to guarantee that sample partial correlations are uniformly consistent estimators of population partial correlations (Kalisch and Bühlmann, 2007). 
We now proceed to establish two positive results about uniform consistency. In Section 4.1, we show that the Conservative SGS (CSGS) algorithm, using uniformly consistent tests of partial correlations, is uniformly consistent in inferring certain features of the causal structure. In Section 4.2, we show that the Very Conservative SGS (VCSGS) algorithm, when combined with a uniformly consistent procedure for estimating structural coefficients, provides a uniformly consistent estimator of structural coefficients (that returns “Unknown” in some, but not all cases).     
4.1 Uniform consistency in the inference of structure
Recall that the CSGS algorithm, given a perfect oracle of conditional independence, is correct under the Causal Markov, Minimality, and Triangle-Faithfulness Assumptions, in the sense that the adjacencies, orientations, and marked non-colliders in the output are all correct. In Gaussian models, we can implement the oracle with tests of zero partial correlations. A test  of H0:  = 0 versus H1:   0 is a family of functions: 1, …, n, …, one for each sample size, that take an i.i.d sample Vn from the joint distribution over V and return 0 (acceptance of H0) or 1 (rejection of H0). Such a test is uniformly consistent with respect to a set of distributions  iff

(1)	

(2)  
For simplicity, we assume the variables in V are standardized. Under the assumption UBC, there are uniformly consistent tests of partial correlations based on sample partial correlations, such as Fisher’s z test. (Robins et al., 2003; Kalisch and Bühlmann, 2007). We consider a sample version of the CSGS algorithm in which the oracle is replaced by uniformly consistent tests of zero partial correlations in the adjacency step S2. In the orientation phase, the step S3* is refined as follows, based on a user chosen parameter L.
     S3* (sample version). Let K be the undirected graph resulting from the adjacency phase. For each unshielded triple <X, Y, Z>,   
1. If there is a set W not containing Y such that the test of (X, Z|W) = 0 returns 0 (i.e., accepts the hypothesis), and for every set U that contains Y, the test of |(X,Z|U)| = 0 returns 1 (i.e., rejects the hypothesis), and the test of |(X,Z|U) – (X,Z|W)|  L returns 0 (i.e., accepts the hypothesis), then orient the triple as a collider: X  Y  Z. 
1. If there is a set W containing Y such that the test of (X, Z|W) = 0 returns 0 (i.e., accepts the hypothesis), and for every set U that does not contain Y, the test of |(X,Z|U)| = 0 returns 1 (i.e., rejects the hypothesis), the test of |(X,Z|U) – (X,Z|W)|  L returns 0 (i.e., accepts the hypothesis), then mark the triple as a non-collider. 
1. Otherwise, mark the triple as ambiguous.
Larger values of L return “Unknown” more often than smaller values of L, but reduce the probability of an error in orientation at a given sample size.
Step S4 remains the same as in the population version.
Given any causal model M = <P, G> over V, let CSGS(L, n, M) denote the (random) output of the CSGS algorithm with parameter L, given an i.i.d sample of size n from the distribution PM. Say that CSGS(L, n, M) errs if it contains (i) an adjacency not in GM; or (ii) a marked non-collider not in GM, or (iii) an orientation not in GM. 
Let k,J,C be the set of causal models over V that respect the k-Triangle-Faithfulness Assumption and the assumptions of NVV(J) and UBC(C). We shall prove that given the causal sufficiency of the measured variables V and the causal Markov assumption,

                                 
In other words, given the causal sufficiency of V, the Causal Markov, k-Triangle-Faithfulness, NVV(J), and UBC(C) assumptions, the CSGS algorithm is uniformly consistent in that the probability of it making a mistake uniformly converges to zero in the large sample limit.
First of all, we prove a useful lemma:
Lemma 2: Let Mk,J,C. For any Xi and Xj such that Xj is not an ancestor of Xi, if eM(Xi  Xj) = bj,i, then 

                               
where X[1, …, j] is an ancestral set that contains Xi but does not contain any descendant of Xj.
Proof: Let  be the correlation matrix for the set of variables {X1, … , Xj}, and R=-1. Let B be the (lower-triangular) matrix of structural coefficients in M restricted to {X1, … , Xj}, and var(E) be the (diagonal) covariance matrix for the error terms {1, …, j}. Then
                                               R = (I–B)T var(E)-1(I–B)
Note that 

 
where the b’s are the corresponding structural coefficients in M, and the ’s are the variances of the corresponding error terms. Thus R[j, j] = 1/j, and R[i, j] = –bj,i/j. So we have (Whittaker 1990)


