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MARKOV EQUIVALENCE FOR ANCESTRAL GRAPHS

BY R. AYESHA ALI,1,2 THOMAS S. RICHARDSON3 AND PETER SPIRTES

University of Guelph, University of Washington and Carnegie-Mellon University

Ancestral graphs can encode conditional independence relations that
arise in directed acyclic graph (DAG) models with latent and selection vari-
ables. However, for any ancestral graph, there may be several other graphs
to which it is Markov equivalent. We state and prove conditions under which
two maximal ancestral graphs are Markov equivalent to each other, thereby
extending analogous results for DAGs given by other authors. These condi-
tions lead to an algorithm for determining Markov equivalence that runs in
time that is polynomial in the number of vertices in the graph.

1. Introduction. A graphical Markov model is a set of distributions with in-
dependence structure described by a graph consisting of vertices and edges. The
independence model associated with a graph is the set of conditional independence
relations encoded by the graph through a global Markov property. In general, dif-
ferent graphs may encode the same independence model. In this paper, we con-
sider a particular class of graphs, called ancestral graphs, and characterize when
two graphs encode the same sets of conditional independence relations.

The class of ancestral graphs is motivated in the following way. We suppose
our observed data were generated by a process represented by a directed acyclic
graph (DAG) with a fixed set of variables. The causal interpretation of such a DAG
is described by [18] and [14]. However, in general, we may only have observed
a subset of these variables in a specific sub-population. Hence, some variables in
the underlying DAG are not observed (“latent”), while other variables, specifying
the specific sub-population from which our data were sampled, are conditioned
upon (“selection variables”).

Even though the underlying model is a DAG, the conditional independence
structure holding among the observed variables, conditional on the selection vari-
ables, cannot always be represented by a DAG containing only the observed vari-
ables. For this purpose, the more general class of ancestral graphs is required [see
Figure 2(ii) and Definition 2.1]. The statistical models associated with ancestral
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FIG. 1. (i) A seemingly unrelated regression model and (ii) a Markov equivalent DAG model.

graphs retain many of the desirable properties that are associated with DAG mod-
els.

Like DAGs, two different ancestral graphs can represent the same set of condi-
tional independence relations, and hence distributions. Such graphs are said to be
Markov equivalent. A graphical characterization of the circumstances under which
graphs are Markov equivalent is of importance for several reasons:

• Markov equivalent graphs lead to identical likelihoods because the sets of dis-
tributions obeying the Markov property associated with the graphs are the same.
Thus, for the purposes of interpreting a model, it is often important to charac-
terize those features that are common to all the graphs in a given class (see [18]
and [13]).

• When viewed as a Gaussian path diagram (see [15], Section 8.1), different
(maximal) ancestral graphs correspond to different parametrizations of the same
Gaussian Markov model. However, some parametrizations may be simpler to fit
than others. For example, the model corresponding to the graph in Figure 1(i),
in the Gaussian case, is an example of a seemingly unrelated regression (SUR)
model (see [23]). In general, there are no closed form expressions for the MLEs
for SUR models, iterative fitting methods are required and there may be multi-
ple solutions to the likelihood equations (see [8]). However, the graph in Fig-
ure 1(i) is Markov equivalent to Figure 1(ii), which is a DAG. Gaussian DAG
models have closed form MLEs, and the likelihood is unimodal (see [12]). Con-
sequently, none of the problems which may arise for general Gaussian SUR
models apply to the specific model corresponding to Figure 1(i) (see also [7]).

In this paper, we provide necessary and sufficient graphical conditions under
which two ancestral graphs are Markov equivalent. Though other characteriza-
tions have been given previously in [24] and [19], the criterion given here is the
first which leads to an algorithm that runs in time polynomial in the size of the
graph. Reference [22] solved the Markov equivalence problem for DAGs. Refer-
ences [2, 3] and [9] solved the problem of representing Markov equivalence classes
for DAGs, which we leave for future work.

Section 2 defines the class of ancestral graphs and outlines the motivation for
the class. Section 3 contains the main result of the paper. Discussion and relation
to prior work are in Section 4. The Appendix contains algorithmic details.
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FIG. 2. (i) A DAG with a latent variable H . (ii) The ancestral graph resulting from marginalizing
over H includes a bi-directed edge between Pcp and CD4.

2. Ancestral graphs. The basic motivation for ancestral graphs is to enable
one to model the independence structure over the observed variables that results
from a DAG containing latent or selection variables without explicitly including
such variables in the model. To illustrate this, consider the DAG shown in Fig-
ure 2(i) in which Azt, Pcp, Ap and CD4 are observed variables, while H is unob-
served. Azt and Ap represent treatments given to AIDS patients (see Robins [17],
Section 2). Pcp is an opportunistic infection that often afflicts AIDS patients, and
CD4 can be viewed as a measure of disease progression. Supposing development
of Pcp was a side-effect of taking Azt, then the DAG given in Figure 2(i) incor-
porates the assumption that Azt and Ap are both randomized, Pcp and CD4 are
responses correlated by underlying health status H , and, further, that Azt does not
affect CD4. The DAG implies the following conditional independence relations
over the observed variables:

Azt ⊥⊥ Ap, CD4, Ap ⊥⊥ Azt, Pcp.

These relations can be derived from the DAG in Figure 2(i) via d-separation
(see [12] or [22]). Also, note that other valid independence statements, such as
Azt ⊥⊥ CD4, can be derived from the two statements given above. The correspond-
ing ancestral graph that represents these same conditional independence relations
is shown in Figure 2(ii). (See Section 2.2 for the definition of an ancestral graph
and Section 2.3 for the Markov property.) However, there is no DAG on the four
observed variables which represents all and only these conditional independence
relations.

As this example suggests, bi-directed edges (≺−�) may arise from unobserved
parents. Likewise, undirected edges (−−−) may arise from children that have been
conditioned on in the selected sub-population from which the sample is taken
(see [4] and [5]). However, bi-directed and undirected edges may also arise in other
contexts, where both marginalization and conditioning are present. Reference [16]
provides a detailed discussion on the interpretation of edges in an ancestral graph.

2.1. Basic graphical notation and terminology. We use the following termi-
nology to describe relations between vertices in a mixed graph G, which may con-
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tain three types of edge.

If

⎧⎪⎪⎨⎪⎪⎩
a−−−b

a≺−�b

a−−�b

a≺−−b

⎫⎪⎪⎬⎪⎪⎭ in G, then a is a

⎧⎪⎪⎨⎪⎪⎩
neighbor
spouse
parent
child

⎫⎪⎪⎬⎪⎪⎭ of b and

⎧⎪⎪⎨⎪⎪⎩
a ∈ neG(b)

a ∈ spG(b)

a ∈ paG(b)

a ∈ chG(b)

⎫⎪⎪⎬⎪⎪⎭ .

(For a formal set-theoretic definition of mixed graphs see [15], Appendix.) Two
vertices that are connected by some edge are said to be adjacent. Note that the
three edge types should be considered as distinct symbols, and that all the mixed
graphs we consider in this paper are simple in that they have at most one edge
between each pair of vertices. If there is an edge a−−�b or a≺−�b, then there is
said to be an arrowhead at b on this edge. Conversely, if there is an edge a−−�b

or a−−−b, then there is said to be a tail at a. We also do not allow a vertex to be
adjacent to itself. We restrict attention to graphs with finite vertex sets.

A path π between two vertices x and y in a simple mixed graph G is a sequence
of distinct vertices π = 〈x, v1, . . . , vk, y〉 such that each vertex in the sequence is
adjacent to its predecessor and its successor; x and y are the endpoints of π ; all
other vertices on the path are nonendpoints of π . If a and b are distinct vertices
on π , then the portion of π between a and b is called a section of π , denoted
π(a, b). Note that we use both π(a, b) and π(b, a) to represent the same section
of π . A path of the form x−−�· · ·−−�y, on which every edge is of the form −−�,
with the arrowheads pointing toward y, is a directed path from x to y. A directed
path from x to y, together with an edge y−−�x ∈ G, is called a directed cycle.

2.2. Definition of ancestral graphs. DAGs are directed graphs in which di-
rected cycles are not permitted. Similarly, certain configurations of edges are not
permitted in ancestral graphs:

DEFINITION 2.1. A graph, which may contain undirected (−−−), directed
(−−�) or bi-directed edges (≺−�) is ancestral if:

(a) there are no directed cycles;
(b) whenever there is an edge x≺−�y, then there is no directed path from x to y,

or from y to x;
(c) if there is an undirected edge x−−−y then x and y have no spouses or parents.

Conditions (a) and (b) may be summarized by saying that, if x and y are joined
by an edge and there is an arrowhead at x, then x is not an ancestor of y; this is
the motivation for the term “ancestral.”

