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ABSTRACT
In this paper, we show how to represent a non-Archimedean preference over a set of random
quantities by a nonstandard utility function. Non-Archimedean preferences arise when some
random quantities have no fair price. Two common situations give rise to non-Archimedean
preferences: random quantities whose values are required to be greater than every real number,
and strict preferences between random quantities that are deemed closer in value than every
positive real number. We also show how to extend a non-Archimedean preference to a larger
set of random quantities. The random quantities that we consider include real-valued random
variables, horse lotteries in the sense of Anscombe and Aumann (1963), and acts in the theory
of Savage (1954). In addition, we weaken the state-independent utility assumptions made by the
existing theories and give conditions under which the utility that represents preference is the
expected value of a state-dependent utility with respect to a probability over states.

1. Introduction
1.1. Motivation

The primary goal of this paper is to extend three well-known theories of decision making (described in Section 3
below) to allow for non-Archimedean (unbounded and/or discontinuous) preferences as defined in Definition 1.
Definition 1. Let ≾ be a binary relation on a set  .

1. We call ≾ a preorder if it is both reflexive and transitive.
2. A preorder ≾ on a set  is called total if, for all X, Y ∈  , (X ≾ Y ) ∨ (Y ≾ X).
3. If ≾ is a preorder on  and X, Y ∈  , we write

• X ∼ Y if (X ≾ Y ) ∧ (Y ≾ X), and
• X ≺ Y if (X ≾ Y ) ∧ [¬(Y ≾ X)].

4. If a preorder ≾ expresses an agent’s preferences amongst elements of a convex set  , we call the preferences
Archimedean if, for all X, Y ,Z ∈  ,

(�X + [1 − �]Y ≺ Z for all real 0 < � ≤ 1) implies ¬(Z ≺ Y ). (1)
5. If an agent’s preferences are not Archimedean, we call them non-Archimedean.

Archimedean preferences have a continuity at � = 0 for mixtures of the form in the first clause of (1). Also, if X is
worth infinitely less than Z which in turn is just a little bit less valuable than Y , then (1) can fail.

All three Archimedean theories that we extend also assume that preferences are state-independent, are expressed via
total preorders, and satisfy a linearity assumption. We relax the state-independence and total-preorder assumptions and
drop altogether the assumption that preferences are Archimedean. Allowing utility to be state-dependent is particularly
important in financial applications where different states of the world can entail different exchange rates between
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When No Price Is Right

currencies as in Schervish, Seidenfeld and Kadane (1990) and/or different relative prices for commodities.Wemaintain
a linearity assumption in order to achieve an expected-utility representation.

The use of lexicographies to represent discontinuous preference is widespread, e.g., Blume, Brandenburger and
Dekel (1991b) use lexicographies in game theory to allow conditioning on events that would otherwise have zero
probability and Rekola (2003); Gelso and Peterson (2005) use lexicographies to help model ecological preferences
where certain options are essentially infinitely more valuable than others. See also Hausner (1954); Halpern (2010);
Petri and Voorneveld (2016) for some theoretical considerations. The following is adapted from Definition 3.1 of
Blume, Brandenburger and Dekel (1991a) and Definition 2.2 of Halpern (2010).
Definition 2. LetΩ be a set with a field Σ of subsets. A well-ordered set = {Pa}a∈ℵ of finitely-additive probabilities
on (Ω,Σ) is called a lexicographic probability system. Let  be a set of standard-valued functions defined on Ω such
that Pa(X) is a finitely-additive expectation of X with respect to Pa for each a ∈ ℵ. The lexicographic preference
(derived from ) is defined as follows. For each X, Y ∈  ,

• X ∼ Y if and only if Pa(X) = Pa(Y ) for all a ∈ ℵ.
• X ≺ Y if and only if there exists a ∈ ℵ such that Pa(X) ≠ Pa(Y ), and for the first such a, Pa(X) < Pa(Y ).

Examples 3.3 and 4.8 of Halpern (2010) show that there are cases of non-Archimedean preferences that cannot be
modeled via lexicographic probability systems while showing that all lexicographic preferences can be represented
by a nonstandard utility. See also Rizza (2015). In this way, a nonstandard representation is a strict generalization
of lexicographic preferences. In this paper we use nonstandard-valued functions to represent non-Archimedean
preferences.
1.2. Standard versus Nonstandard Numbers

For the remainder of the paper, we refer to the familiar real numbers in the set IR as standard numbers to distinguish
them from the nonstandard numbers that we describe in Appendix A and use liberally throughout the paper. We call
a function numerical if it takes either standard or nonstandard values. In all cases, the calculations that are part of an
agent’s expressions of preference involve only standard numbers. We use nonstandard numbers to represent an agent’s
preferences after the fact and to infer a probability and utility to express that representation. Since we use multiple
number systems, we need to be careful about what we mean by “linear” in various settings.
Definition 3. A space  of functions is a standard-linear space if �Y + �Z ∈  for all standard �, � and all
Y ,Z ∈  . A nonstandard-valued function U on a standard-linear space  is called a standard-linear function if
U (�Y + �Z) = �U (Y ) + �U (Z), for all Y ,Z ∈  and all standard �, �. The standard-linear span of a set is the
smallest standard-linear space containing the set.
Notice that U (0) = 0 for every standard-linear function U . Definition 3 restricts the coefficients in linear combinations
to be standard even though the values of U might be nonstandard. Readers desiring a more thorough understanding of
nonstandards than we present in Appendix A could read one of the many treatments such as Nelson (1987); Robinson
(1996).

Other treatments of probability and/or decision theory that make use of nonstandard numbers include Pedersen
(2012); Duanmu and Roy (2017); Benci, Horsten and Wenmackers (2013); Wenmackers (2019). Section 3.2 of
Pedersen (2012) has extensive references along with some details of some of the attempts to make use of nonstandard-
valued probabilities. The same author, in Pedersen (2014), investigates representations of non-Archimedean coherent
preference over unconditional real-valued gambles. Our representation incorporates coherent conditional preferences
in Section 4. The approach of Benci et al. (2013); Wenmackers (2019) is primarily to define probabilities that take
infinitesimal values. For a probability P on a set Ω to be a “non-Archimedean probability,” in their terminology, they
impose a condition that requires all singletons {!} ∈ Ω to have probabilities that are standard multiples of a common
infinitesimal �. That is, there is an infinitesimal � such that for every ! ∈ Ω, there is a standard a! > 0 such that
P ({!}) = a!�. This assumption places severe restrictions on the forms of non-Archimedean preferences that can be
expressed.

For those familiar with nonstandard models of the reals, all of our analysis is external rather than internal.1 The
main reason for an external analysis is that the nonstandards are non-Archimedean from an external perspective, but

1The distinction between internal and external analyses of nonstandards depends on some concepts of abstract set theory, such as what counts
as a set. Nonstandard models of the reals, such as the ones in Appendix A, use standard objects, such as sequences and equivalence relations, to
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are Archimedean from an internal perspective. An internal perspective is used by Duanmu and Roy (2017), who start
with the familiar decision theory setup (loss functions, bayes rules, minimax rules, admissible rules, etc.) and obtain
new results by allowing probabilities to take nonstandard values.

Narens (1974) develops a non-Archimedean theory of measurement. The theory leads to measurements whose
values lie in nonstandard models of the reals. Narens’ measurement systems have a number of features in common
with probability and preference, so it is not surprising that nonstandard numbers are useful for representing non-
Archimedean preference structures. See Halpern (2010) for a more thorough comparison of the uses of lexicographic
preferences and nonstandard numbers in representing preferences.
1.3. Some Notation

Throughout this paper, Ω denotes a state space,  denotes a set of random quantities, which are functions from Ω
to a space  of outcomes. Subsets of Ω are called events. When  is a set of random variables, the space  will be the
standard numbers IR. For other cases, both  and  will be more complicated sets that are constructed later. We will
make much use of the following concepts:
Definition 4. Let ≾ be a binary relation on a set  .

1. Let U be a numerical function defined on  . We say that U represents ≾ if, for all X, Y ∈  ,
X ≾ Y if and only if U (X) ≤ U (Y ). (2)

2. If (X ≾ Y ) ∧ [¬(Y ≾ X)] we write X ≺ Y .
The following results follow easily from Definition 4.
Proposition 1. Let U be a numerical function defined on a set  .

• U represents a unique preorder ≾ on  , defined via (2) and ≾ is total.

• U represents a preorder ≾ if and only if aU + b represents ≾ for all positive a and all b.

1.4. Expressed Preference
In our approach, preference amongst random quantities is expressed by willingness to trade.

Definition 5. LetX and Y be elements of a standard-linear space  . If an agent is willing to tradeX to receive Y , we
write X ≾ Y . If both X ≾ Y and Y ≾ X, we say that the agent is indifferent between X and Y , which we express by
X ∼ Y . If (X ≾ Y ) ∧ [¬(Y ≾ X)] we write X ≺ Y .
We deliberately give no name to the relation ≺ for reasons that will become apparent in Example 1 below. The first
assumption that we make merely avoids the two extremes in which the agent either is willing to make no trades or is
willing to make all trades.
Assumption 1. For all X ∈  , X ≾ X, and there exist X, Y ∈  such that X ≺ Y .
Our next assumption expresses the idea that willingness to trade depends only on the agent’s net change in fortune,
which we state formally as follows.
Assumption 2. Suppose that X,X′, Y , Y ′ ∈  and Y −X = Y ′ −X′. The agent is willing to give X to get Y if and
only if the agent is willing to give X′ to get Y ′.