Since R[i,i]-1 is the variance of Xi conditional on all of the other variables in {X1, … , Xj}, which is a subset of V \ {Xi}, R[i,i]-1 ≥ varM(Xi | V \ {Xi})  ≥ J. Since the variables are standardized, and the residual of Xi regressed on the other variables is uncorrelated with Xi, R[i,i]-1  1. Similarly, 1 ≥ j  ≥ J. Thus  

                                 
Q.E.D.
We now categorize the mistakes CSGS(L, n, M) can make into three kinds. CSGS(L, n, M) errs in kind I if CSGS(L, n, M) has an adjacency that is not present in GM; CSGS(L, n, M) errs in kind II if every adjacency in CSGS(L, n, M) is in GM but CSGS(L, n, M) contains a marked non-collider that is not in GM; CSGS(L, n, M) errs in kind III if every adjacency in CSGS(L, n, M) is in GM, every marked non-collider in CSGS(L, n, M) is in GM, but CSGS(L, n, M) contains an orientation that is not in GM. Obviously if CSGS(L, n, M) errs, it errs in one of the three kinds.  
The following three lemmas show that for each kind, the probability of CSGS(L, n, M) erring in that kind uniformly converges to zero.
Lemma 3 Given causal sufficiency of the measured variables V, the Causal Markov, k-Triangle-Faithfulness, NVV(J), and UBC(C) Assumptions, 

                        
Proof: CSGS(L, n, M) has an adjacency not in GM only if some test of zero partial correlation falsely rejects its null hypothesis. Since uniformly consistent tests are used in CSGS, for every  > 0, for every test of zero partial correlation ti, there is a sample size Ni such that for all n > Ni the supremum (over k,J,C) of the probability of the test falsely rejecting its null hypothesis is less than . Given V, there are only finitely many possible tests of zero partial correlations. Thus, for every  > 0, there is a sample size N such that for all n > N, the supremum (over k,J,C) of the probability of any of the tests falsely rejecting its null hypothesis is less than . The lemma then follows.  Q.E.D. 
Lemma 4 Given causal sufficiency of the measured variables V, the Causal Markov, k-Triangle-Faithfulness, and NVV(J), and UBC(C) Assumptions,

                        
Proof: For any Mk,J,C, if CSGS(L, n, M) errs in kind II, then CSGS(L, n, M) contains a marked non-collider, say, <X, Y, Z> which is not in GM, but every adjacency in CSGS(L, n, M) is also in GM, including the adjacency between X and Y, and that between Y and Z. It follows that <X, Y, Z> is a collider in GM. Since CSGS marks a triple as a non-collider only if the triple is unshielded, X and Z are not adjacent in CSGS(L, n, M). Hence, errors of kind II can be further categorized into two cases: (II.1) CSGS(L, n, M) contains an unshielded non-collider that is an unshielded collider in GM, and (II.2) CSGS(L, n, M) contains an unshielded non-collider that is a shielded collider in GM. We show that the probability of either case uniformly converges to zero. 
For case (II.1) there is an unshielded collider <X, Y, Z> in GM, so X and Z are independent conditional on some set of variables W that does not contain Y, by the Causal Markov Assumption. Then the CSGS algorithm (falsely) marks <X, Y, Z> as a non-collider only if the test of M(X, Z|W) = 0 (falsely) rejects its null hypothesis. Therefore, the CSGS algorithm gives rise to case (II.1) only if some test of zero partial correlation falsely rejects its null hypothesis. Then, by essentially the same argument as the one used in proving Lemma 3, the probability of case (II.1) uniformly converges to zero as sample size increases.      
For case (II. 2), suppose for the sake of contradiction that the probability of CSGS making such a mistake does not uniformly converge to zero. Then there exists  > 0, such that for every sample size n, there is a model M(n) such that the probability of CSGS(L, n, M(n)) contains an unshielded non-collider that is a shielded collider in M(n) is greater than . 
Now, CSGS(L, n, M(n)) contains an unshielded non-collider, say, <XM(n), YM(n), ZM(n)>, that is a shielded collider in GM(n), only if there is a set WM(n) that contains Y such that the test of (XM(n), ZM(n)) | WM(n)) = 0 returns 0 (i.e., accepts the hypothesis). 
Without loss of generality, suppose ZM(n) is not an ancestor of XM(n). Let UM(n) = AM(n)\{X M(n), ZM(n)} where AM(n) is an ancestral set that contains XM(n) and ZM(n) but no descendent of ZM(n). Since YM(n) is a child of ZM(n) in GM(n), UM(n) does not contain YM(n). Then, <XM(n), YM(n), Z M(n))> is marked as a non-collider in CSGS(L, n, M(n)) only if the test of |(XM(n), ZM(n) | UM(n)) - (XM(n), ZM(n) | WM(n))|  L returns 0 (i.e., accepts the hypothesis).  
Let n(L) denote the test of |(XM(n), ZM(n) | UM(n)) – (XM(n), ZM(n) | WM(n))|  L and n(0) denote the test of (XM(n), ZM(n) | WM(n)) = 0. By our supposition, 