A vertex a is said to be an ancestor of a vertex b if either there is a directed
path a−−�· · ·−−�b from a to b or a = b. Further, if a is an ancestor of b, then b

is said to be a descendant of a.
A vertex a is said to be anterior to a vertex b if a = b or there is a path μ

between a and b, on which every edge is either of the form c−−−d or c−−�d , with
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d between c and b on μ; such a path μ is said to be an anterior path from a to b.
By (c) in Definition 2.1, the configuration −−�c−−− never occurs in an ancestral
graph; hence, every anterior path takes the form

a−−−· · ·−−−c−−�· · ·−−�b,

where a = c and c = b are possible. We use an(x), de(x) and ant(x) to denote,
respectively, the ancestors of x, the descendants of x and the vertices anterior to x.
We apply these definitions disjunctively to sets. For example,

an(X) = {a | a is an ancestor of b for some b ∈ X},
ant(X) = {a | a is anterior to b for some b ∈ X}.

By definition, X ⊆ an(X) ⊆ ant(X). Note that every DAG is an ancestral graph,
since clauses (b) and (c) are trivially satisfied.

In the next lemma and elsewhere, we will make use of the shorthand notation
x?−�y to indicate that either x−−�y or x≺−�y. Similarly, x?−−y indicates that
either x≺−−y or x−−−y, while x?−?y indicates any edge.

LEMMA 2.2. Let a, b, c be vertices in an ancestral graph G with a and c adja-
cent. If a?−�b−−�c, then a?−�c. In particular, if the edge ends at a on the 〈a, b〉
and 〈a, c〉 edges differ, then we have c≺−−a≺−�b; otherwise, either c≺−−a−−�b,
or c≺−�a≺−�b.

We make use of this property in Sections 3.7 and 3.9.

PROOF OF LEMMA 2.2. Suppose, for a contradiction, that there is a tail at c

on the 〈a, c〉 edge. Since, by hypothesis, there is an arrowhead at b on the 〈b, c〉
edge, a−−−c is ruled out by Definition 2.1(c), so a≺−−c. But then G violates
Definition 2.1(b), since a?−�b−−�c−−�a. Hence, a?−�c. The conclusion then
follows from noting that the configuration a−−�b−−�c≺−�a is not ancestral. �

2.3. The m-separation criterion. In an ancestral graph, a nonendpoint vertex v

on a path is said to be a collider if two arrowheads meet at v (i.e., −−�v≺−−,
≺−�v≺−�, ≺−�v≺−− or −−�v≺−�). All other nonendpoint vertices on a path
are noncolliders (i.e., −−−v−−−, −−−v−−�, −−�v−−�, ≺−−v−−�, or ≺−�v−−�).
These definitions of collider and noncollider are direct extensions of the corre-
sponding definitions for DAGs. A path along which every nonendpoint is a col-
lider is called a collider path. A path comprised of 3 vertices is called a triple. In
an ancestral graph, a triple is either a collider or a noncollider; we refer to this as
the type of the triple. Hence, if 〈a, b, c〉 forms a triple, then 〈c, b, a〉 and 〈a, b, c〉
are of the same type.

Reference [22] introduced d-separation, a set of graphical conditions by which
conditional independence relations could be read from a DAG. Reference [15]
applied a natural extension of Pearl’s d-separation criterion, called m-separation,
to ancestral graphs.
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DEFINITION 2.3. Let a and b be distinct vertices in an ancestral graph G, and
let Z be a subset of vertices with a, b /∈ Z. A path π between a and b is said to be
m-connecting given Z if the following hold:

(i) no noncollider on π is in Z; and,
(ii) every collider on π is an ancestor of a vertex in Z.

Two vertices a and b are said to be m-separated given Z in G if there is no
path m-connecting a and b given Z in G. Likewise, sets A and B are m-separated
given Z in G if, for every pair a ∈ A and b ∈ B , a and b are m-separated given Z.

For example, in the ancestral graph in Figure 2(ii), Azt and Ap are m-separated
given CD4. Definition 2.3 is an extension of the original definition of d-separation
for DAGs in that the notions of “collider” and “noncollider” now allow for bi-
directed and undirected edges; the definition of ancestor is unchanged. Further-
more, d-separation is equivalent to m-separation for DAGs. The following result
is useful.

LEMMA 2.4. In an ancestral graph G, if π is a path m-connecting a and b

given Z, c is on π (a 	= c 	= b) and there is an arrowhead at c on the section
π(a, c), then either c ∈ an(Z) or π(c, b) is a directed path from c to b.

PROOF. Suppose the result is false. Let c be the vertex closest to b satisfying
the premise of the lemma but not the conclusion. If c is a collider on π , then, by
definition of m-connection, c ∈ an(Z) which is a contradiction. Let d be the vertex
after c on π(c, b). If c is a noncollider on π then, by Definition 2.1(c), c−−�d . If
d ∈ an(Z) or π(d, b) forms a directed path from d to b, then, clearly, c satisfies
the conclusion of the lemma. But, if d /∈ an(Z) and π(d, b) is not a directed path
to b, then d satisfies the premise of the lemma (and hence, c is not the closest such
vertex to b), again a contradiction. �

2.4. Formal independence models. An independence model over a finite set V

is a set I of ternary relations 〈X,Y | Z〉 where X, Y and Z are disjoint subsets of V ,
while X and Y are not empty; the first two arguments are treated symmetrically, so
that 〈X,Y | Z〉 ∈ I iff 〈Y,X | Z〉 ∈ I. The interpretation of 〈X,Y | Z〉 ∈ I is that X

and Y are independent given Z [see [20], Chapter 2]. The independence model
associated with an ancestral graph, Im(G), is defined via m-separation as follows

Im(G) ≡ {〈X,Y | Z〉|X is m-separated from Y given Z in G}.
The independence relations in Im(G) comprise the global Markov property for G.
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2.5. Probability distributions obeying a formal independence model. We as-
sociate a set of probability distributions with a formal independence model I by
using the finite set V to index a collection of random variables (Xν)ν∈V taking val-
ues in probability spaces (�ν)ν∈V . In all the examples we consider, the probability
spaces are either real finite-dimensional vector spaces or finite discrete sets. For
A ⊆ V , we let �A ≡ ×v∈A(�ν), � ≡ �V and XA ≡ (Xν)ν∈A. We will assume
the existence of regular conditional probability measures throughout.

A distribution P on � is said to obey the independence model I over V if, for
all disjoint sets A,B,Z (A and B are not empty),

〈A,B | Z〉 ∈ I �⇒ A ⊥⊥ B | Z[P ],
where we have used the (⊥⊥) notation of [6], and the usual shorthand that A denotes
both a vertex set and the random variable XA. Thus, a distribution P obeys Im(G)

if, for all disjoint subsets of V , say X, Y , Z (X and Y not empty),

X is m-separated from Y given Z in G �⇒ X ⊥⊥ Y | Z[P ].
Note that, if P obeys I, there still may be independence relations that are not in I

that also hold in P .

2.6. Marginalizing and conditioning. In Section 4.1 of [15] operations of mar-
ginalizing and conditioning are introduced for formal independence models. If P

obeys I and I∗ is the independence model obtained by formally marginalizing over
variables in L and conditioning on variables in S, then P(XV \(L∪S) | XS) obeys
the independence model I∗ [P(XS) a.e.] (see Theorem 7.1 of [15], Appendices A
and B of [10]).

In Section 4.2 of [15], a graphical transformation corresponding to marginaliz-
ing and conditioning is given such that the independence model associated with the
transformed graph is the independence model obtained by marginalizing and con-
ditioning the independence model Im(G) of the original graph (see Theorem 4.18
in [15]). Thus, in particular, if G is a DAG with observed variables O , latent vari-
ables L and selection variables S, then the ancestral graph formed by the graphical
transformation applied to G represents those conditional independence relations
implied to hold among the observed variables O , conditional on the selection vari-
ables [P(XS) a.e.].

3. Markov equivalence. We introduce the following.

DEFINITION 3.1. Two ancestral graphs G1 and G2 with the same vertex set
are said to be Markov equivalent, denoted G1 ∼ G2, if for all disjoint sets A, B , Z

(A, B not empty), A and B are m-separated given Z in G1 if and only if A and B

are m-separated given Z in G2; that is, Im(G1) = Im(G2).

The graphs in Figure 3 are Markov equivalent, as are G1 and G2 in Figure 4. The
set of all ancestral graphs that encode the same set of conditional independence
statements forms a Markov equivalence class.
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FIG. 3. (a) The path 〈a, c, d, b〉 is an example of an inducing path in an ancestral graph. (b) A max-
imal ancestral graph Markov equivalent to (a).

3.1. Markov equivalence for DAGs. References [9] and [22] gave simple
graphical conditions for determining whether two DAGs are Markov equivalent.
A triple of vertices 〈a, b, c〉 is said to be unshielded if a and c are not adjacent and
shielded otherwise. (A triple is defined in Section 2.3.)

THEOREM 3.2. Two DAGs are Markov equivalent if and only if they have the
same adjacencies and the same unshielded colliders.

That two Markov equivalent DAGs have the same adjacencies is a direct conse-
quence of the fact that DAGs satisfy a pairwise Markov property.

PROPOSITION 3.3 ([12], page 50). In a DAG D , if a and b are not adjacent
and b /∈ an(a), then a is d-separated from b by V \ (de(b) ∪ {a}).