Our next assumption is the trading analog to de Finetti’s assumption that an agent is willing to accept all finite
sums of fair gambles.
construct new objects which play the roles of nonstandard numbers. These constructed objects are numbers when looked at internally, i.e., as objects
that satisfy the Peano postulates and to which the Zermelo-Fraenkel axioms of set theory can be applied. When the constructed objects are looked
at externally, i.e., as functions of standard objects, what counts as a set is defined in terms of the sets of standard objects from which they are built.
Some of the most useful of these external sets include the standard numbers, the standard natural numbers and the infinitesimal numbers. These
are sets when viewed externally, i.e. from the point of view of the standard objects from which they are defined. However, they do not satisfy the
definition of “set” according to the Zermelo-Frankel axioms applied to the nonstandard numbers when viewed internally.
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Assumption 3. Suppose that Xj ≾ Yj for j = 1, 2 and �1, �2 are positive standard numbers. Then
�1X1 + �2X2 ≾ �1Y1 + �2Y2.

Proposition 2 states some straightforward properties of the first three assumptions.
Proposition 2. Suppose that ≾ satisfies Assumptions 1–3. Then ≾ is a preorder, ≺ is a strict partial order, and ∼ is
an equivalence relation.

A general preorder might not be total, and hence may leave some elements of  uncompared, i.e., neither X ≾ Y
nor Y ≾ X.
Example 1 (Consensus). Letℵ be a set, and let {≾�}�∈ℵ be a collection, indexed byℵ, of total preorders on a standard-linear space  . Our agent might think of ℵ as indexing a set of experts whose opinions the agent wants to adopt to the
extent that they agree. Define the binary relation ≾ on  by X ≾ Y if, for all � ∈ ℵ, X ≾� Y . If each ≾� satisfies
Assumptions 1–3, then so does ≾, which will also be a preorder, but not necessarily total. In general, each instance
of X ≾ Y partitions ℵ into two sets ℵX∼Y and ℵX≺Y as follows: � ∈ ℵX∼Y if X ∼� Y , and � ∈ ℵX≺Y if X ≺� Y .If either of the two sets is empty, there is unanimity about how the experts would trade X and Y . For example, if
ℵX∼Y = ∅, the agent is willing to trade X to get Y and will refuse to trade Y to get X. If both are nonempty, the
agent is willing to trade X to get Y but has expressed neither willingness nor refusal to trade Y to get X. For example
the agent might want to look more closesly at which experts lie in each of the sets ℵX∼Y and ℵX≺Y before deciding
whether to trade Y to get X. ⋄

As other authors have done, e.g. Giarlotta and Creco (2013); Giarlotta (2019); Nishimura and Ok (2020) we find
it useful to allow an agent to distinguish preferences like the two cases that appear at the end of Example 1.
Definition 6. Let ≾ satisfy Assumptions 1–3. For each case of X ≺ Y , the agent can express whether this is an
unambiguous one-way preference, which we denote X ≪ Y or an ambiguous one-way preference, which we denote
X ⊲ Y .
In order for an “unambiguous” one-way preference to mean what it sounds like, we impose the following assumption.
Assumption 4. The relations≪ and ⊲ satisfy the following:

• X ≺ Y if and only if (X ≪ Y ) ∨ (X ⊲ Y ),
• (X ≪ Y ) ∧ (Y ≾ Z) implies X ≪ Z, and
• (X ≾ Y ) ∧ (Y ≪ Z) implies X ≪ Z.

If the second bullet in Assumption 4 were violated, the agent would be willing to trade Y to getZ and would be willing
to contemplate trading Z to get X, which would violate the understanding of X ≪ Y as unambiguous willingness
to trade one-way. A similar violation arises if the third bullet is violated. The first claim in Proposition 3 is a direct
consequence of Theorem 3.4 of Giarlotta and Creco (2013), and the second claim is straightforward.
Proposition 3. If ≾ satisfies Assumptions 1–4, then ≾ is a consensus as in Example 1. In Example 1, choosing≪ to
be ≺ satisfies Assumption 4, as does choosing≪ to be empty.

We are now ready to formalize our model for trading.
Definition 7. Let Ω be a set, and for each ! ∈ Ω let ! be a standard-linear space. Let Ω =

∏

!∈Ω! and let
 ⊆ Ω be a standard-linear space of functions with domain Ω. Let ≾ and ≪ be binary relations on  . If ≾ and ≪
satisfy Assumptions 1–4, we call  = ( , ≾,≪) a trading system. If ≾ is a total preorder and ≪ is ≺, then  is a
total trading system. The sum of finitely many terms of the form �(Y −X), where X ∼ Y and � is standard is called
a fair trade. The sum of finitely many terms of the form �(Y − X), where X ≾ Y and � > 0 is standard is called an
acceptable trade. Denote the set of acceptable trades as  .

Proposition 4 states some straightforward properties of trading systems.
Proposition 4. Suppose that  = ( , ≾,≪) is a trading system. The set  of all acceptable trades is a convex cone,
and it is the set of all trades V such that 0 ≾ V . The set of all fair trades is a standard-linear space, and it is the
equivalence class (under ∼) that contains the trade 0. Finally, V ∈  if and only if for all X ∈  , X ≾ X + V .
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1.5. Dominance and Coherence (Part One)
Suppose that a (possibly nonstandard-valued) function U on  represents a total trading system ( , ≾, ≺). There is

a necessary condition forU (X) to be expressed as the expected value of the utility ofX(!)with respect to a probability
over Ω. Loosely speaking, the condition is the following:

Let X, Y ∈  . If for all !, Y (!) is at least as valuable as X(!) when state ! occurs, then U (X) ≤ U (Y ).
In the theory of de Finetti (1974), where  is a linear space of standard-valued random variables, we can be more
precise about the above condition. For each standard number x and each ! ∈ Ω and each random variableX such that
X(!) = x, x is assumed to be the utility value to the agent, when the state ! occurs, of receiving the random variable
X. The condition then becomes “X(!) ≤ Y (!) for all ! implies U (X) ≤ U (Y ).”

In more general theories, where eachX(!)may be some non-numerical object x ∈  (the codomain ofX) and the
utility of each object in  might vary with !, the utility to the agent of receiving X(!) = x could depend on both !
and x. Later (Definition 16 in Section 4.1) we define what we mean byX(!) ≤ Y (!) andX(!) < Y (!) when  ≠ IR.
Regardless of what are the objects in , there are several ways in which X ≤ Y but X ≠ Y .
Definition 8. Let X, Y ∈  .

• We say that Y weakly dominates X or X is weakly dominated by Y if X(!) ≤ Y (!) for all ! ∈ Ω and there is
! ∈ Ω such that X(!) < Y (!).

• We say that Y strictly dominates X or X is strictly dominated by Y if X(!) < Y (!) for all ! ∈ Ω.
• We say that Y uniformly dominates X or X is uniformly dominated by Y if there exists a standard � > 0 such

that X(!) ≤ Y (!) − � for all ! ∈ Ω.
It is trivial to see that weak dominance is an extension of strict dominance which, in turn, is an extension of uniform
dominance. Many of our results do not depend on which version of dominance an agent chooses. For those results
that depend on the form of dominance (primarily in Section 4), we are explicit about which form is needed. We use
X ≺Dom Y to denote “Y dominates X” in whichever sense the agent chooses. In de Finetti (1974), dominance means
uniform dominance. Our next assumption formalizes the idea that more is better.
Assumption 5. The agent chooses one of the senses of dominance. Suppose that X, Y ∈  . If X ≤ Y , then X ≾ Y .
If X ≺Dom Y , then X ≪ Y .
Definition 9. A trading system  = ( , ≾,≪) is called coherent if it satisfies Assumption 5.
When  = IR, note that dominance is defined on all of IRΩ, while Assumption 5 pertains only to elements of  . Until
we can state Definition 16, Assumption 5 makes sense only when  = IR. In the meantime, we state some results with
clauses such as “If  is coherent . . . ” Those results that are not preceded by such clauses apply more generally.

2. Representing and Extending a Trading System
2.1. Representations of Total Trading Systems

In this section, we show how to represent a total trading system by a (possibly nonstandard-valued) numerical
function.
Definition 10. If  = ( , ≾, ≺) is a total trading system and U represents ≾ (recall Definition 4) then we say that U
represents  .
The following result follows easily from Definition 10.
Proposition 5. A numerical function U represents ≾ if and only if

X ≺ Y if and only if U (X) < U (Y ). (3)
Next, we introduce a class of numerical functions that represent total trading systems.
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Definition 11. A standard-linear function U (recall Definition 3) is called monotone ifX ≤ Y implies U (X) ≤ U (Y ).
A monotone standard-linear function U is said to respect dominance if X ≺Dom Y implies U (X) < U (Y ).
Lemma 1. Let U be a standard-linear function defined on a standard-linear space  of functions defined on a state
space Ω. Then U represents a total trading system  = ( , ≾, ≺). Also  is coherent if and only if U is monotone and
respects dominance.

Proof. Assume that U is a standard-linear function on a standard-linear space  . Define the total preorder ≾ on  by
(2). For the first claim, we need to verify Assumptions 1–4. Assumption 1 follows because a preorder is reflexive. For
Assumption 2, suppose that Y −X = Y ′ −X′. Since U is standard-linear,

U (Y ) − U (X) = U (Y −X) = U (Y ′ −X′) = U (Y ′) − U (X′).