                                          
It follows that for all n,  

                             
(1) implies that there exists n such that |(XM(n), ZM(n) | WM(n))| < n, and n  0 as n  , since the tests are uniformly consistent. eM(XM(n) – ZM(n)) ≤ |(XM(n), ZM(n) | WM(n))| / k < n/k by k-Triangle-Faithfulness. By Lemma 2, |(XM(n), ZM(n) | UM(n))|  J–1/2 eM(XM(n) – ZM(n)) < nJ–1/2/k. 
Thus, |(XM(n), ZM(n) | UM(n)) – (XM(n), ZM(n) | WM(n))| < n(1+J–1/2/k)  0 as n  . Therefore, it is not true that (2) holds for all n, which is a contradiction. So the initial supposition is false. The probability of case (II.2) uniformly converges to zero as sample size increases. Q.E.D.
Lemma 5 Given causal sufficiency of the measured variables V, the Causal Markov, k-Triangle-Faithfulness, NVV(J), and UBC(C) Assumptions,

                        
Proof: Given that all the adjacencies and marked non-colliders in CSGS(L, n, M) are correct, there is a mistaken orientation iff there is an unshielded collider in CSGS(L, n, M) which is not a collider in GM, for the other orientation rules in step S4 would not lead to any mistaken orientation if all the unshielded colliders were correct. Thus CSGS(L, n, M) errs in kind III only if there is a non-collider <X, Y, Z> in GM that is marked as an unshielded collider in CSGS(L, n, M). 
There are then two cases to consider: (III.1) CSGS(L, n, M) contains an unshielded collider that is an unshielded non-collider in GM, and (III.2) CSGS(L, n, M) contains an unshielded collider that is a shielded non-collider in GM. The argument for case (III.1) is extremely similar to that for (II.1) in the proof of Lemma 4, and the argument for case (III.2) is extremely similar to that for (II.2) in the proof of Lemma 4.  Q.E.D.
Theorem 1 Given causal sufficiency of the measured variables V, the Causal Markov, k-Triangle-Faithfulness, NVV(J), and UBC(C) Assumptions, the CSGS algorithm is uniformly consistent in the sense that

                               
Proof: It follows from Lemmas 3-5 (and the fact that CSGS(L, n, M) errs iff it errs in one of the three kinds).
4.2 Uniform consistency in the inference of structural coefficients 
We now combine the structure search with estimation of structural coefficients, when possible.
      Edge Estimation Algorithm
E1. Run the CSGS algorithm on an i.i.d. sample of size n from PM. 
E2. Let the output from E1 be CSGS(L, n, M). Apply step V5 in the VCSGS algorithm (from section 3), using tests of zero partial correlations. 
E3. If the non-adjacencies in CSGS(L, n, M) are not confirmed in E2, return ‘Unknown’ for every pair of variables.   
E4. If the non-adjacencies in CSGS(L, n, M) are confirmed in E2, then

     (i) For every non-adjacent pair <X, Y>, let the estimatebe 0.  

    (ii) For each vertex Z such that all of the edges containing Z are oriented in CSGS(L, n, M), if Y is a parent of Z in CSGS(L, n, M), let the estimatebe the sample regression coefficient of Y in the regression of Z on its parents in CSGS(L, n, M).
   (iii) For any of the remaining edges, return ‘Unknown’.