This is a consequence of the local Markov property for DAGs [12], applied to b,
which implies that b is d-separated from V \ (pa(b) ∪ de(b)) by pa(b); b /∈ an(a)

implies a /∈ de(b) and pa(b) ⊆ V \ (de(b) ∪ {a}). Note that, by acyclicity, for any
pair a, b, either b /∈ an(a) or a /∈ an(b). Consequently, in a DAG, every miss-
ing edge implies a conditional independence between the nonadjacent vertices. In
general, no such pairwise property holds for ancestral graphs. For example, there
is no set that m-separates a and b in the graph in Figure 3(a). This motivates the
following section.

3.2. Maximal ancestral graphs.

DEFINITION 3.4. An ancestral graph G is said to be maximal if, for every pair
of nonadjacent vertices (a, b), there exists a set Z (a, b /∈ Z) such that a and b are
m-separated conditional on Z.

FIG. 4. G1, G2, G3 have the same adjacencies and the same unshielded colliders, but G1 and G3
are not Markov equivalent. π = 〈x, q, b, y〉 forms a discriminating path for b in every graph.
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These graphs are maximal in the sense that no additional edge may be added to
the graph without changing the associated independence model. In a nonmaximal
ancestral graph two nonadjacent vertices a and b, for which no m-separating set Z

exists, will be joined by an inducing path.

DEFINITION 3.5. An inducing path π between vertices a and b in an ancestral
graph G is a path on which every nonendpoint vertex is both a collider on π and
an ancestor of at least one of the endpoints, a, b.

For a proof, see [15], Corollary 4.3, where the definition given here is termed
a “primitive” inducing path; the concept was introduced by Verma and Pearl [21].
Note that, strictly speaking, an inducing “path” π = 〈a, v1, . . . , vk, b〉 is a collec-
tion of paths: the collider path π , together with directed paths from each vertex vi ,
1 ≤ i ≤ k, to one of the endpoints. The name “inducing” path refers to the fact
that given any set Z (a, b /∈ Z) π is m-connecting given Z. If there is some ver-
tex vi /∈ an(Z), then there is an m-connecting path involving one or more of the
directed paths, otherwise the path π itself is m-connecting.

Figure 3(a) shows an example of a nonmaximal ancestral graph. The path
〈a, c, d, b〉 forms an inducing path between a and b. By adding the bi-directed edge
a≺−�b, the graph is made maximal without changing the associated independence
model (which is empty), as shown in Figure 3(b). As is the case in this example, in
general, if π = 〈a, v1, . . . , vk, b〉 is an inducing path, then only a bi-directed edge
a≺−�b may be added while obeying Definition 2.1. Since there are arrowheads
present at a and b, adding an undirected edge is ruled out by (c); adding a directed
edge would violate (b) since we would either have a≺−�v1−−�· · ·−−�b−−�a or
b≺−�vk−−�· · ·−−�a−−�b.

By [15], Theorem 5.1, for every nonmaximal ancestral graph G there is a unique
maximal ancestral graph Ḡ of which it is a subgraph; in fact, Ḡ = G[∅∅ and thus Ḡ
may be constructed in polynomial time. Consequently, the problem of character-
izing Markov equivalence for ancestral graphs naturally reduces to that of char-
acterizing equivalence in the case where both graphs are maximal. Except where
noted, in the remainder of this paper, we will restrict attention to maximal ancestral
graphs (MAGs).

3.3. Necessary conditions for Markov equivalence.

PROPOSITION 3.6. If G1, G2 are MAGs and G1 ∼ G2, then G1 and G2 have
the same adjacencies and unshielded colliders.

PROOF. Since G1 is maximal, for each pair of nonadjacent vertices (x, y)

in G1, there is some set Z such that x and y are m-separated given Z in G1.
If x and y are adjacent in G2, then they are not m-separated by Z, contradict-
ing G1 ∼ G2. So, adjacencies in G1 are a subset of those in G2. By a symmetric
argument, the adjacencies in G2 are a subset of those in G1.
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Suppose, for a contradiction, that 〈a, b, c〉 is an unshielded collider in G1 but
not in G2. Since G1 is maximal, for some set Z, a and c are m-separated by Z, and
b /∈ Z. If 〈a, b, c〉 is a noncollider in G2 then a and c are m-connected given Z,
which is a contradiction. Hence, every unshielded collider in G1 is present in G2.
The conclusion follows by symmetry. �

An important consequence of this proposition is that if G1 and G2 are maximal
and Markov equivalent, then a sequence of vertices forming a path in G1 also forms
a path in G2 and vice-versa, though the edge-types on these paths may differ. Con-
sequently, when G1 ∼ G2, we will often refer to the path π∗ in G2 corresponding
to a given path π in G1.

A key difference between DAGs and MAGs is that having the same adjacencies
and the same unshielded colliders, though necessary, are no longer sufficient for
Markov equivalence. Consider the graphs shown in Figure 4. G1 and G3 contain
the same adjacencies and the same unshielded colliders, but these two graphs are
not Markov equivalent to each other. In G1, x is m-separated from y given q; but
according to G3, x is m-connected to y given q . In fact, in any graph Markov equiv-
alent to G1, 〈q, b, y〉 forms a shielded collider. (There is only one such graph, G2,
so {G1,G2} forms a Markov equivalence class.) However, in general, it is clearly
not necessary that two graphs have all of the same shielded colliders in order for
them to be Markov equivalent. Much of the remainder of this paper will focus
on identifying the “relevant” set of colliders for judging Markov equivalence. The
main result of this paper follows.

THEOREM 3.7. If G1, G2 are MAGs, then G1 ∼ G2 if and only if G1 and G2
have the same adjacencies and the same colliders with order.

The set of “colliders with order” within a graph is defined recursively in Defin-
ition 3.11 in the next section. The proof concludes in Section 3.10.

3.4. Discriminating paths in maximal ancestral graphs. A discriminating
path, if present in two Markov equivalent MAGs, implies that a certain shielded
triple will be of the same type in both graphs.

DEFINITION 3.8 [18]. A path π = 〈x, q1, . . . , qp, b, y〉 (p ≥ 1) is a discrimi-
nating path for 〈qp, b, y〉 in a MAG G if:

(i) x is not adjacent to y, and,
(ii) every vertex qi (1 ≤ i ≤ p) is a collider on π , and a parent of y.

We will often refer to a section π(x, y) of some path π as a discriminating path
for b, thereby implicitly specifying the triple 〈qp, b, y〉 = π(qp, y). By convention,
we order the endpoints of the discriminating path so it is the second endpoint (in
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this case, y) which is in the discriminated triple. We are free to order x and y in
this way, since, in our notation, π(x, y) and π(y, x) represent the same section
of π (see page 4).

The paths 〈x, q, b, y〉 in G1, G2 and G3 from Figure 4 are examples of dis-
criminating paths for b. Like an inducing path, a discriminating “path” π =
〈x, q1, . . . , qp, b, y〉 is, in fact, a collection of paths

x?−�q1≺−� · · · ≺−�qj−−�y (1 ≤ j ≤ p),

x?−�q1≺−� · · · ≺−�qp≺−?b?−�y,

together with the (additional) requirement that the endpoints x and y are not ad-
jacent. Consider a discriminating path π = 〈x, q1, . . . , qp, b, y〉 in an ancestral
graph G. If a given set Z (x, y /∈ Z) does not contain all vertices qi,1 ≤ i ≤ p, then,
for some j , qj /∈ Z and for all k < j , qk ∈ Z, so that the path 〈x, q1, . . . , qj , y〉
m-connects x and y given Z (because q1, . . . , qj−1 are colliders and qj is a non-
collider); see Figure 5. Hence, if Z m-separates x and y then {q1, . . . , qp} ⊆ Z.
Consequently, if b is a collider on the path π in the graph G and Z m-separates x

and y, then b /∈ Z; otherwise, the path π would m-connect x and y, since every
nonendpoint vertex on π would be a collider and in Z. Conversely, if b is a non-
collider on the path π , then b is a member of any set Z that m-separates x and y.

Thus, whenever 〈x, q1, . . . , qp, b, y〉 forms a discriminating path in G, then b is
a collider [noncollider] if and only if every set Z m-separating x and y is such that
b /∈ Z [b ∈ Z]. It follows that if G∗ ∼ G and the path corresponding to π , say π∗,
also forms a discriminating path for b in G∗, then b is a collider on π∗ (in G∗) if
and only if b is a collider on π (in G). Thus, we have proved the following.

LEMMA 3.9. Let π = 〈x, q1, . . . , qp, b, y〉 be a discriminating path for b in
the MAG G. If G∗ is a MAG, G∗ ∼ G, and the corresponding path π∗ forms a

FIG. 5. The unshielded noncolliders 〈x, q1, y〉 and the sequence of discriminating paths for the
noncolliders 〈qj−1, qj , y〉 (1 < j ≤ p). See Lemma 3.10 and Corollary 3.14.
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discriminating path for b in G∗, then b is a collider on π in G if and only if b is a
collider on π∗ in G∗.

Thus, in general, even though qp and y are adjacent, 〈qp, b, y〉 is “discrimi-
nated” by the path π to be of the same type (collider or noncollider) on the corre-
sponding path in any graph G∗ Markov equivalent to G in which the corresponding
path π∗ also forms a discriminating path. Though discriminating paths can exist in
DAGs, they are not important for determining Markov equivalence, because such
paths always discriminate noncolliders (see G3 in Figure 4). If 〈x, q, b〉 forms a
collider, then since there are no bi-directed edges in a DAG, it follows that b is a
parent of q .