For Assumption 3, note that U being standard-linear implies that
U (�1X1 + �2X2) = �1U (X1) + �2U (X2),

for all standard �1, �2 and X1, X2 ∈  . For Assumption 4, note that≪ is ≺.
For the second claim, we need to prove that Assumption 5 holds if and only if U is monotone and respects

dominance. For the “if” direction, assume that U is monotone and respects dominance. Since U is monotone, X ≤ Y
implies U (X) ≤ U (Y ) and X ≾ Y . Since U respects dominance, X ≺Dom Y implies U (X) < U (Y ) and X ≺ Y , so
Assumption 5 holds. For the “only if” direction, assume that Assumption 5 holds. To see that U is monotone, assume
that X ≤ Y . The first requirement of Assumption 5 is that X ≾ Y , which implies that U (X) ≤ U (Y ), and U is
monotone. To see that U respects dominance, assume that X ≺Dom Y . The second requirement of Assumption 5 is
that X ≺ Y , which implies that U (X) < U (Y ), and U respects dominance.
2.2. Agreement, Representation and Extension

If ≾ is a not a total preorder, then there can be no numerical function U such that (2) holds. The problem is the “if”
direction of (2) rather than the “only if” direction. In other words, representation in the sense of (2) is not achievable
for preorders that are not total. On the other hand, a weaker version of (2) is available.
Definition 12. Let  = ( , ≾,≪) be a trading system. A numerical function U on  agrees with  if

X ≾ Y implies U (X) ≤ U (Y ), and (4)
X ≪ Y implies U (X) < U (Y ).

When it comes to extension of a trading system, there are two modes of extension that are important to our analysis.
One mode corresponds to adding more comparisons (amongst elements of a single set ) to the preorder, bringing
it closer to being total. The other mode corresponds to expanding the domain of definition of the preorder (from one
set  to a larger set  ′.) Along with the second mode of extension comes a corresponding concept of restricting the
domain of definition.
Definition 13. Let  and  ′ be standard-linear spaces with  ⊆  ′. Let � be a binary relation on  , and let �′ be a
binary relation on  ′.

• If  =  ′ and X� Y implies X�′Y , we say that �′ is an extension1 of �.
• If (X, Y ∈ ) ∧ (X� Y ) implies X�′ Y , we say that �′ is an extension2 of �.
• If �′ is an extension2 of �, we say that � is the restriction of �′ to  .
• Suppose that  = ( , ≾,≪) and  ′ = ( , ≾′,≪′) are trading systems. If ≾′ and≪′ are extensions1 of ≾ and
≪ respectively, we call  ′ an extension1 of  .

• Let  = ( , ≾,≪) and  ′ = ( ′, ≾′,≪′) be trading systems. If  ⊆  ′ and if ≾′ and≪′ are extensions2 of ≾and≪ respectively, we call  ′ an extension2 of  .
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To be clear, each binary relation and each trading system is both an extension1 and an extension2 of itself. The followingresult about extension2 is key in our theorems on representation. Its proof appears in Appedix C.1.
Lemma 2. Let  and  ′ be standard-linear spaces of functions with domain Ω and such that  ⊆  ′. Let
 = ( , ≾,≪) be a trading system. There exists a trading system  ′ = ( ′, ≾′,≪′) that is an extension2 of  . If
it is not desired that  ′ be coherent,  ′ can be chosen such that  ′ =  . If  is coherent and it is desired that  ′
be coherent, assume that ≤ and ≺Dom are defined on  ′ and are extensions2 of ≤ and ≺Dom on  . Then a coherent  ′
can be chosen so that for every V ′ ∈  ′ there is V ∈  such that V ≤ V ′.

In addition to the proof of Lemma 2, Appendix C contains the lengthier proofs of results to be stated later. Note that
Lemma 2 above (as well as Lemma 3 and Theorem 2 below) have language about ≤ and ≺Dom on a larger space being
extensions2 of ≤ and ≺Dom on a smaller space. When  = IR, this condition is met trivially. The language is included
to allow us to use these same results in other cases after Section 4.1 where ≤ and ≺Dom are defined in terms of each
specific trading system.
2.3. Finding Agreeing Functions

Our main representation Theorem 1 states that a trading system  has a standard-linear function U that agrees
with it and an extension1 to a total trading system that is represented by U . Results from Giarlotta and Creco (2013);
Giarlotta (2019); Nishimura and Ok (2020) give the extension1 for a general preorder, but without the representing
function and without attention to the properties of a trading system. The following result has both Theorems 1 and 2
as special cases, and its proof appears in Appendix C.3.
Lemma 3. Assume the following structure:

•  and  are standard-linear spaces of functions defined on Ω with  a proper subset of  .

•  = ( , ≾ , ≺ ) is a total trading system that is represented by the standard-linear function U ∶  → *IR,
where *IR is a nonstandard model of the reals.

•  = ( , ≾ ,≪ ) is the extension2 of  obtained from Lemma 2.

Then U can be extended to a standard-linear function U ′ ∶  → *IR′, where *IR′ contains *IR and such that U ′
represents a total trading system  ′ = ( , ≾′, ≺′) that is an extension2 of  . Also, if  is coherent and ≤ and ≺Dom
are defined on  so as to be extensions2 of ≤ and ≺Dom on  , then  ′ can be chosen to be coherent.

Theorem 1. Let  be a trading system. There exists a standard-linear function U that agrees with  and total trading
system  ′ that is an extension1 of  such that U represents  ′. If  is coherent,  ′ can be chosen to be coherent.

Proof. Apply Lemma 3 with  = {0} (the trivial standard-linear space containing only the additive identity in  ,)
0 ≾ 0,  =  ,  =  , U (0) = 0, and *IR = IR. Let  ′ be the  ′ that results from Lemma 3, and let U be the
corresponding U ′. These satisfy the conclusion of Theorem 1.

Theorem 2 of Skala (1974) shows that every total preorder can be represented by a nonstandard-valued function,
but the standard-linear nature that we need is not proven in that paper.
2.4. Extending2 a Trading System

Let  = ( , ≾,≪) be a (coherent) trading system. Theorem 1 says that there exists a standard-linear function U
that agrees with  and such thatU represents a (coherent) total trading system  ′ that is an extension1 of  . Extension2is also possible if  is a subspace of a larger standard-linear space, as stated in Theorem 2.
Theorem 2. Let  = ( , ≾, ≺) be a total trading system on a standard-linear space  with standard-linear
representing function U . Let  ′ be a standard-linear space of functions that includes  as a proper subset. Then
there is a total trading system  ′ = ( ′, ≾′, ≺′) that is an extension2 of  and a standard-linear function U ′ on  ′

that represents  ′ and extendsU to  ′. If  is coherent and ≤ and ≺Dom are defined on  ′ so that they are extensions2
of ≤ and ≺Dom on  , then  ′ can be chosen to be coherent.
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Proof. Apply Lemma 3 with  =  , =  ′, and U being the U in the statement of Theorem 2. The  ′ and U ′ that
result from Lemma 3 satisfy the conclusion of Theorem 2.

There are many examples of standard-linear spaces with proper supersets. One can easily imagine an agent
determining a set of preferences over a small set  of objects and then being offered additional options in a set  ′.
Here is an example of a situation that might seem of a different nature, but which still fits the setup of Theorem 2.
Example 2 (Refining a State Space). Suppose that an agent has a trading system  = ( , ≾,≪) where each element
of  is a function from Ω to a space . At some point, the agent realizes that the elements of Ω are not atomic. That
is, each element ! appears to be, itself, a subset of a different set Ω′. To be specific, for each ! ∈ Ω, there is a subset
C! ⊆ Ω′ such that the distinct elements of  = {C! ∶ ! ∈ Ω} form a partition of Ω′. Let ∼Ω be the equivalence
relation on Ω′ that corresponds to , i.e., for all x, y ∈ Ω′, x ∼Ω y means that there is ! ∈ Ω such that x, y ∈ C!. Inthis way, Ω is the quotient space Ω′∕ ∼Ω. Each element X ∈  corresponds to a function T (X) ∶ Ω′ →  defined by
T (X)(x) = X(!) where x ∈ C!. Each such T (X) is constant on each element of . If at least one C! has more than
one element, then there are additional functions defined on Ω′ that do not have the form T (X) for X ∈  . Let  ′ be
a standard-linear space of functions defined on Ω′ that contains  = {T (X) ∶ X ∈ } as a subset. A trading system
 = ( , ≾,≪) maps to a corresponding trading system  ′ = ( , ≾′,≪′). By

• T (X) ≾′ T (Y ) if and only if X ≾ Y and
• T (X)≪′ T (Y ) if and only if X ≪ Y .

Even if  is total, the resulting  ′ is not total. Theorem 2 can be used to extend2  ′ to a total trading system  ∗ on
 ′. If  is coherent and  = IR, then ≤ and ≺Dom are defined on  ′ so as to be extensions2 of ≤ and ≺Dom on  . In
fact, T (X) ≺Dom T (Y ) in  ′ if and only if X ≺Dom Y in  . ⋄

3. Three Decision Theories
In this section, we show how the structure of Section 1 and the results of Section 2 extend three well-known theories

of decision making.
3.1. Previsions for Random Variables

The first Archimedean theory to which our results apply is the theory of previsions of de Finetti (1974), which
begins with an arbitrary set of standard-valued random variables. For each X in that set, an agent chooses a standard
value P (X) (called the prevision ofX) such that the agent is willing to trade away eitherX or P (X) in order to receive
the other one. Specifically, the change in fortune �[X −P (X)] is considered a fair gamble for all standard �. Although
de Finetti’s theory deals only in fair trades (indifference,) there is an implicit assumption that “more is better,” which
is built into his notion of coherence (corresponding to uniform dominance in Definitions 8 and 9.) In de Finetti (1974),
the agent is willing to accept every finite sum of fair gambles. In particular, the agent is willing to accept

�[X − P (X)] − �[Y − P (Y )] = �(X − Y ) + �[P (Y ) − P (X)], (5)
for all standard �. If P (X) = P (Y ), the right-hand side of (5) is �(X − Y ), and the agent is implicitly willing to trade
X to get Y or to trade Y to get X. If P (X) ≠ P (Y ), there is an implicit strict preference in one direction, e.g., if
P (Y ) > P (X) and � < 0, the fair trade (5) is strictly smaller than |�|(Y − X), so the agent is willing to trade X to
get Y , but not the other way. In addition, willingness to accept all finite sums of fair trades implies that a coherent
prevision P on an arbitrary set  of random variables extends uniquely to a coherent prevision on the linear span  of
 . Define the total preorder ≾ on  defined “X ≾ Y if and only if P (X) ≤ P (Y ).” It follows that ( , ≾, ≺) is a total
trading system that is represented by the linear function P . Our theory extends that of de Finetti (1974) by dropping
the requirement that every element of  be indifferent to some standard constant.