The basic idea is that we first run the Very Conservative SGS (VCSGS) algorithm, which, recall, is the CSGS algorithm (E1) plus a step of testing whether the output satisfies the Markov condition (E2). If the test does not pass, we do not estimate any edge; if the test passes, we estimate those edges that are into a vertex that is not part of any unoriented edge.
Let M1 be an output of the Edge Estimation Algorithm, and M2 be a causal model. We define the structural coefficient distance, d[M1,M2], between M1 and M2 to be       

     	             


where by convention  if  = “Unknown”.
Intuitively, the structural coefficient distance between the output and the true causal model measures the (largest) estimation error the Edge Estimation Algorithm makes. Our goal is to show that under the specified assumptions, the Edge Estimation Algorithm is uniformly consistent, in the sense that for every  > 0, the probability of the structural coefficient distance between the output and the true model being greater than  uniformly converges to zero. 
Obviously, by placing no penalty on the uninformative answer of “Unknown”, there is a trivial algorithm that is uniformly consistent, namely the algorithm that always returns “Unknown” for every structural coefficient. For this reason, Robins et al. (2003) also requires any admissible algorithm to be non-trivial in the sense that it returns an informative answer (in the large sample limit) for some possible joint distributions. The Edge Estimation algorithm is clearly non-trivial in this sense. There is no guarantee that it will always output an informative answer for some structural coefficient, and rightly so, because there are cases  for example, when the true causal graph is a complete one and there is no prior information about the causal order  in which every structural coefficient is truly underdetermined or unidentifiable. An interesting question, however, is whether a given algorithm is maximally informative or complete in the sense that it returns (in the large sample limit) “Unknown” only on those structural coefficients that are truly underdetermined. The condition in question is of course much stronger than Robins et al.’s condition of non-triviality. We suspect that the Edge Estimation algorithm is not maximally informative in this sense.[footnoteRef:8]    [8:  We thank an anonymous referee for raising this issue.] 

Theorem 2 Given causal sufficiency of the measured variables V, the Causal Markov, k-Triangle-Faithfulness, NVV(J), and UBC(C) Assumptions, the Edge Estimation algorithm is uniformly consistent in the sense that for every  > 0

                              

where is the output of the algorithm given an i.i.d sample from PM.
Proof sketch: Let O be the set of possible graphical outputs of the CSGS algorithm. Given V, there are only finitely many graphs in O. So it suffices to show that for each O O, 

           
Given O, k,J,C can be partitioned into the following three sets: 
1 = {M | All adjacencies, non-adjacencies, and orientations in O are true of M}; 
2 = {M | O contains an adjacency, or an orientation not true of M};
3 = {M | All adjacencies and orientations in O are true of M, but some non-adjacencies are not true of M}.
It suffices to show that for each i,  

          

Consider 1 first. Given any M 1, the zero estimates in are all correct (since all non-adjacencies are true). For each edge Y  Z that is estimated, the true structural coefficient eM(Y  Z) is simply rM(Y,Z,Parents(O,Z)), the population regression coefficient for Y when Z is regressed on its parents in O, because the set of Z’s parents in O is the same as the set of Z’s parents in GM. 
The sampling distribution of the estimate of an edge X  Y in O(M) is given by

 


where is the variance of the residual for Z when regressed upon Parents(O,Z) in PM, and  is the variance of Y conditional on Parents(O,Z)\{Y} in PM (Whittaker, 1990). The numerator of the variance is bounded above by 1, since the variance of each variable is 1, and the residual is independent of the set of variables regressed on. The denominator is bounded away from zero by Assumption NVV(J). Hence sample regression coefficients are uniformly consistent estimators of population regression coefficients under our assumptions, and we have 

             
For 2, note that given any M2, the CSGS algorithm errs if it outputs O. Thus, by Theorem 1,

            


Now consider 3. Let O(M) be the population version of , that is, all the sample regression coefficients inare replaced by the corresponding population coefficients. Since sample regression coefficients are uniformly consistent estimators of population regression coefficients under our assumptions, and there are only finitely many regression coefficients to consider, for every  > 0, there is a sample size N1, such that for all n > N1, and all M 3,             

                             
For any M3, there are some edges in GM missing in O. Let E(M) be the set of edges missing in O. Let M’ be the same as M except that the structural coefficients associated with the edges in E(M) are set to zero. Let O(M’) be the same as O(M) except that for each edge with an identified coefficient, the coefficient in O(M’) is the relevant regression coefficient derived from PM’ (whereas that in O(M) is derived from PM). By the setup of M’, the identified edge coefficients in O(M’) are equal to the corresponding edge coefficients in M’, which are the same as the corresponding edge coefficients in M. Thus the structural coefficient distance between O(M’) and M is simply    

                                 