The following lemma gives a sufficient condition under which the path π∗ cor-
responding to a discriminating path π in a MAG G will also be discriminating in
another Markov equivalent MAG G∗.

LEMMA 3.10. If π = 〈x, q1, . . . , qp, b, y〉 is a discriminating path in a
MAG G, then, in any MAG G∗ with G∗ ∼ G in which the qi are colliders on the
corresponding path π∗, the edges between qi and y in G∗ are of the form qi−−�y,
(1 ≤ i ≤ p).

PROOF. The proof proceeds by induction on i. First, consider the 〈q1, y〉 edge
in G∗. If there is an arrowhead at q1, then 〈x, q1, y〉 forms an unshielded collider
in G∗ but an unshielded noncollider in G. But then, by Proposition 3.6, G and G∗ are
not Markov equivalent, which is a contradiction. Since x?−�q1−−?y, but q1−−−y

is ruled out by Definition 2.1(c), we have q1−−�y in G∗.
Suppose that qj−−�y for 1 ≤ j < i in G∗. Then, the path 〈x, q1, . . . , qi, y〉,

i ≤ p forms a discriminating path for qi in both G∗ and G. If qi≺−?y in G∗, then
〈qi−1, qi, y〉 forms a collider in G∗ but a noncollider in G. But then, by Lemma 3.9,
we have G 	∼ G∗, which is a contradiction. Since qi−1≺−�qi−−?y, but qi−−−y is
ruled out by Definition 2.1(c), we have qi−−�y in G∗ as required. �

One might hope that, if G1 ∼ G2, then G1 and G2 would have the same discrim-
inating paths. Unfortunately, this is not the case. It is possible for a path π to be
discriminating in G, and yet the corresponding path π∗ not be discriminating in G∗
even though G ∼ G∗. Hence, the premise in Lemma 3.9 will not hold for all pairs
of Markov equivalent graphs. Thus, the fact that a noncollider is discriminated by
a path in G does not mean that it will be present in every graph Markov equivalent
to G.

Consider the example given by the two graphs in Figure 6(i). Note that q is
a collider on the path 〈x, q, b, y〉 in G1, but not in G2; 〈x, q, b, y〉 forms a dis-
criminating path in G1, but not in G2, though G1 ∼ G2. Hence, although 〈q, b, y〉
is a noncollider in any graph Markov equivalent to G1 in which 〈x, q, b, y〉 forms
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FIG. 6. Two examples of maximal ancestral graphs that are Markov equivalent where 〈x, q, b, y〉
forms a discriminating path in G1, but not in G2.

a discriminating path for b, 〈q, b, y〉 need not be a noncollider in graphs such as G2,
where the corresponding path is not discriminating for b.

However, we conjecture that if a collider is discriminated by some path in G,
then this collider will be present in every graph G∗ Markov equivalent to G, re-
gardless of whether there is a discriminating path for this collider in G∗ or not. For
example, the collider 〈q, b, y〉 in the graph G1, shown in Figure 6(ii), is present in
every graph Markov equivalent to G1, even though the path 〈x, q, b, y〉 does not
always form a discriminating path, as in G2, shown in Figure 6(ii).

The results in this section present a dilemma; it is clear that discriminating paths,
when present in both graphs, lead directly to necessary conditions for Markov
equivalence. However, a discriminating path for a given triple may not be present
in all graphs within a Markov equivalence class. We avoid this problem by iden-
tifying, via a recursive definition, a sub-class of discriminating paths and associ-
ated triples (those “with order”) that are always present, and by showing that, in
conjunction with the conditions in Proposition 3.6, these triples provide sufficient
conditions for determining Markov equivalence.

DEFINITION 3.11. Let Oi (i ≥ 0) be the set of triples of order i in a MAG G,
defined recursively as follows:

Order 0. A triple 〈a, b, c〉 ∈ O0 if a and c are not adjacent.
Order i + 1. A triple 〈a, b, c〉 ∈ Oi+1 if

(1) for all j < i + 1, 〈a, b, c〉 /∈ Oj , and,
(2) there is a discriminating path 〈x, q1, . . . , qp, b, y〉 for b with ei-

ther 〈a, b, c〉 = 〈qp, b, y〉 or 〈a, b, c〉 = 〈y, b, qp〉 and the p col-
liders

〈x, q1, q2〉, . . . , 〈qp−1, qp, b〉 ∈ ⋃
j≤i

Oj .
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If 〈a, b, c〉 ∈ Oi then the triple is said to have order i. If a triple has order i for
some i, then we will say that the triple has order. A discriminating path is said to
have order i if, excepting 〈qp, b, y〉, every collider on the path has order at most
i − 1, and at least one collider has order i − 1.

For example, in every graph in Figure 4, the triple 〈x, q, b〉 has order 0, while
〈q, b, y〉 has order 1. It is important to note that not every triple in a graph will
have an order. For example, in all the graphs in Figure 6, the triples 〈x, q, b〉 and
〈q, b, y〉 do not have order. However, it is possible for a triple without order to be
of the same type (collider or noncollider) in every graph in the Markov equiva-
lence class, such as triple 〈q, b, y〉 in Figure 6(ii). Note that the order (if any) of
a shielded triple is the minimum of the orders of all discriminating paths (with
order) for that triple.

We now show that a necessary condition for two graphs to be Markov equivalent
is that they have the same colliders with order.

PROPOSITION 3.12. If 〈a, b, c〉 has order r in a MAG G, then 〈a, b, c〉 has
order r in any MAG G∗, with G∗ ∼ G, and, further, 〈a, b, c〉 is a collider in G if and
only if 〈a, b, c〉 is a collider in G∗.

PROOF. The proof is by induction on r , the order of 〈a, b, c〉. For r = 0, the
result follows from Proposition 3.6. For r > 0, by Definition 3.11, there exists a
discriminating path π = 〈q0, . . . , qp = a, b, c〉 or 〈q0, . . . , qp = c, b, a〉 in G such
that, with the possible exception of 〈a, b, c〉, every other triple on π is a collider
and has order less than r . By the induction hypothesis, in G∗ these triples have the
same order as in G and also form colliders. By Lemma 3.10, since the qi ’s (i > 0)
are colliders on the corresponding path π∗ in G∗, qi−−�y (1 ≤ i ≤ p) in G∗. Thus,
π∗ also forms a discriminating path in G∗, and so 〈a, b, c〉 has order at most r in G∗.
However, if 〈a, b, c〉 has order less than r in G∗, then, by the inductive hypothesis
(applied to G∗), 〈a, b, c〉 will have lower order than r in G, contrary to assumption.
Thus, 〈a, b, c〉 has order r in G∗. The result follows by Lemma 3.9. �

LEMMA 3.13. If MAGs G1 and G2 have the same adjacencies and are such
that:

(i) every collider with order in G1 is a collider in G2, and
(ii) every collider with order in G2 is a collider in G1,

then, for all r ≥ 0, 〈a, b, c〉 is a collider [noncollider] with order r in G1 iff 〈a, b, c〉
is a collider [noncollider] with order r in G2.

It will follow from Lemma 3.13 and Theorem 3.7 below that conditions (i)
and (ii), together with the same adjacencies, are sufficient for Markov equivalence.
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PROOF OF LEMMA 3.13. We argue by induction for each order r .
(r = 0). Suppose 〈a, b, c〉 is a triple of order 0 in G1 [G2]. By Definition 3.11,

a and c are not adjacent in G1 [G2]. Hence, a and c are not adjacent in G2 [G1], so
〈a, b, c〉 has order 0 in G2 [G1]. If 〈a, b, c〉 forms a collider in G1 [G2], then, by (i)
[(ii)], it forms a collider (with order 0) in G2 [G1]. Conversely, if 〈a, b, c〉 forms
a noncollider in G1 [G2], then, since it also has order 0 in G2 [G1], by (ii) [(i)],
〈a, b, c〉 cannot be a collider in G2 [G1].

(r > 0). Suppose the result holds for all s < r . If 〈a, b, c〉 is a triple with order r

in G1 [G2], then there is a discriminating path μ = 〈q0, q1, . . . , qp, b, y〉, where
either qp = a and y = c, or qp = c and y = a, and each collider qi (1 ≤ i ≤ p)
on μ has order less than r by Definition 3.11. By the induction hypothesis, each
collider qi is also a collider on the corresponding path μ∗ in G2 [G1] with the same
order as in G1 [G2].