A simple example of a random variable that is not indifferent to a standard constant arises with an “almost-fair”
coin. For an even-money bet (odds equal 1) the agent strictly prefers the bet that pays on heads over the bet that pays
on tails. But, for every bet that is not at even money (i.e., odds are different from 1,) the agent strictly prefers the side
of the bet that pays the larger amount. Theorem 3.1 of Fishburn implies that there is no standard-valued prevision that
ranks these bets in the order of the stated preferences. See also Debreu (1954). But a nonstandard-valued function
can represent such preferences. Random variables with infinite previsions are also cases in which fair prices are not
available. See Seidenfeld, Schervish and Kadane (2009) for some surprising examples.
Schervish, et al.: Preprint submitted to Elsevier Page 8 of 31



When No Price Is Right

3.2. Horse Lotteries
The second theory to which our results apply is that of Anscombe and Aumann (1963); VonNeumann and

Morgenstern (1947) for decisions about horse lotteries, which are functions from Ω to the set of simple lotteries over
a set of prizes.
3.2.1. Horse Lotteries in General
Definition 14. For each ! ∈ Ω, let ! be the set of prizes available in state !. A simple lottery r is a probability on
a finite subset (r) ⊆ !. Let ! be the convex set of simple lotteries available in state !.2 For ease of notation, let
 =

⋃

!∈Ω ! and  =
⋃

!∈Ω! be respectively the sets of all prizes available in at least one state and all lotteries
available in at least one state. Let Ω =

∏

!∈Ω!, which is a subset of Ω. A horse lottery is a function ℎ ∈ Ω,i.e, ℎ(!) ∈ ! for every ! ∈ Ω. Let stand for the set of horse lotteries under consideration, which we assume to be
a convex subset ofΩ.3

In each application, the set of horse lotteries can be different, but each such must be a convex subset ofΩ. For
ℎ1, ℎ2 ∈ Ω and � ∈ [0, 1], the meaning of ℎ3 = �ℎ1 + (1 − �)ℎ2 is that ℎ3(!) = �ℎ1(!) + (1 − �)ℎ2(!) ∈ !,because! is convex. A set of horse lotteries is not a linear space. Next, we show how to create a linear space that
is equivalent to  in an appropriate sense.
3.2.2. A Linear Space for Horse Lotteries

The set  of horse lotteries is a convex subset of Ω, but is not a linear space. Hausner (1954) (Sections 2–4)
assumes that ≾′ is a total preorder that satisfies the following axiom, which is part of the theory of Anscombe and
Aumann (1963); VonNeumann and Morgenstern (1947):
Independence Axiom: Let ≾′ be a preorder on a convex set  of horse lotteries. For all ℎ1, ℎ2, g ∈  and standard
0 < � < 1, ℎ1 ≾′ ℎ2 if and only if �ℎ1 + (1 − �)g ≾′ �ℎ2 + (1 − �)g.Hausner (1954) shows how to create a standard-linear space0 with a preorder ≾ that satisfies our Assumptions 2
and 3 in Section 1.4 above. This is done as follows. For each ! ∈ Ω, let ! be the set of all simple signed measures4
on ! that give measure 0 to the whole set !. Let  =

⋃

!∈Ω!, and let Ω =∏

!∈Ω!. Then
0 = {�(ℎ1 − ℎ2) ∶ ℎ1, ℎ2 ∈  and � ∈ IR} ⊆ Ω

is a standard-linear space. Define ≾ on0 as follows. For each k1, k2 ∈ 0, express k2 − k1 = �(ℎ2 − ℎ1) with � > 0and ℎ1, ℎ2 ∈ . Then say that k1 ≾ k2 if ℎ1 ≾′ ℎ2. Hausner (1954) (Section 4) shows that ≾ is well defined and
satisfies Assumptions 2 and 3. The theory of Anscombe and Aumann (1963); VonNeumann and Morgenstern (1947)
satisfies Assumption 4 vacuously since ≾ is a total preorder. Dominance and coherence are not issues that arise in the
theory of Anscombe and Aumann (1963); VonNeumann andMorgenstern (1947) as horse lotteries are not numerically
comparable without further assumptions.

The state-independence assumption of Anscombe and Aumann (1963); VonNeumann and Morgenstern (1947)
implies that all! sets are the same. Our theory is general enough to include cases in which the! sets might all be
the same ormight be different.We also drop theArchimedean axiom and allow≾′ to not be total as do other authors such
as Aumann (1962); Dubra, Maccheroni and Ok (2004); Baucells and Shapley (2008). Our weaker state-independence
Assumption 7 is stated in Section 4.1.
3.2.3. Representing Horse Lotteries

For the remainder of this paper, when we refer to the horse-lottery case, we will assume that is the standard-linear
space 0 defined in Section 3.2.2. (The case in which  is a linear space of standard-valued random variables will
be called the random-variable case.) In the horse-lottery case, it would be easier on the intuition if each representing
function of a trading system had as its domain rather than0. This is easily arranged. Let  = (0, ≾, ≺) be a totaltrading system in a horse-lottery case with standard-linear representing function U . Let be the set of horse lotteries
that corresponds to 0 as in Section 3.2.2. For each k ∈ 0, we can write k = �(ℎ1 − ℎ2) with � > 0 standard. Then

2If r1, r2 ∈  but (r1) ≠ (r2), (�r1 + [1 − �]r2) = (r1)
⋃

(r2) when � ∈ (0, 1).3Each ℎ ∈  is also a function from Ω to, but may not be a convex set.
4A signed measure � on a set  is simple if there is a finite subset {y1,… , yn} ⊆  and numbers �1,… , �n such that, for every B ⊆  ,

�(B) =
∑n
j=1 �jIB(yj ).
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0 ≾ k is equivalent to ℎ2 ≾′ ℎ1 for a total preorder ≾′ on . Let ℎ0 ∈  be arbitrary, and define
V (ℎ) = U (ℎ − ℎ0). (6)

It follows that V (ℎ0) = 0 and
U (�[ℎ1 − ℎ2]) = �[V (ℎ1) − V (ℎ2)]. (7)

Also, V represents ≾′ and satisfies
V (�ℎ1 + [1 − �]ℎ2) = �V (ℎ1) + (1 − �)V (ℎ2),

for all ℎ1, ℎ2 ∈  and all standard � ∈ [0, 1].
3.3. Savage-style Acts

The third theory to which our results apply is that of Savage (1954). This theorymakes some assumptions (including
state-independence) about preferences amongst acts (functions) from a state space Ω to a set  of consequences
(prizes) and then proves an expected-utility representation for those preferences. Lemma 4 below starts with those
same assumptions and shows that there is a set of lotteries over the acts with an implied willingness to trade that
satisfies the assumptions that appear in Section 1.4 of this paper. We then weaken the original assumptions of Savage
(1954) and show how to use our results for the horse-lottery case to represent non-Archimedean and state-dependent
preferences over the acts of Savage (1954). Whenever we refer to “the horse-lottery case” in this paper, we implicitly
include the theory of Savage in that case.

At this point, we can show how a non-Archimedean version of the theory of Savage (1954) becomes a special case
of trading systems in the horse-lottery case without any additional assumptions or choices by the agent. The proof of
Lemma 4 is in Appendix C.4.
Lemma 4. Let  be a set of functions from Ω to  , and let ≾′ be a total preorder on  that satisfies the seven
postulates (P1–P7) of Savage Savage (1954). Let  be the set of finite mixtures of elements of  . Then ≾′ extends
to a total preorder on , and the 0 and ≾ constructed from  and ≾′ in Section 3.2.2 form a total trading system
(0, ≾, ≺) that satisfies Assumptions 1–4.

Despite the fact that Savage worked hard to avoid making the assumption that his set of acts contained the mixtures
that we assume, his postulates are sufficient to show that his preorder extends to a total trading system that satisfies our
assumptions without any further choices needed from the agent. For the purposes of this paper, instead of assuming
a subset of P1–P7 or some weakened versions of them, assume only that there is a set  of Savage-style acts with
a preorder (not necessarily total) ≾′. Then embed  into the convex set  of Lemma 4 which is a special case of
a set of horse lotteries. We then proceed with the same analysis and assumptions as in Sections 3.2.2 and 1.4. In
particular, we make Assumptions 1–4. By so doing, we implicitly weaken some of Savage’s postulates so as to allow
non-Archimedean preferences, In addition, all of the extension and representation results in Section 2 above apply to
the resulting trading system, as well as the results in Section 4 below. In the end, if the agent does not want to think
about mixtures of Savage-style acts, we show (in Section 4.7) how to restrict the results of Section 4 to the original
Savage-style acts.