For any edge YZ in O that has a different edge coefficient in O(M) than that in O(M’), the edge coefficients are both derived from a regression of Z on Parents(O,Z), but one is based on PM, and the other is based on PM’. The regression coefficient r(Y,Z, Parents(O,Z)) is equal to the Y component of the vector cov(Z, Parents(O,Z))(Parents(O,Z)) (Whittaker, 1990), which, given the structure GM, is a rational function of the structural coefficients in M. Since Mk,J,C, every submatrix of the covariance matrix for PM is invertible, and so rM(Y,Z, Parents(O,Z)) is defined. For M’, rM’(Y,Z, Parents(O,Z)) = rM’(Y,Z, A), where A is the smallest ancestral set in GM containing Parents(O,Z). (A) = (I–B)T var(E)-1(I–B), where B is the submatrix of structural coefficients in M’ for variables in A, and var(E) is the diagonal covariance matrix of error terms for variables in A, which is a submatrix of M. Since Mk,J,C, the variance of every error term is bounded from below by J. Thus(A) is defined and so is rM’(Y,Z, Parents(O,Z)). Therefore, rM(Y,Z, Parents(O,Z)) and rM’(Y,Z, Parents(O,Z)) are values of a rational function of the structural coefficients. 
A continuous function is uniformly continuous on a closed, bounded interval anywhere that it is defined. A rational function is continuous at every point of its domain where its denominator is not zero, that is, where the function value is defined. By lemma 2 and Assumption UBC(C), every structural coefficient bj,i in M lies in the closed bounded interval from –C/J1/2 to C/J1/2. Obviously the coefficients in M’ still lie in this interval. Hence given GM, the difference between rM’(Y,Z, Parents(O,Z)) and rM(Y,Z, Parents(O,Z)) can be arbitrarily small if the differences between the structural coefficients in M’ and those in M are sufficiently small. Given the set of variables V, there are only finitely many structures and finitely many relevant regressions to consider. Therefore, there is a  (0, /4) such that for every M3, d[O(M), O(M’)] < /4 if 


Consider then the partition of 3 into 

 
It follows from the previous argument that for every M3.1,  
               	               d[O(M), M]≤ d[O(M), O(M’)]+d[O(M’), M] < /4+  < /2  
Then there is a sample size N1, such that for all n > N1, and all M3.1 ,  

                    
For every M3.2, there is at least one edge, say, X  Y missing from O such that eM(X  Y)  . Then by Lemma 2, there is a set U such that |(X, Y | U)|  J1/2, but O entails that (X, Y | U) = 0. Thus the test of the Markov condition in step E2 is passed only if the test of (X, Y | U) = 0 returns 0 (i.e., accepts the null hypothesis). Note that if the test is not passed, then every structural coefficient is ‘Unknown’, and so by definition the structural coefficient distance is zero. Therefore the distance is greater than  (and so non-zero) only if the test of (X, Y | U) = 0 returns 0 while |(X, Y | U)|  J1/2. Since tests are uniformly consistent, it follows that there is a sample size N2, such that for all n > N2 and all M3.2, 

                        
Let N=max(N1, N2). Then for all n > N,

              	     
  Q.E.D.    
Conclusion
We have shown that there is a pointwise consistent estimator of causal patterns, and a uniformly consistent estimator of some of the structural coefficients in causal patterns, even when the Causal Faithfulness Assumption and Strong Causal Faithfulness Assumptions are substantially weakened. The k-Triangle Faithfulness Assumption is a restriction on many fewer partial correlations than the Causal Faithfulness Assumption and the Strong Causal Faithfulness Assumptions, and does not entail that there are no edges with very small but non-zero structural coefficients. 
There are a number of open problems associated with the Causal Faithfulness Assumption.
1. Is it possible to speed up the Very Conservative SGS algorithm to make it applicable to data sets with large numbers of variables?
2. If unfaithfulness is detected, is it possible to reduce the number of structural coefficients where the algorithm returns “Unknown”? 
3. In practice, on realistic sample sizes, how does the Very Conservative SGS algorithm perform? (Ramsey et al., 2006, have already shown that the Conservative PC algorithm is more accurate and not significantly slower than the PC algorithm). 
4. Is the k-Triangle Faithfulness Assumption unlikely to hold for reasonable values of k and large numbers of variables?
5. Is there an assumption weaker than the k-Triangle Faithfulness Assumption for which there is a uniformly consistent estimator for structural coefficients in a causal pattern?
6. Are there analogous results that apply when the number of variables and the maximum degree of a vertex increases and the size of k decreases with sample size (as in the Kalisch and Bühlmann (2007) results)?
7. Are there analogous results that apply when the assumption of causal sufficiency is abandoned?
8. Are there analogous results that apply for other families of distributions, or for non-parametric tests of conditional independence? 
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