We claim that μ∗ also forms a discriminating path in G2 [G1]. Since we
have q0?−�q1≺−�· · ·≺−�qp≺−?b in G2 [G1], it suffices to show that qj−−�y

(1 ≤ j ≤ p) in G2 [G1] (see Figure 5). Triple 〈q0, q1, y〉 is a noncollider with
order 0 in G1 [G2] because q0 and y are not adjacent. Hence, by the inductive
hypothesis, 〈q0, q1, y〉 is a noncollider (with order 0) in G2 [G1]. Further, by Def-
inition 2.1(c), q1−−�y in G2 [G1], because q0?−�q1. Arguing inductively, assume
that qi−−�y (1 ≤ i < j ) in G2 [G1] so that 〈q0, q1, . . . , qj , y〉 forms a discrimi-
nating path with order at most r for 〈qj−1, qj , y〉 in both graphs. Consequently,
if 〈qj−1, qj , y〉 formed a collider in G2 [G1], then 〈qj−1, qj , y〉 would be a col-
lider with order at most r in G2 [G1] but a noncollider in G1 [G2], contrary to (ii)
[(i)]. Since qj−1?−�qj and 〈qj−1, qj , y〉 forms a noncollider, by Definition 2.1(c),
qj−−�y in G2 [G1].

Hence, μ∗ forms a discriminating path with order at most r in G2 [G1], so
〈a, b, c〉 has order at most r in G2 [G1]. However, if 〈a, b, c〉 has order less than r

in G2 [G1], then, by the inductive hypothesis, 〈a, b, c〉 will have lower order than r

in G1 [G2], contrary to assumption. Thus, 〈a, b, c〉 has order r in both graphs.
Now, if 〈a, b, c〉 is a collider in G1 [G2], then, by (i) [(ii)], 〈a, b, c〉 is also a col-

lider in G2 [G1]. Conversely, if 〈a, b, c〉 is a noncollider in G1 [G2], then it cannot
be a collider in G2 [G1] as that would violate (ii) [(i)]. �

COROLLARY 3.14. If MAGs G1 and G2 have the same adjacencies and
〈a, b, c〉 is a collider with order in G1 iff 〈a, b, c〉 is a collider with order in G2,
then 〈a, b, c〉 is a noncollider with order in G1 iff 〈a, b, c〉 is a noncollider with
order in G2.

PROOF. This follows directly from Lemma 3.13. �

Though Proposition 3.12 appears similar to Corollary 3.14, the premise in the
former assumes the two graphs are Markov equivalent, while in the latter it does
not.
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3.5. Discriminating sections of a path. It follows from Proposition 3.12 that
having the same colliders with order is a necessary condition for Markov equiva-
lence. As a step toward showing that this condition (together with the same adja-
cencies) is sufficient, we will show that every triple on a “minimal” m-connecting
path has order (see Section 3.6). We first consider, in general, the relationships
between different sections of a given path, where the endpoints of each section are
distinguished.

Let π be a path with endpoints l, r . Let Sπ = {〈xi, bi〉 | 1 ≤ i ≤ m} be a set of
ordered pairs of vertices on π , such that: (a) xi = bj implies i 	= j , and (b) the bi

are distinct and not endpoints of π . Define a relation on the bi in Sπ : bs ≺π bt

if bs is a nonendpoint vertex on the section π(xt , bt ).

LEMMA 3.15. With Sπ and ≺π as defined, if b1 ≺π · · · ≺π bm ≺π b1 then
there exist bs, bt such that bs ≺π bt ≺π bs , bs is on π(l, xs), and bt is on π(xt , r).

PROOF. It follows, from (b), that for a given b there is at most one x

such that 〈x, b〉 ∈ Sπ . Let L = {b | 〈x, b〉 ∈ Sπ , b is on π(l, x)}; similarly, let
R = {b | 〈x, b〉 ∈ Sπ , b is on π(x, r)} (see Figure 7). R ∩ L = ∅ by (a) and (b).
L 	= ∅, because if bi, bj ∈ R and bi ≺π bj then bj is closer to r than bi on π ,
but if b1, . . . , bp ∈ R, then b1 ≺π · · · ≺π bp ≺π b1 implies that b1 is closer to r

than b1, a contradiction. Similarly, R 	= ∅. Let bs be the vertex in L that is clos-
est to r . Now, define B = {b | 〈x, b〉 ∈ Sπ , b ≺π bs}; B 	= ∅, because bs∗ ≺π bs

where s∗ = s − 1(modm). By definition of bs , B ⊆ R. Let X = {x | for some b ∈
B, 〈x, b〉 ∈ Sπ }. Let xt be the vertex in X that is closest to l, and bt be a corre-
sponding vertex in B , so that 〈xt , bt 〉 ∈ Sπ . It is sufficient to prove that xt is on
π(l, bs), but xt 	= bs , since then bs ≺π bt ≺π bs as required (see Figure 7). Sup-
pose, for a contradiction, that xt is on π(bs, r). Let bk be the vertex in B that

FIG. 7. Illustration of the proof of Lemma 3.15. Lines indicate sections π(xi , bi ); filled circles are
bi ’s, open circles are xi ’s. Indicated are those sections for which the b endpoint (filled circle) belongs
to L, R and B . See proof for further explanation.
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is closest to bs [bk 	= bs by (b)]. Since, by hypothesis, xt is on π(bs, r), it fol-
lows by definition of xt , that xk is also on π(bs, r). By hypothesis, bk∗ ≺π bk with
k∗ = k −1(modm). However, bk∗ /∈ L, since, by definition of bs , any vertex bi ∈ L

is on π(l, bs). If bk∗ ∈ R then bk∗ ∈ B because xk and bk are both on π(bs, xs).
But then bk is not the vertex in B closest to bs on π , which is a contradiction. �

We now consider the special case of the development above, in which

Sπ = {〈xi, bi〉 | for some yi,π(xi, yi) is a discriminating path for bi}.(3.1)

In this context, by definition of a discriminating path, if bi ≺π bj then bi is a
collider on the discriminating path π(xj , yj ) for bj , with xj , bi, bj and yj distinct
vertices; bj and yj are adjacent (by the naming convention on page 10); both bi

and bj are in shielded triples on π . That Sπ still satisfies (a) and (b) follows from
the definition of a discriminating path together with the following.

PROPOSITION 3.16. In a MAG G, if 〈a, b, c〉 is a section of a path π be-
tween x and y, and a and c are adjacent in G, then there is at most one vertex v

on π such that either π(v, c) or π(v, a) forms a discriminating path for b.

PROOF. If there is some discriminating path for 〈a, b, c〉 then a is either a
parent or child of c. In the former case, v is uniquely determined as the closest
vertex to a on π(x, c) that is not a parent of c. The other case is symmetric: v is
the vertex closest to c on π(a, y) that is not a parent of a. �

From here on, Sπ and ≺π will refer to (3.1). We now prove that, as the sym-
bol ≺π suggests, this relation between discriminating paths is acyclic.

COROLLARY 3.17. On a path π in a MAG G, with Sπ given by (3.1), there
is no sequence of distinct vertices 〈b1, b2, . . . , bk〉, k > 1, such that bi ≺π bi+1,
1 ≤ i < k, and bk ≺π b1.

This acyclic property is central to establishing that every triple on a “minimal”
m-connecting path has order; see Lemma 3.21. Note, however, that the relation ≺π

is not transitive in general.

PROOF OF COROLLARY 3.17. By Lemma 3.15, it is sufficient to prove that
there is no pair of distinct vertices {b1, b2} such that b1 ≺π b2 and b2 ≺π b1. For a
contradiction, suppose that there is such a pair {b1, b2} (see Figure 8).

By maximality, x1 	= y2 and x2 	= y1; otherwise, π(x1, y1) or π(x2, y2), respec-
tively, would form an inducing path with nonadjacent endpoints. We now reach
a contradiction because (i) y2 lies on π(x1, y1) and, hence, is a parent of y1, but
(ii) y1 lies on π(x2, y2) and, hence, is a parent of y2. �
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FIG. 8. Diagram for proof of Corollary 3.17.

3.6. Minimal m-connecting paths. We next study the structure of “minimal”
m-connecting paths and examine which nonconsecutive vertices on such a path
may be adjacent.

DEFINITION 3.18. In a MAG, a path μ, m-connecting x and y given Z, will
be said to be minimal if no order preserving (proper) subsequence of the vertices
on μ forms an m-connecting path between x and y given Z.

It is simple to see that if there is some path m-connecting x and y given Z, then
there is a minimal path which m-connects x and y given Z. If μ = 〈v1, . . . , vp〉 is a
path, then we will refer to any pair of vertices (vi , vj ) for which |i − j | > 1 as non-
consecutive vertices on μ. As the next lemma shows, on a minimal m-connecting
path, only certain nonconsecutive vertices may be adjacent.

LEMMA 3.19. Let π be a minimal m-connecting path between a and b

given Z in the MAG G. If i and j are two nonconsecutive vertices on π that
are adjacent in G (a = i or j = b are possible) then exactly one of i and j is:
(i) a collider on π , (ii) in Z and (iii) a parent of the other vertex.

Note that the existence of nonconsecutive vertices on a minimal m-connecting
path implies that there are at least four vertices on the path. Lemma 3.19 is illus-
trated in Figure 9.

PROOF OF LEMMA 3.19. Suppose that j is on π(i, b); the other case is sym-
metric. Let η be the path formed by concatenating π(a, i) with the 〈i, j〉 edge and
π(j, b) (omit the relevant section if i = a or j = b). Define the status of a vertex
to be one of either an endpoint, a collider or a noncollider.