4. Probability and Expected Utility
In this section, we explore the relationship between finitely-additive expectation and the representing function of a

total trading system. Throughout the section,  = ( , ≾, ≺) denotes a total trading system on a standard-linear space
 of functions from Ω to a standard-linear space . Let U be a standard-linear function that represents  . Let Σ be a
field of subsets ofΩ. In order to construct a probability from a trading system, the indicators of elements of Σmust play
a role in the elements of  . We make the following assumption about a total trading system  = ( , ≾, ≺) throughout
this section.
Assumption 6. For all B ∈ Σ and all X ∈  , XIB ∈  , where

(XIB)(!) =
{

X(!) if ! ∈ B,
0(!) if ! ∈ BC .
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If Assumption 6 is not met, one can apply Theorem 2 to find an extension2 of  to  ′ = ( ′, ≾′, ≺′), where  ′ is the
standard-linear span of  ⋃

{XIB ∶ X ∈  , B ∈ Σ}. This extension needs to be done before attempting to infer a
probability on (Ω,Σ) or attempting to interpret a representing function U as an expected utility. Once Assumption 6 is
met, we can define conditional preference.
Definition 15. Let  be a standard-linear space of functions defined on a set . Let Γ be a field of subsets of .
Suppose thatXIB ∈ for eachB ∈ Γ andX ∈ . Let≾ be a total preorder on . ForX, Y ∈ , if 0 ≺ (Y −X)IB ,we write X ≺ Y |B and we say that Y is conditionally preferred to X given B. If 0 ≾ (Y −X)IB , we write X ≾ Y |B.
If bothX ≾ Y |B and Y ≾ X|B, we writeX ∼ Y |B. An event B ∈ Γ is null ifX ∼ Y |B for allX, Y ∈ . An event is
non-null if it is not null. If z ∈  and {z} is a null event, we call z a null state. A state z is non-null if {z} is non-null.
4.1. Dominance and Coherence (Part Two)

In this section, we extend the concepts of dominance and coherence to certain horse-lottery cases. This extension
is useful in Section 4.4 where we show how, in both the random-variable and horse-lottery cases, a standard-linear
function that represents a coherent trading system can be interpreted as an expected value of a (possibly state-
dependent) utility function defined on the codomain  of the elements of  .

For the remainder of this section, we assume that is the space0 defined in Section 3.2.2 and is a set of simple
signed measures on subsets of the prize set  and that assign signed measure 0 to  . As such, each element of 0 isa function from Ω to . Dominance for horse lotteries is defined in terms of conditional preference on a state-by-state
basis. Suppose that there is a non-null event B that consists entirely of null states, i.e., every ! ∈ B is a null state. Then
a state-by state comparison of two elements X and Y of  given the elements of B tells us nothing about how X and
Y compare (or should compare) given B. The reason is that X ∼ Y |{!} for every X and Y and every null state !. To
circumvent this problem, we make an assumption that is a generalization (weaker assumption) of the state-independent
utility assumptions made by Anscombe and Aumann (1963) (Assumption 1,) Savage (1954) (P3–P4,) and Blume et al.
(1991a) (Axioms 5 and 5′.) Assumption 7 below allows varying degrees of state dependence for the utilities of prizes.
Assumption 7. There exists a partition  ⊆ Σ of Ω into non-null events such that, for each B ∈ ,

• for all ! ∈ B, ! is the same set (B),
• for each x ∈ (B), there is Xx ∈  such that Xx(!) = x for all ! ∈ B, and
• for each x ∈ (B), 0 ≺ Xx|B if and only if 0 ≺ Xx|C for every non-null C ⊆ B.

For each !, we will use B! to denote the element of  that contains !.
The second bullet assumes that certain functions defined on Ω are in  . If these functions are not in  and the first
bullet is satisfied, we can apply Theorem 2 to find an extension2 of  to  ′ = ( ′, ≾′, ≺′) where  ′ is the standard-
linear span of  ⋃

{XxIBIA ∶ B ∈ , x ∈ (B), A ∈ Σ}. Such an extension2 will continue to satisfy Assumption 6
and the first bullet of Assumption 7. We will assume that such an extension2 has been done for the remainder of the
paper. Note that there is no guarantee that such a  ′ satisfies the third bullet of Assumption 7. But we cannot even
check whether the third bullet is satisfied until the second bullet is satisfied.

The state-independence assumptions made by Anscombe and Aumann (1963); Savage (1954); Blume et al. (1991a)
correspond to the extreme case of Assumption 7 in which  = {Ω}, i.e., utility is independent of state for the whole
state space. The opposite extreme case of Assumption 7 has = {{!} ∶ ! ∈ Ω}, i.e., every state is non-null, in which
case all three bullets of Assumption 7 are tautological because each B is a singleton. There are cases between these
two extremes, such as Example 5 in Section 4.2. A more concrete example would be the following.

• Each state consists of a specification of exchange rates between a set of currencies and a specification of a set of
meteorological conditions.

• The values of the prizes depend only on the exchange rates and not on the meteorological conditions.
• Each set in the partition  is the set of states with a fixed specification of exchange rates.

Schervish, et al.: Preprint submitted to Elsevier Page 11 of 31



When No Price Is Right

Definition 16 below defines ≤ and dominance in those horse-lottery cases that satisfy Assumption 7. It allows us to
talk about coherent trading systems in the horse-lottery case with no modifications to Assumption 5 or the definition
of coherence (Definition 9). As in the random-variable case, whichever (if any) sense of dominance is reflected in the
agent’s preferences, we express “Y dominates X” by X ≺Dom Y .

As in Definition 8 for the random-variable case, Definition 16 defines dominance on a larger set of objects than just
 . The reason is that we may need elements of that larger set of objects in order to infer the existence of a probability
on the field Σ. (See Lemma 6 in Section 4.2.)
Lemma 5. Let  = ( , ≾, ≺) be a total trading system that satisfies Assumptions 6 and 7. Let X ∈ Ω, and let
!0 ∈ Ω. There exists GX,!0 ∈  such that GX,!0 (!) = X(!0) for all ! ∈ B!0 .

Proof. Because x = X(!0) ∈ (B!0 ), Assumption 7 says that there is Xx ∈  such that Xx(!) = x = X(!0) for all
! ∈ B!0 . Rename Xx to be GX,!0 .
Lemma 5 gives us what we need to define dominance on all of Ω.
Definition 16. Suppose that a trading system satisfies Assumptions 6 and 7. For each !0 ∈ Ω and each X ∈ Ω, let
GX,!0 ∈  be from Lemma 5.

• If GX,!0 ≾ GY ,!0 |B!0 , we write X(!0) ≤ Y (!0).
• If GX,!0 ≺ GY ,!0 |B!0 , we write X(!0) < Y (!0).
• If, for all B ∈  and all !0 ∈ B, X(!0) ≤ Y (!0), we write X ≤ Y .
• If, for all !0, X(!0) < Y (!0), we say that Y strictly dominates X.
• If X ≤ Y and there exists !0 such that X(!0) < Y (!0), we say that Y weakly dominates X.
Now, the definition of “coherent” (Definition 9) applies in the horse-lottery case. We did not define “uniform

dominance” because the < symbol in Definition 16 is not a relation between numerical values, but rather a non-
numerical preference relation. Once we define a state-dependent utility function (Definition 18 in Section 4.3) we can
define uniform dominance in the horse-lottery case.
4.2. Numeraires and Probability
Definition 17. Assume the conditions stated in Definition 15. Let Z ∈  . If 0 ≺ Z and 0 ≾ Z|B for all B, we call
Z a numeraire for Γ. If, in addition, 0 ≺ Z|B for every non-null B, we call Z a strong numeraire for Γ.

In the random-variable case with a coherent trading system, every non-negative function in  that is strictly preferred
to 0 is a numeraire. Nevertheless, even positive constants might not be strong numeraires.
Example 3. Let Ω = ZZ+, the positive integers, and let Σ be the finite/cofinite field, i.e., the collection of all finite
subsets of Σ and their complements. Let G ∶ Ω → IR be G(!) = !. Let  be the standard-linear span of all standard-
valued bounded functions and the functions {GIB ∶ B ∈ Σ}. Each X ∈  can be written uniquely as

X = Xb + �XGIE , (8)
where Xb is bounded, �X is standard, and E = {11, 12,…}.5 Define

U (X) = 1
10

10
∑

!=1
X(!) + 2�X . (9)

Also, U ∶  → IR is standard-linear (and standard-valued.) If X ≺Dom Y (uniform or strict, but not weak dominance)
then U (X) < U (Y ), so U represents a coherent (with uniform or strict dominance) total trading system  = ( , ≾, ≺)
with X ≾ Y meaning U (X) ≤ U (Y ). Since U (1) = 1, 0 ≺ 1. Since 0 ≤ 1, 0 ≾ 1|B for all B ∈ Σ, and 1 is numeraire
for Σ. Since 0 ≺ G|E, E is a non-null event. On the other hand, 0 ∼ 1|E, so 1 is not a strong numeraire for Σ. The
non-null events are all cofinite sets and all elements of Σ that are supersets of the singletons {1},… , {10}. For each
! = 1,… , 10, 0 ≺ G|{!}, and for each cofinite set B, 0 ≺ G|B, so G is a strong numeraire for Σ. ⋄

5Note that �X = lim!→∞X(!)∕G(!), and Xb = X − �XGIE .
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In Section 4.5, we show how different numeraires relate to each other within the same trading system.
We take probability to be finitely additive in Lemma 7 below and elsewhere due to the difficulty in defining

countable sums of nonstandard numbers. (See the results and examples in Appendix A.4.) In general, we need a
numeraire in order to derive a probability on (Ω,Σ) from a trading system. Since 1 is a numeraire in the random-variable
case, the following result is needed only in the horse-lottery case.
Lemma 6. Let  = ( , ≾, ≺) be a coherent total trading system in the horse-lottery case that satisfies Assumptions 6
and 7. There is a coherent extension2  ′ = ( ′, ≾′, ≺′) of  such that

• there is a numeraire Z for Σ,

• Z is constant on each element of  (from Assumption 7,) and

• 0 ≺ Z|B for every B ∈ .