FIG. 9. Example of a minimal m-connecting path (indicated by thicker edges). Here, Z is the set
of colliders on the path.
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Suppose i has the same status along η as it does along π , and similarly so
for j . Then, clearly, both π and η are m-connecting given Z, but η is shorter
than π , thereby violating the minimality of π . Hence, at least one of i and j has
a status on η different from that on π . Without loss of generality, suppose it is i;
again, the other case is symmetric. i is not an endpoint, because π and η have the
same endpoints. It follows that either i is a collider on η and i /∈ an(Z), or i is a
noncollider on η and i ∈ Z.

Suppose the former, so i /∈ an(Z), i is a collider along η, but i is a noncollider
along π . Since i is a collider on η, and π(a, i) = η(a, i), there is an arrowhead
at i on π(a, i). Then by Lemma 2.4, since i /∈ an(Z), π(i, b) forms a directed path
from i to b. But j is on π(i, b), and i is a collider on η; hence, j ?−�i−−�· · ·−−�j

which violates Definition 2.1(a), (b).
Hence, i ∈ Z, i is a noncollider along η, but i is a collider along π . Thus, i−−?j

in G. Finally, the 〈i, j 〉 edge cannot be undirected because a?−? · · · ?−�i−−−j

violates Definition 2.1(c); hence, i−−�j . �

3.7. Discriminating paths on minimal m-connecting paths. The next lemma
shows that, if a triple 〈d, b, y〉 on a minimal m-connecting path π is shielded, then
a subsequence of the path forms a discriminating path for b. Thus, in the notation
of Section 3.5 on a minimal m-connecting path in a MAG, the following holds:

〈d, b, y〉 a shielded triple on π �⇒ there exists a nonendpoint vertex a

on π such that a ≺π b.

LEMMA 3.20. Let π be a minimal m-connecting path between u and v

given Z in the MAG G. If 〈x, b, y〉 is a triple along π and x is adjacent to y,
then π contains a unique section that forms a discriminating path for b.

It follows, from Lemma 3.19, that, with the possible exception of b, every
nonendpoint vertex on the section forming a discriminating path is in Z.

PROOF OF LEMMA 3.20. Suppose, for a contradiction, that no such unique
section exists. By Lemma 3.19, at least one of x and y is: (i) a collider along π ,
(ii) a vertex in Z and (iii) a parent of the other vertex. Without loss of generality,
suppose x is the vertex satisfying (i), (ii) and (iii). Since x is a collider on π , we
have x≺−?b in G. Further, since b?−�x−−�y?−?b in G, by Lemma 2.2 we have
b?−�y, as shown in Figure 10.

Let q0 ≡ x and let i be such that qi is the vertex nearest b on π(u, b) that does
not satisfy at least one of the conditions (i), (ii) and (iii) satisfied by x. Such a
vertex exists because u is an endpoint and thus does not satisfy (i). Hence, qi is a
vertex on π(u, q0) but qi 	= q0.

We now show that qi is not adjacent to y. Suppose otherwise. Since qi?−�
qi−1−−�y, by Lemma 2.2, we have qi?−�y. By Lemma 3.19, (i), (ii) and (iii) are
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FIG. 10. The path π from u to v contains a unique section forming a discriminating path for b

in G. See Lemma 3.20 for further explanation.

satisfied so qi is a collider on π (hence, qi 	= u), qi ∈ Z and qi−−�y. But this
contradicts the definition of qi .

Hence, π(qi, y) forms a discriminating path for b. Uniqueness follows from
Proposition 3.16. �

3.8. Triples on minimal m-connecting paths. We now prove that, in a MAG,
G every triple on a minimal m-connecting path has an order, and thus, by Proposi-
tion 3.12, is of the same type in every MAG G∗ with G∗ ∼ G.

LEMMA 3.21. If 〈a, b, c〉 is a triple on a minimal m-connecting path π be-
tween x and y given Z in the MAG G, then 〈a, b, c〉 has order.

PROOF. Suppose, for a contradiction, that 〈a, b, c〉 does not have order. Then,
a and c are adjacent; otherwise, 〈a, b, c〉 is unshielded, and, hence, is of order 0.
It follows from Lemma 3.20 that there is a unique section of π which forms a
discriminating path for 〈a, b, c〉. If every triple on this discriminating path has or-
der, then, by definition, 〈a, b, c〉 has order. Hence, there is at least one triple which
does not have order, call this 〈a1, b1, c1〉. As before, it follows that a1 and c1 are
adjacent, and, hence, there is a unique section of π which forms a discriminating
path for 〈a1, b1, c1〉. Arguing in this way, we can construct an infinite sequence of
shielded triples on π , 〈ai, bi, ci〉 (i ∈ N), none of which have order and such that

· · · ≺π bi ≺π · · · ≺π b1 ≺π b.

However, by Corollary 3.17 all of the bi ’s are distinct, which is a contradiction
since π is finite. Thus, every triple on π has an order. �

Note that this argument shows that every triple on a minimal m-connecting
path π has some order and also that this order is bounded by the number of ver-
tices on π ; see page 28. Though we will at no stage need to do so, note that to
determine which order a given triple on π has, it might be necessary to consider
other discriminating paths for the given triple, not merely those which are sections
of π .

COROLLARY 3.22. Suppose that G1 and G2 are MAGs with the same adja-
cencies and the same colliders with order. If π is a minimal m-connecting path be-
tween x and y given Z in G1, then 〈a, b, c〉 is a collider [noncollider] on π in G1 if
and only if 〈a, b, c〉 is a collider [noncollider] on the corresponding path π∗ in G2.
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PROOF. This follows directly from Corollary 3.14 and Lemma 3.21. �

3.9. Directed paths from colliders to vertices in Z. In this section, we estab-
lish that if there is an m-connecting path π̃ between x and y given Z in G, then we
can always find a path π m-connecting x and y given Z in G such that, if c is a
collider on π , then c is an ancestor of a vertex in Z in any graph G∗ which contains
the same adjacencies and the same colliders with order as G.

Let |π | be the length of a path (i.e., the number of edges on π ). Let D(b,Z) be
the set of directed paths from b to some vertex in Z. δ̃ ∈ D(b,Z) is said to be a
minimal directed path with respect to Z if |δ̃| = minδ∈D(b,Z) |δ|. Let

φ(b,Z) =
{

0, if b ∈ Z,
min

δ∈D(b,Z)
|δ|, if b ∈ an(Z) \ Z.

If π m-connects given Z, then let

φ(π ,Z) = ∑
b a collider on π

φ(b,Z).

We now construct an ordering on the set of paths m-connecting given Z:

π1 �Z π2 ⇐⇒ |π1| < |π2| or

|π1| = |π2| and φ(π1,Z) < φ(π2,Z).

DEFINITION 3.23. In an ancestral graph, an m-connecting path π between x

and y given Z is said to be a closest m-connecting path to Z if there is no other
path π∗ m-connecting x and y given Z such that π∗ �Z π .

PROPOSITION 3.24. In an ancestral graph, if there is an m-connecting path π̃

between x and y given Z, then there is an m-connecting path π that is closest to Z.
Every such path is also a minimal m-connecting path given Z.

PROOF. Existence of a closest path π is immediate since �Z is an ordering on
the finite and nonempty (by hypothesis) set of paths m-connecting x and y given Z.
Minimality follows, because if there were an m-connecting path π∗ formed from
an order preserving (proper) subsequence of the vertices on π then |π∗| < |π |, so
π∗ �Z π , which is a contradiction. �

LEMMA 3.25. If, in a MAG G :π = 〈x, . . . , y〉 is a closest m-connecting path
to Z; 〈a1, b, c1〉 is a collider on π ; and δ = 〈b, b∗, . . . , z〉 is a minimal directed
path with respect to Z from b to some z ∈ Z; then at least one of the noncolliders
a1?−�b−−�b∗ or b∗≺−−b≺−?c1 has order in G.



MARKOV EQUIVALENCE FOR ANCESTRAL GRAPHS 2829

FIG. 11. Diagram for the proof of Lemma 3.25. Either 〈x, . . . , am−1, b∗, cn−1, . . . , y〉 is an
m-connecting path closer to Z, or at least one of the noncolliders 〈a1, b, b∗〉 and 〈c1, b, b∗〉 has
order. (Note that a0 = b = c0 and m,n > 0 by construction.)

PROOF. By Proposition 3.24, π is a minimal m-connecting path between x

and y given Z. Now, suppose for a contradiction that neither triple a1?−�b−−�b∗
nor b∗≺−−b≺−?c1 has order. Then, a1 is adjacent to b∗ and by Lemma 2.2 we have
a1?−�b∗. Similarly, c1?−�b∗.

Define a0 = b, and let am be the vertex along π(x, b) that is furthest from b

such that for all k, 0 ≤ k < m: (i) ak is a collider on π , and (ii) ak−−�b∗ (see
Figure 11). Such a vertex am exists because a0 = b satisfies the conditions for ak ;
note that m > 0. Then, the following hold:

(1) am is adjacent to b∗. Otherwise for m = 1, 〈a1, b, b∗〉 is unshielded; or for m >

1, 〈am, . . . , a1, b, b∗〉 forms a discriminating path with order for 〈a1, b, b∗〉 (by
Lemma 3.21). In either case, 〈a1, b, b∗〉 would have order which is a contra-
diction.