Proof. First, we show that, for each B ∈ , there is xB ∈ (B) such that 0 ≺ XxB |B, where Xx is defined in the
second bullet of Assumption 7. Let B ∈ , which, by definition, is non-null. So there is Y ∈  such that 0 ≺ Y |B.
For each ! ∈ B, let y! = Y (!). If Xy! ≾ 0|B for every ! ∈ B, then Y IB ≤ 0 and Y ≾ 0|B by coherence. This
contradicts 0 ≺ Y |B, so there must be !0 ∈ B such that 0 ≺ XxB |B for xB = y!0 .Define Z ∶ Ω → *IR as follows: For all B ∈  and all ! ∈ B, let Z(!) = xB . By construction 0 ≺ Z|B for all
B ∈  and 0 ≺Dom Z by either definition of dominance. If Z ∈  , let  ′ =  . If not, let  ′ be the standard-linear
span of  ⋃

{ZID ∶ D ∈ Σ}. Use Theorem 2 to extend2  to a coherent  ′. In  ′, 0 ≾′ Z|D for every D ∈ Σ by
construction. Since 0 ≺′ Z, Z is a numeraire for Σ.
For the remainder of the paper, assume that each trading system  in the horse-lottery case is an extension2 from
Lemma 6.
Lemma 7. Let  = ( , ≾, ≺) be a coherent total trading system that satisfies Assumption 6 (and Assumption 7 in the
horse-lottery case.) Let Z be a numeraire for Σ, and let U be a standard-linear function that represents  . Define
P (B) = U (ZIB)∕U (Z) for each B ∈ Σ. Then P is a finitely-additive (possibly nonstandard-valued) probability on Σ.

Proof. First, note that U (Z) > 0 and P (Ω) = U (ZIΩ)∕U (Z) = 1. For each B ∈ Σ, 0 ≾ Z|B and P (B) =
U (ZIB)∕U (Z) ≥ 0. Suppose that B1 and B2 are disjoint events. ThenZIB1 +ZIB2 = ZIB1∪B2 . Since U is standard-
linear, we have U (ZIB1 ) + U (ZIB2 ) = U (ZIB1∪B2 ) and P (B1) + P (B2) = P (B1 ∪ B2).
Example 4 (Continuation of Example 3). The two numeraires, 1 and G for Σ lead to two different probabilities P1and PG on (Ω,Σ) respectively. From (9), it is clear that P1({!}) = 1∕10 for ! = 1,… , 10, and P1(B) = 0 for each Bthat is a subset of E. In particular, P1(E) = 0 despite E being non-null. For each !, U (GI{!}) = !∕10 for ! ∈ EC

and 0 for ! ∈ E. For each cofinite set B ⊆ E, U (GIB) = 2, since �G = 1. Then PG({!}) = !∕75 for ! ∈ EC and 0
for ! ∈ E. Also, PG(B) = 4∕15 for every cofinite subset B of E, including E itself. ⋄

Example 5. Let Ω = (0, 1), the unit interval with Σ the Borel �-field. Let  = {a, b}. Let  be the set of all lotteries
over  . Each element r ∈  is characterized by r({b}). Let  be that subset of Ω for which gℎ(!) = ℎ(!)({b}) is
a Borel-measurable function of !. In this example, for states ! < 1∕2, prize a is better than b, and the situation is the
reverse for all ! > 1∕2. We include the null event {1∕2} with ! > 1∕2 for the rest of the example. Define

V (ℎ) = ∫

1∕2

0
[1 − gℎ(!)]d! + ∫

1

1∕2
gℎ(!)d!. (10)

Each element of 0 has the form �(ℎ1 − ℎ2) for standard � ≥ 0 and ℎ1, ℎ2 ∈ . Define
U (�[ℎ1 − ℎ2]) = �[V (ℎ1) − V (ℎ2)].

The trading system represented by U satisfies Assumption 7 with = {(0, 1∕2), [1∕2, 1)}. There are many numeraires
for Σ. Let gℎ0 (!) = I(0,1∕2)(!), so that V (ℎ0) = 0. Each ℎ with gℎ(!) < 1 for ! < 1∕2 and gℎ(!) > 0 for ! ≥ 1∕2
has V (ℎ) > 0 and can be combined with ℎ0 to define a numeraire for Σ as follows. Define Zℎ = (ℎ− ℎ0)∕V (ℎ). Since
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U (ZℎIA) ≥ 0 for each Borel set A, 0 ≾ Zℎ|A. Also, 0 ≺ Zℎ, so each such Zℎ is a numeraire for Σ. As (10) would
suggest, the probability derived from Zℎ has the following density with respect to Lebesgue measure:

fℎ(!) =
1

V (ℎ)
(

[1 − gℎ(!)]I(0,1∕2)(!) + gℎ(!)I[1∕2,1)(!)
)

.

Since fℎ > 0, Zℎ is a strong numeraire for Σ. ⋄

4.3. State-Dependent Utility
In the random-variable case, one can think about a numeraire as the units that correspond to numerical values of

the random variables. For example, suppose that the random variables in a trading system  are in units of dollars.
A European foreign-exchange trader might be more comfortable comparing units of euros rather than dollars. If G(!)
is the exchange rate (in dollars per euro) in state !, X(!)∕G(!) is the utility of X in state ! to the European trader
measured in the preferred currency units of euros. We need something analogous to X∕G for the horse-lottery case.
Definition 18. Let Σ be a field of subsets ofΩ, and let  be a coherent total trading system that satisfies Assumption 6
(and Assumption 7 in the horse-lottery case.) Let U ∶  → *IR be a standard-linear function that represents  . In the
horse-lottery case, let Z be a numeraire of the sort obtained through Lemma 6. In the random-variable case, let Z be
a strictly positive numeraire. Define, for each X ∈  , each ! ∈ Ω, and each x ∈ !:

U∗Z (!, x) =

⎧

⎪

⎨

⎪

⎩

x
Z(!)

in the random-variable case,
U (xIB! )
U (ZIB! )

in the horse-lottery case.

We call U∗Z the state-dependent utility function (relative to the numeraire Z.) Let X, Y ∈  . If there exists a standard
� > 0 such that U∗Z (!,X(!)) ≤ U∗Z (!, Y (!)) − � for all !, we say that X is uniformly dominated by Y relative to Z
or Y uniformly dominates X relative to Z.
As Definition 18 makes explicit, which elements of  uniformly dominate each other depends on which numeraire Z
is used. Example 6 illustrates this fact.
Example 6 (Continuation of Example 5). The state-dependent utility that corresponds to the numeraire Zℎ is, for
each X = �(ℎ1 − ℎ2) ∈ 0,

U∗ℎ (!,X(!)) =
�

fℎ(!)

{

gℎ2 (!) − gℎ1 (!) for ! < 1∕2,
gℎ1 (!) − gℎ2 (!) for ! ≥ 1∕2,

so that U∗ℎ (!,Zℎ(!)) = 1 for all !, and Zℎ uniformly dominates 0 relative to Zℎ. The same could be said for each
numeraire constructed in the same fashion. However, what “uniformly dominates” 0 depends on which numeraire is
used to construct the probability. To be specific, suppose that gℎ(!) = 1∕2 for all ! so that fℎ is constant. Let ℎ′ be
another horse lottery with gℎ′ (!) = 1 − ! for all !, so that fℎ′ is ∧-shaped and U∗ℎ′ (!,Zℎ′ (!)) = 1 for all !. Then ℎ′uniformly dominate 0 relative to Zℎ′ , but

U∗ℎ (!,Zℎ′ (!)) =
{

! for ! < 1∕2
1 − ! for ! ≥ 1∕2,

so ℎ′ does not uniformly dominate 0 relative to Zℎ. ⋄

To see that U∗Z is well defined in the horse-lottery case, note that for each B ∈  of Assumption 7, U (ZIB) > 0because 0 ≺ Z|B. In general U∗Z is a nonstandard-valued function defined on the set ⋃!∈Ω({!} × !). Theinterpretation of U∗Z (!, x) is the utility to the agent ofX in state !measured in units of numeraireZ whenX(!) = x.
In Section 4.4, Theorem 3 shows that U (X) can be interpreted as an expected value of the state-dependent utility ofX
with respect to the probability P on (Ω,Σ) that corresponds to the chosen numeraire Z via Lemma 7.

Schervish, et al.: Preprint submitted to Elsevier Page 14 of 31



When No Price Is Right

4.4. Expected Utility
The following definition is a generalization of the concept of Daniell integral to the finitely-additive nonstandard-

valued case. See Schervish, Seidenfeld and Kadane (2014) for discussion of the finitely-additive standard-valued case.
We give additional motivation for this definition in Appendix B.
Definition 19. Let *IR be a nonstandard model of the reals, and let  be a set. Let  be a standard-linear space that
is a subset of (*IR), and that contains all standard constants. Let W ∶  → *IR be a standard-linear function that
satisfies

• W (1) = 1, and
• for w1, w2 ∈ , w1 ≤ w2 impliesW (w1) ≤ W (w2) (i.e.,W is monotone.)

ThenW acts as an expected value on  . Suppose, in addition, that Γ is a field of subsets of  and for every B ∈ Γ
and w ∈  , wIB ∈  . Define P (B) = W (IB) for B ∈ Γ so that P is a finitely-additive probability on (,Γ). Then
W acts as an expected value on  with respect to P . For each w ∈  , we also say thatW (w) is an expected value
of w with respect to P .We also use the notation P (w) to denoteW (w).

It should be apparent that Definition 19 agrees with the familiar countably-additive definition of expected value for
simple probabilities when *IR = IR. Furthermore, all finite standard-valued countably-additive expected values satisfy
Definition 19, but they also have an additional continuity property that does not carry over to the nonstandard-valued
case.
Theorem 3. Assume the conditions from and terms defined in Definition 18. Let UX(!) = U∗Z (!,X(!)) for each
X ∈  and ! ∈ Ω, and let P be the probability on (Ω,Σ) from Lemma 7 using Z as the numeraire for Σ. Let
Z = {UX ∶ X ∈ }. Then

• Z is a standard-linear space of functions from Ω to *IR,

• WZ (UX) = U (X)∕U (Z) defines an expected value of UX with respect to P , and

• if dominance means weak dominance, then every non-empty element ofΣ is non-null and has positive probability.

Proof. First, we show that UX ≤ UY implies X ≤ Y . This is immediate in the random-variable case. In the horse-
lottery case, if UX ≤ UY , then for each B ∈  and each !0 ∈ B, GX,!0 ≾ GY ,!0 |B in the notation of Lemma 5 and
Definition 16. It follows that X ≤ Y .

Next, we show that WZ is well defined. Let X, Y ∈  with UX = UY . Then UX ≤ UY and UY ≤ UX . We just
proved that X ≤ Y and Y ≤ X. By coherence of  , U (X) ≤ U (Y ) and U (Y ) ≤ U (X), so U (X) = U (Y ) andWZ is
well defined.

Next, we prove the three bullets in the theorem. Since U is standard-linear, so is U∗Z (!, ⋅) for each !. Since
U�X+�Y (!) = �UX(!) + �UY (!) for all X, Y ∈  , ! ∈ Ω, and standard �, �, we see that Z is a standard-
linear space and that WZ is standard-linear. Since UZ (!) = 1 for all !, we see that Z contains all constants and
WZ (1) = U (Z)∕U (Z) = 1. Since UXIB (!) = UX(!)IB(!) for all X ∈  , B ∈ Σ, and ! ∈ Ω, we see that Zcontains wIB for all w ∈Z and B ∈ Σ. Thus, the first bullet and part of the second bullet are proven.

For the rest of the second bullet we must show that (i)WZ (IB) = P (B) for all B ∈ Σ, and (ii)WZ is monotone.
For (i), note that for each B ∈ Σ, UZIB = IB , andWZ (IB) = U (ZIB) = P (B) (including B = Ω.) For (ii) UX ≤ UYimplies X ≤ Y by what we proved earlier. Then, WZ (UX) = U (X)∕U (Z) ≤ U (Y )∕U (Z) = WZ (UY ), where the
inequality follows from coherence of  .

For the third bullet, assume that dominance means weak dominance and thatE ∈ Σ is non-empty. The construction
ofZ implies that 0 ≺Dom ZIE , so 0 ≺ Z|E, andE is non-null. Also, 0 = U (0)∕U (Z) < U (ZIE)∕U (Z) = P (E).
Corollary 1. Assume the conditions of Theorem 3 in the random-variable case with numeraireZ = 1. ThenZ =  ,
UX = X for all X ∈  , and U acts as an expected value on  with respect to P .
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4.5. Changes of Numeraire
Assume the conditions stated in Definition 18. Let Z1, Z2 be two numeraires of the sort described there with

corresponding probabilities PZ1 , PZ2 . Then
Zj = {U

∗
Zj
(⋅, X(⋅)) ∶ X ∈ },

for j = 1, 2. AndWZj ∶Zj → *IR, defined by
WZj (U

∗
Zj
(⋅, X(⋅))) = U (X)∕U (Zj),

acts as an expected value on Zj with respect to PZj . Note that

U∗Z2 (⋅, Z1(⋅)) = 1
U∗Z1 (⋅, Z2(⋅))

, and

Z2 =
{

wU∗Z2 (⋅, Z1(⋅)) ∶ w ∈Z1

}

.

For each w ∈Z2 ,

WZ2 (w) = WZ1

[

wU∗Z2 (⋅, Z1(⋅))
] U (Z1)
U (Z2)

.

In other words, U∗Z2 (⋅, Z1(⋅))U (Z1)∕U (Z2) has the defining feature of a Radon-Nikodym derivative of WZ2 with
respect toWZ1 (when restricted to indicators of events,) without referring to absolute continuity.
Example 7 (Continuation of Example 4). In the notation of Theorem 3, the two numeraires, 1 andG, alongwith their
probabilities P1 and PG, correspond to linear spaces 1 =  and G = {X∕G ∶ X ∈ } with the standard-linear
functions W1(X) = U (X) (for X ∈ 1) and WG(Y ) = U (Y G)∕U (G) (for Y ∈ G.) So, U∗1 (!, x) = x while
U∗G(!, x) = x∕!. It then appears as if dPG∕dP1(!) = 1∕[!U (G)] acts as a Radon-Nikodym derivative despite the fact
that no existing definition of absolutely continuous has PG absolutely continuous with respect to P1. Nevertheless, wecan still express PG(B) = P1(BG)∕P1(G) for each event B ∈ Σ, including B = E = {11, 12,…}. ⋄

4.6. Another Layer of Expected Utility
As in Section 3.2.3, in the horse-lottery case, it would be easier on the intuition if state-dependent utility could

be expressed as a function of lotteries in state ! rather than elements of !. Let  and U∗Z be as in Theorem 3. Let
ℎ0 ∈  be arbitrary, and define V ∗Z ∶

⋃

!∈Ω
(

{!} ×!
)

→ *IR by
V ∗Z (!, r) = U

∗
Z (!, r − ℎ0(!)). (11)

This has the effect of shifting the utility in state ! so that ℎ0(!) has value 0. It follows that, for r1, r2 ∈ !,
U∗Z (!, �[r1 − r2]) = �[V

∗
Z (!, r1) − V

∗
Z (!, r2)], (12)

which gives us equivalent ways to express state-dependent utility in both  and 0. Equivalent ways to express
marginal utilities were given in (6) and (7) in Section 3.2.3. Finally, for each ! ∈ Ω and p ∈ !, let rp stand for
the simple lottery that assigns probability 1 to the prize p, and define

V ∗0,Z (!, p) = V
∗
Z (!, r

p). (13)
A useful consequence of the above notation is the following simple corollary of Theorem 3.
Corollary 2. Assume the conditions of Theorem 3. Then V (ℎ) is an expected value of V ∗Z (⋅, ℎ(⋅)) with respect to P .

Our final goal, in this section, is to show that V ∗Z (!, r) can be interpreted as an expected value of V ∗0,Z (!, ⋅) withrespect to the simple probability r.
Lemma 8. For each ! ∈ Ω and r ∈ !, V ∗Z (!, r) is an expected value of V ∗0,Z (!, ⋅) with respect to r.
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Proof. Let ! ∈ Ω, and let r ∈ ! be a simple lottery with (r) = {p1,… , pn} and r({pj}) = �j for j = 1,… , n. For
j = 1,… , n, let xj = rpj − ℎ0(!) ∈ !, where rpj stands for the simple lottery that assigns prize pj with probability
1. Then r − ℎ0(!) = ∑n

j=1 �jxj . Hence
V ∗Z (!, r) = U∗(!, r − ℎ0(!))

=
n
∑

j=1
�jU

∗
Z (!, xj)

=
n
∑

j=1
�j[V ∗Z (!, r

pj ) − V ∗Z (!, ℎ0(!))]

=
n
∑

j=1
�jV

∗
0,Z (!, pj),

where the first equality follows from (11), the second follows from standard-linearity of U∗Z (!, ⋅), the third follows
from (12), and the last follows from the definition of V ∗0,Z and the fact that V ∗Z (!, ℎ0(!)) = 0. LetZ = (r), Γ = 2(r)
and  equal to the standard-linear span of {V ∗0,Z (!, ⋅)IA ∶ A ∈ Γ}

⋃

{IA ∶ A ∈ Γ} in Definition 19. The two bullets
in the definition are clearly satisfied.
Corollary 2 and Lemma 8 combine to say that V (ℎ) is an iterated expected value of V ∗0,Z (!, p) where, for each ! ∈ Ω,the inner expected value is with respect to the probability ℎ(!) on(ℎ(!)), and the outer expected value is with respect
the the probability P on Ω. To be precise,Q(!) = ℎ(!)[V ∗0,Z (!, ⋅)] is the inner expected value, and V (ℎ) = P [Q(⋅)] isthe outer expected value.
4.7. The Original Savage-style Acts

In this section, we assume that a coherent total trading system  = (0, ≾, ≺) that satisfies Assumptions 1–7 was
generated from a set  of Savage-style acts by creating the set of horse lotteries that are simple mixtures of elements
of  . The probability P that results from Lemma 7 is a function from Σ to *IR, and as such can be associated with the
set  , regardless of how its existence was proved. Similarly, the function V of (6), when restricted to the elements of
 , represents the preorder ≾′ on  that is the restriction of ≾. Also, the state-dependent utility of act f ∈  in state !
is V ∗0,Z (!, f (!)) from (13). Hence the expected-utility interpretation of Corollary 2, when restricted to elements of 
gives an interpretation of V as an expected value of the state-dependent utility V ∗0,Z (!, f (!)) with respect to P .
4.8. Existence of Coherent Trading Systems in the Horse-Lottery Case

In the random-variable case, all forms of dominance are defined independently of an agent’s willingness to trade.
Furthermore, a respect for a chosen form of dominance can be enforced while the agent is stating preferences. The
same is not true for the horse-lottery case, where dominance is defined based on an existing total trading system. If that
trading system does not respect dominance, the agent either has to start over or can try to modify the stated preferences.

There is a way for the agent to enforce respect for a chosen form of dominance, but it places restrictions on the
order in which preferences can be stated. To mimic the random-variable case, for eachX, Y ∈  , the agent needs to be
able to determine, prior to saying which trades between X and Y are acceptable, whether X ≺Dom Y or Y ≺Dom X or
neither. To do this,one needs a partition  of Ω into non-null events that satisfy the first two bullets of Assumption 7.
The agent also needs to be willing to require preferences to satisfy the third bullet.

If the agent wishes to respect weak dominance, then all states will be non-null, and  can be taken to be
{{!} ∶ ! ∈ Ω}. The agent would first determine whether X ≺ Y |{!} or Y ≺ X|{!} or neither. Such comparisons
reduce to checking, for each x, y ∈ !, how xI{!} and yI{!} compare. Once all such determinations are made, weak
dominance is defined on all of Ω, and all instances of X ≺Dom Y can be labelled as X ≪ Y before the rest of the
trading system is determined.