(2) Since am?−�am−1−−�b∗, by Lemma 2.2, we have that am?−�b∗ is in G.
(3) If am 	= x, then triples 〈am+1, am, am−1〉 and 〈am+1, am, b∗〉 are of the

same type (collider/noncollider) where am+1 is the predecessor of am along
π(x, am): if am≺−�b∗ then, since am?−�am−1−−�b∗, by Lemma 2.2 we
have that am≺−�am−1. If am−−�b∗, then by the definition of am, triple
〈am+1, am, am−1〉 is not a collider.

Define c0 = b. Let cn be the vertex along π(b, y) that is furthest from b such
that, for all j , 0 ≤ j < n: (i) cj is a collider on π , and (ii) cj−−�b∗. By symmetric
arguments to (1), (2) and (3), we may show that cn?−�b∗, and either cn = y or the
triples 〈cn−1, cn, cn+1〉 and 〈b∗, cn, cn+1〉 are of the same type, where cn+1 is the
successor of cn on the path π(b, y) (see Figure 11).

Let η be the path formed by concatenating the section π(x, am) to am?−�b∗
≺−?cn and π(cn, y) (if x = am, or cn = y then omit the relevant sections). η forms
an m-connecting path given Z because am and cn have the same status on η as they
have on π , and b∗ is an ancestor of Z. However, since |η| ≤ |π | and φ(η,Z) <

φ(π ,Z), η �Z π , which is a contradiction. �

LEMMA 3.26. In a MAG G if δ is a directed path from v to z ∈ Z and δ is
minimal with respect to Z, then every noncollider on δ is unshielded (= order 0).

PROOF. Suppose that 〈a, b, c〉 is a noncollider on δ and a−−�b−−�c. If a

and c are adjacent then, by Definition 2.1(a), (b), we have a−−�c, which contra-
dicts the minimality of δ, with respect to Z. �
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Though not needed, in fact no nonconsecutive vertices on δ are adjacent.

COROLLARY 3.27. Let G1, G2 be MAGs with the same adjacencies, and the
same colliders with order. If in G1 :π m-connects x and y given Z; π is a closest
path to Z; 〈a, b, c〉 is a collider on π ; and δ forms a directed path from b to a
vertex z ∈ Z that is minimal with respect to Z; then the corresponding path δ∗ is a
directed path in G2.

PROOF. By Proposition 3.24, π is a minimal m-connecting path. Let δ = 〈b =
d0, . . . , dn = z〉. The proof is by induction on the edges 〈di, di+1〉 of δ∗.

Base case (i = 0). Since 〈a, b, c〉 is a collider on π in G1, and π is minimal, by
Corollary 3.22, 〈a, b, c〉 is also a collider in G2. By Lemma 3.25 at least one of the
noncolliders, 〈a, b, d1〉, 〈c, b, d1〉 has order in G1, and by Corollary 3.14 is also a
noncollider in G2. It follows by Definition 2.1(c) that b−−�d1 in G2 as required (so
in fact 〈a, b, d1〉 and 〈d1, b, c〉 are both noncolliders in G2).

Inductive case (1 ≤ i < n). Assume that the section δ∗(b, di) forms a directed
path from b to di in G2. By Lemma 3.26 the noncollider 〈di−1, di, di+1〉 has order,
and hence is a noncollider in G2. By the induction hypothesis we have di−1−−�di

in G2; hence, by Definition 2.1(c), di−−�di+1 in G2, as required. �

3.10. Characterization of Markov equivalence. We now prove the main result
of this paper, Theorem 3.7.

PROOF OF THEOREM 3.7. (if ) Since G1 and G2 have the same adjacencies
and colliders with order, by Corollary 3.14, G1 and G2 also have the same non-
colliders with order. By definition, X is m-separated from Y given Z if and only
if for all x ∈ X, y ∈ Y , x is m-separated from y given Z. Thus, it is sufficient
to show that x and y are m-connected given Z in G1 if and only if x and y are
m-connected given Z in G2. If x and y are m-connected given Z in G1, then, by
Proposition 3.24, there exists a path π which m-connects x and y given Z, is min-
imal and is closest to Z in G1. By Corollary 3.22 every triple on π is of the same
type on the corresponding path π∗ in G2. Hence, every noncollider on π∗ is not
in Z. Since π is m-connecting, every collider b on π is an ancestor of Z; hence,
if b /∈ Z then there exists a directed path δb from b to some vertex zb ∈ Z that is
minimal with respect to Z. By Corollary 3.27, the corresponding path δ∗

b forms a
directed path from b to zb in G2. Thus, every collider on π∗ is an ancestor of Z

in G2 and π∗ m-connects x and y given Z in G2. Likewise, it is easy to see (by
symmetry) that an m-connecting path in G2 implies that there is an m-connecting
path in G1. Thus, G1 and G2 are Markov equivalent.

(only if ) Conversely, if G1 and G2 are Markov equivalent, then, by Proposi-
tion 3.6, they have the same adjacencies, and, by Proposition 3.12, they have the
same colliders with order. �
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COROLLARY 3.28. Two ancestral graphs G1 and G2 are Markov equivalent
iff the corresponding unique MAGs Ḡ1 and Ḡ2 of which G1 and G2 are, respectively,
subgraphs and to which they are Markov equivalent, satisfy the conditions given in
Theorem 3.7.

4. Related work and computational complexity. Two prior characteriza-
tions of Markov equivalence for MAGs have been given in the literature.

THEOREM 4.1 [19]. Two MAGs G1 and G2 are Markov equivalent if and only
if:

(i) G1 and G2 have the same adjacencies;
(ii) G1 and G2 have the same unshielded colliders; and

(iii) if π forms a discriminating path for b in G1 and G2, then b is a collider
on π in G1 if and only if it is a collider on π in G2.

More recently, [24] gave the following elegant characterization.

THEOREM 4.2 [24]. Two MAGs G1 and G2 are Markov equivalent if and only
if G1 and G2 have the same minimal collider paths.

Here, a collider path ν = 〈v1, . . . , vn〉 is minimal if there is no order preserving
subsequence 〈v1 = vi1, . . . , vik = vn〉, which forms a collider path (single edges
are trivially minimal collider paths).

However, neither of these characterizations lead to a polynomial time algorithm.
Clause (iii) in Theorem 4.1 requires us to verify that, if there is a discriminating
path in both G1 and G2, then the triple discriminated is a collider or noncollider
in both. Thus, in principle, we need to find every discriminating path for a given
triple; otherwise, it is possible that, although a triple is discriminated by some path
in G1 and some path in G2, in fact there is no discriminating path that is common
to both graphs. Since the number of such paths may grow at super-polynomial
rate, finding them all would not be feasible in polynomial-time. (Reference [19]
outlined a method for checking Markov equivalence using the conditions of The-
orem 3.7, rather than Theorem 4.1, though the paper only proves the latter result.
The computational complexity claim in that paper was also incorrect.)

Similarly, it is not hard to show that the number of minimal collider paths in a
graph may grow super-polynomially with the number of vertices so the conditions
in Theorem 4.2 cannot, in general, be verified in polynomial time (see supplemen-
tary material [1]).

In the Appendix, we provide an algorithm that verifies the conditions in Theo-
rem 3.7 in O(ne4) calculations, where the graphs have n vertices, and e edges. For
a general, not necessarily maximal, ancestral graph G the unique MAG Ḡ of which
it is a subgraph and to which it is Markov equivalent may be found in O(n5)



2832 R. A. ALI, T. S. RICHARDSON AND P. SPIRTES

time; thus, the conditions in Corollary 3.28 may also be checked in polynomial
time.

4.1. Summary graphs and MC graphs. Summary graphs, described in Cox
and Wermuth [5], represent another approach to representing the independence
structure of DAGs under marginalizing and conditioning. For a given summary
graph H , it is always possible to construct a DAG D(H) with additional variables
such that the DAG is Markov equivalent to H after marginalizing and condition-
ing. Consequently, it is always possible to transform a summary graph into an
ancestral graph via the graphical transformation mentioned in Section 2.6. Hence,
via this transformation, the results in this paper also provide an algorithm for de-
termining the Markov equivalence of two summary graphs. We note that in general
it may not be possible to recover the summary graph from the corresponding an-
cestral graph (see [15], Section 9).

Koster introduced another class of graphs, called MC-graphs, together with an
operation of marginalizing and conditioning (see [10, 11]). For MC-graphs it is
not always the case that there exists some DAG which is Markov equivalent to
the MC-graph under marginalizing and conditioning. However, for the subclass of
MC-graphs which are Markov equivalent to DAGs with additional variables under
marginalizing and conditioning, we may again apply the results of this paper to
establish Markov equivalence.

APPENDIX

We introduce the following notation:

Adj(G) = {〈x, y〉 | x and y are adjacent in G},
Col(G) = {〈x, y, z〉 | x?−�y≺−?z in G},

OCol(G) = {〈x, y, z〉 | 〈x, y, z〉 ∈ Col(G) and 〈x, y, z〉 has order},
ICol(G) = ⋂

G∗∼G

Col(G∗),

which are, respectively, the set of adjacencies, colliders, colliders with order in G
and colliders common to all graphs in the Markov equivalence class containing G.
In general, we have OCol(G) ⊆ ICol(G) ⊆ Col(G).

The equivalence algorithm is described in Tables A.1–A.3. The main procedure,
Triples(G), identifies a superset of the colliders with order as follows. A discrimi-
nating path π = 〈x, z, . . . , a, b, c〉 for the collider 〈a, b, c〉 (where z may equal a)
that is in Tk divides naturally into three parts. First, there is a collider 〈a, b, c〉,
which is not in Tk−1. Second, there is a collider path γ = 〈z ≡ v1≺−�· · ·≺−�vj ≡
b〉, where v1, . . . , vj ∈ pa(c), and the triples 〈vi−1, vi, vi+1〉 ∈ Tk−1. The third part
is an edge x?−�z, where x is not adjacent to c and for some y, x?−�z≺−�y ∈
Tk−1, and z≺−�y is on the path γ . Line 5 of Triples(G) locates candidate triples
〈a, b, c〉. Steps 6, 7, and 8 search for collider paths γ . Note that “vertices” (V)
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TABLE A.1
The algorithm Reachable(D, w)

Inputs: a directed graph D(V,E); an element w ∈ V

Output: a set S of elements connected to w in D

1 S0 = ∅; S1 = {w}; p = 1;
2 repeat
3 Sp+1 = Sp ∪ {w2|w1 ∈ Sp \ Sp−1 and 〈w1,w2〉 ∈ E};
4 p = p + 1;
5 until Sp = Sp−1;
6 return S = Sp .

and “edges” (E) in D correspond to, respectively, edges and colliders in G. Finally,
lines 9 and 10 search for a vertex satisfying the conditions on x. For further insight
into the operation of the algorithm, we refer the reader to the proof of correctness.

PROPOSITION A.1. The algorithm Triples(G) returns a set T satisfying
(a) OCol(G) ⊆ T and (b) T ⊆ ICol(G).

PROOF OF (a). The proof is by induction on the order of the collider. By
construction, T0 is the set of unshielded colliders in G, which is the set of col-
liders of order 0. Our induction hypothesis is that all colliders with order less
than k > 0 are contained in Tk−1, at line 11. If 〈a, b, c〉 is a collider with or-
der k, then either a−−�c or c−−�a. Suppose the former. Then, there exists a dis-

TABLE A.2
The algorithm Triples(G)

Input: a maximal ancestral graph G
Output: a set of triples T such that OCol(G) ⊆ T ⊆ ICol(G)

1 T0 = {〈a, b, c〉|〈a, b, c〉 ∈ Col(G), (a, c) /∈ Adj(G)};
2 k = 0;
3 repeat
4 k = k + 1; Tk = Tk−1;
5 for each 〈a, b, c〉 ∈ Col(G) \ Tk−1 with a ∈ spG(b) ∩ paG(c):
6 V = {〈t, u〉|t, u ∈ pa(c), t≺−�u in G} ∪ {〈b, a〉};
7 E = {〈〈t, u〉, 〈u,v〉〉|〈t, u, v〉 ∈ Tk−1, 〈t, u〉, 〈u,v〉 ∈ V};
8 S = Reachable((V,E), 〈b, a〉);
9 X = {x | ∃y, z, 〈z, y, x〉 ∈ Tk−1, 〈z, y〉 ∈ S};

10 if X \ {v | (v, c) ∈ Adj(G)} 	= ∅

then Tk = Tk ∪ {〈a, b, c〉, 〈c, b, a〉};
11 until Tk = Tk−1;
12 return T = Tk .
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TABLE A.3
The algorithm Equivalent(G1, G2)

Inputs: two maximal ancestral graphs G1 and G2
Output: a Boolean variable indicating whether Im(G1) = Im(G2)

1 if Adj(G1) 	= Adj(G2) return FALSE;
2 if Triples(G1) \ Col(G2) 	= ∅ return FALSE;
3 if Triples(G2) \ Col(G1) 	= ∅ return FALSE;
4 return TRUE.

criminating path 〈x = q0, q1, . . . , qp = a, qp+1 = b, c〉 on which 〈qj−1, qj , qj+1〉
(1 ≤ j ≤ p) are colliders of order less than k. By definition of a discriminating
path, 〈qp−1, a, b〉 is a collider, as is 〈a, b, c〉, so a ∈ sp(b). Thus, 〈a, b, c〉 sat-
isfies the conditions at line 5. In addition, for 1 ≤ j ≤ p − 1, qj , qj+1 ∈ pa(c)
and qj≺−�qj+1, so 〈qj+1, qj 〉 ∈ V. In addition, 〈qp+1, qp〉 = 〈b, a〉 ∈ V by
construction. Since for 1 < j ≤ p, 〈qj−1, qj , qj+1〉 is a collider of order less
than k, it follows by the induction hypothesis that 〈qj−1, qj , qj+1〉 ∈ Tk−1. Thus,
〈〈qj+1, qj 〉, 〈qj , qj−1〉〉 ∈ E. Consequently, 〈q2, q1〉 ∈ S at line 8, since the se-
quence 〈〈b = qp+1, a = qp〉, 〈qp, qp−1〉, . . . , 〈q2, q1〉〉 is found (recursively) by
calls to Reachable. Since 〈q2, q1, x = q0〉 ∈ Tk−1, it follows that x ∈ X. Finally,
by definition of a discriminating path, x is not adjacent to c. Thus, the condition in
the if clause at line 10 holds, so if 〈a, b, c〉 /∈ Tk−1 then it is added to Tk .

PROOF OF (b). The proof is by induction on k in the algorithm. We show
that Tk ⊆ ICol(G). When k = 0, T0 is the set of unshielded colliders, so the
result follows from Proposition 3.6. For k > 0 our induction hypothesis is that
Tk−1 ⊆ ICol(G). If 〈a, b, c〉 ∈ Tk \ Tk−1, then either 〈a, b, c〉 or 〈c, b, a〉 (but
not both) satisfies the condition at line 5. Suppose the former; the other case
is symmetric. There exists a triple 〈x, y, z〉 ∈ Tk−1, with 〈y, z〉 ∈ S, and x not
adjacent to c. Since 〈y, z〉 ∈ S, and x ∈ X, there exists a sequence of edges,
s ≡ 〈〈b, a〉, . . . , 〈z, y〉, 〈y, x〉〉 such that each consecutive pair of edges in s forms
a collider in Tk−1, all vertices other than b and x are parents of c, and all edges
other than possibly 〈y, x〉 are bi-directed in G. Note that it follows from the induc-
tive hypothesis that all of the colliders formed by successive pairs of edges in s

are present in any graph G∗ Markov equivalent to G. We have thus established
that, with the possible exception of the first and last edge in the sequence, all these
edges are bi-directed in every graph in the Markov equivalence class. However,
the sequence of edges in s may not form a path because the associated sequence of
vertices may contain repeats. Removing loops leads to a unique path π with end-
points b and x. By construction, b and x only occur in the edges 〈b, a〉 and 〈y, x〉,
respectively (since b, x are not parents of c, while all other vertices in the sequence
are); consequently, these edges are on π . Hence, π forms a collider path from x
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to b, and all of the colliders on this path are present in every graph in the Markov
equivalence class. By Lemma 3.10, π forms a discriminating path in every graph
Markov equivalent to G. Thus, by Lemma 3.9, 〈a, b, c〉 ∈ ICol(G) as required. �

Our proof establishes that all triples in Triples(G) are colliders present in
every graph in the Markov equivalence class containing G, which might include
some colliders that do not have order. If we were able to identify any triples in
Triples(G) \ OCol(G) without increasing the complexity of the algorithm, then
the algorithm could be made more efficient since it is redundant to check for the
presence of such colliders in the other graph. However, we know of no examples
where Triples(G) \ OCol(G) 	= ∅.

PROPOSITION A.2. The algorithm Equivalent(G1,G2) returns TRUE iff G1
and G2 are Markov equivalent.

PROOF. “if” follows from Propositions 3.6 and A.1(b). “only if” follows from
Proposition A.1(a), Lemma 3.13 and Theorem 3.7. �

Reachable(D,w) runs in time O(ẽ) where ẽ is the number of edges in D. The
graph D may be represented as a list of adjacencies for each vertex, with each edge
〈w1,w2〉 being considered at most once at line 3.

Now, consider the complexity of Triples(G). Let n and e denote, respec-
tively, the number of vertices and edges in G. Any triple appearing on a mini-
mal m-connecting path π has order at most n − 3: π contains at most n vertices;
hence, at most n − 2 triples; all of the other discriminating paths involved are sec-
tions of π ; and unshielded triples (of which there is at least one) are of order 0.
Thus, it is always sufficient for Markov equivalence to check that two graphs have
triples of order less than n. Hence, the outer loop, at line 4, in Triples(G) is of
complexity O(n). The number of colliders in G is of O(e2); hence, the loop at line
5 is executed O(e2) times (for each k). Since E is of size O(e2), lines 6 to 8 are
also of complexity O(e2). Finally, line 9 is O(e2) [since Tk−1 is of size O(e2)]
and line 10 is O(e). Thus, the overall complexity is O(ne4).
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