If the agent wishes only to respect strict dominance, the agent needs to determine, for each B ∈  and each
(x, y) ∈ (B)2, whether x ≺ y|B. If so, the agent then declares that x ≺ y|C for every non-null subset C of B. As
above, strict dominance is now defined on all of Ω, and all instances of X ≺Dom Y can be labelled as X ≪ Y before
the rest of the trading system is determined.
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4.9. Conditional Trading
Conditional preference (see Definition 15) can be interpreted as a willingness to trade given that some event occurs.

Throughout this section, assume the conditions of Definition 18 and Theorem 3. In particular:
•  = ( , ≾, ≺) is a coherent total trading system with standard-linear representing function U .
• Σ is a field of events for which Assumption 6 holds.
• A numeraire Z for Σ exists with corresponding probability P as in Lemma 7.
• There exists a state-dependent utility UZ ∶ Ω → *IR such that U (X) = U (Z)P [UZ (⋅, X(⋅))].
The following result is straightforward from standard-linearity of U .

Proposition 6. Let E1,… , En be a finite partition of Ω. If X ≾ Y |Ej for j = 1,… , n, then X ≾ Y . If, in addition,
X ≺ Y |Ej for at least one j, then X ≺ Y .

In the spirit of conditioning on an event, the following result shows how to restrict a trading system on a state space
Ω to a smaller state space consisting of an element E of Σwith P (E) > 0. The restrictionX|E of a function to a subset
E of its domain is defined to be the function

X|E(!) = X(!) for all ! ∈ E,
which maps E into the codomain of X. The corresponding restriction of a field Σ is ΣE = {A ∩ E ∶ A ∈ Σ}.
Lemma 9. Let E be a non-null element of Σ, and define

• E = {X|E ∶ X ∈ }, and

• ≾E to mean X|E ≾E Y |E if and only if X ≾ Y |E.

Then, E = (E , ≾E , ≺E) is a total trading system with representing functionUE(X|E) = U (XIE), and which satisfies
Assumption 6. If P (E) > 0, then (a)Z|E is a numeraire for ΣE with associated probability PE(B) = P (B∩E)∕P (E),
and (b) there is an expected state-dependent utility representation for UE with respect to PE . Finally, if dominance in
 means weak dominance, then E is coherent with weak dominance.

Proof. It is straightforward that ≾E is a well-defined total preorder on E as is the fact that Assumptions 1–4 hold in
E . Since U is standard-linear and the operation of restriction to E commutes with linear combinations, it follows that
UE is also standard-linear. Since X ≾ Y |E means XIE ≾ Y IE , it is clear that UE represents E . For Assumption 6,
the appropriate field is ΣE , and the assumption holds in E .Next, assume that P (E) > 0 so that 0 ≾ Z|E and Z|E is a numeraire for ΣE . Since U (ZIE) = P (E) and
U (ZIB∩E) = P (B ∩ E), the probability associated with Z|E is PE as stated. Also, for each X ∈  ,

UE(X|E) = U (XIE) = P [U∗Z (⋅, X(⋅))IE]
= PE[U∗Z (⋅, X(⋅))]P (E)
= PE[U ′Z,E(⋅, X|E)],

where U ′Z,E(!, x) = U∗Z (!, x)P (E) for ! =∈ E and x ∈ !.
Finally, assume that dominance in  means weak dominance. IfX|E ≺Dom Y |E in E , thenX|E ≤ Y |E , and thereis ! ∈ E such that X|E(!) < Y |E(!) so it follows that XIE ≺Dom Y IE and XIE ≺ Y IE in  . Hence X|E ≺E Y |E ,and Assumption 5 holds in E .

As a corollary, we have a version of the law of total probability/expectation for conditional trading systems. Note that,
if E is a non-empty null event then P (E) = 0 and UE(X|E) = 0 for all X ∈  .
Corollary 3. Let n be a standard finite integer, and let E1,… , En be a partition of Ω into non-empty events. Then, for
each X ∈  ,

U (X) =
n
∑

j=1
UEj (X|Ej )P (Ej).
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The following example illustrates why coherence of E in Lemma 9 requires P (E) > 0 for uniform and strict
dominance.
Example 8 (Continuation of Examples 3 and 4). Recall that the trading system  is coherent using either uniform or
strict dominance, and that the setE = {11, 12,…} is non-null. The two probabilities P1 and PG computed in Example 4
differ most notably by the fact that P1(E) = 0 while PG(E) > 0. Suppose that we try to restrict the trading system
to the set E as is done in Lemma 9. With Z = 1 as numeraire, P1(E) = 0, so Lemma 9 doesn’t apply. In particular,
0 ∼ 1|E which violates all forms of dominance. WithZ = G as numeraire, PG(E) > 0, but U∗G(!, x) = x∕!. In orderfor X to uniformly dominate 0 there must be a standard � > 0 such that X(!)∕! > � for all !. A necessary condition
for this is �X > 0, so only some unbounded functions uniformly dominate 0, and all X ∈  with �X > 0 satisfy
0 ≺ X|E. So  ′ is coherent using uniform dominance with numeraire G. Finally, recall that  ′ is not coherent using
strict dominance because 0 ∼ 1|E, despite the fact that  is coherent using strict dominance. ⋄

5. Discussion
The major contributions of this paper are
• a systematic representation of coherent preferences amongst random variables or horse lotteries regardless of

how strong is the form of dominance that one wishes to respect,
• the use of nonstandard models of the reals to represent non-Archimedean preferences,
• an extension theorem from one standard-linear space of random variables to a larger space,
• an expected utility interpretation for the nonstandard representation in special cases (including those of existing

theories,) and
• a derivation of conditional preferences.
Some, but not all, of the examples of non-Archimedean preferences arise from the use of weak dominance in the

definition of coherence. For example, it is impossible to have an Archimedean preference structure that respects weak
dominance on the set of random variables defined on an uncountable state space.

Weak dominance is the weakest of the three dominance concepts in Definition 8. Weak dominance is the same as
the form of dominance used to define inadmissibility in statistical decision theory. The strongest of the three dominance
concepts is the one used in de Finetti’s theory, namely uniform dominance. Strict dominance is intermediate to the other
two. Since dominance is used to prevent calling a trading system coherent, the stronger the dominance condition, the
weaker the sense of coherence, i.e., the easier it is to call a trading system coherent. Since some of our results use the
weakest form of dominance, those results use the strongest form of coherence.

There is room for future work. Assumption 7, in the presence of the other assumptions, is sufficient to prove the
existence of an expected-utility representation of preference, but it is not necessary. If we define the finitely-additive
signed measure �X(B) = U (XIB) for B ∈ Σ, then U∗Z (⋅, X(⋅)) behaves like a Radon-Nikodym derivative of �X with
respect to P in Theorem 3. The missing necessary condition would be equivalent to a Radon-Nikodym theorem for
nonstandard-valued finitely-additive signed measures. A standard-valued finitely-additive Radon-Nikodym theorem
for bounded measures was proved by Maynard (1979), but it is heavily dependent on standard real numbers. Here is
an example of a total trading system with an expected-utility representation that fails Assumption 7.
Example 9. Let Ω = (0, 1) with  = {a, b, c} and Σ being the field generated by the intervals (the unions of
finitely many disjoint intervals, including singletons.) Each r ∈ , the set of all lotteries, is a simple probability
(r({a}), r({b}), r({c})). Let V ∗(!, r) = !r({b})+ r({c}). This corresponds to a having utility 0 in every state, b having
utility! in state!, and c having utility 1 in every state. Let be the set of functions ℎ ∶ Ω→  such that V ∗(!, ℎ(!))
is a Borel-measurable function of !. We will work in the space  rather than 0 where possible. Define

V (ℎ) = ∫

1

0
V ∗(!, ℎ(!))d!.

Let ℎ ≾′ g mean V (ℎ) ≤ V (g). LetZ = ℎc −ℎa, where ℎc(!) = (0, 0, 1) for all ! and ℎa(!) = (1, 0, 0) for all !. Then
V ∗(!, ℎa) = 0 and V ∗(!, ℎc) = 1 for all !. This makes Z ∈ 0 a numeraire, and V ∗ is actually V ∗Z in the notation of
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Section 4.6. The probability corresponding to Z is Lebesgue measure on (Ω,Σ). Every non-null event B contains an
interval C . Let � be the midpoint of C , and partition C = C1

⋃

C2 by splitting at the midpoint, which makes C1 and
C2 non-null. Notice that (0, 1, 0) ≺′ (1 − �, 0, �)|C1 and (1 − �, 0, �) ≺′ (0, 1, 0)|C2. Hence no partition of the kind
required by Assumption 7 exists. ⋄
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A. Overview of Nonstandard Models
This appendix is intended to give only examples and an intuitive overview of the concept of nonstandard models

of the reals. Those needing a more thorough understanding should read one of the many treatments such as Robinson
(1996).

A nonstandard model of the reals is an embedding of the real numbers IR into a superset *IR that preserves many
of the familiar properties of the reals (e.g., being a linearly ordered algebraic field) while introducing others that are
convenient for certain analyses (e.g., “infinite” numbers that obey the usual rules of arithmetic.) (For convenience, we
take IR to be a nonstandard model of the reals, despite its being standard.)
Definition 20. A linearly-ordered algebraic field that contains the standard reals IR as a subfield is called a nonstandard
model of the reals.
In this paper, each nonstandard model  of the reals (other than IR) will be non-Archimedean in one of the many
equivalent senses, such as the following: There exist x, y ∈  with x < y such that nx < y for every standard integer
n. For those with more knowledge of nonstandard models, our analysis is entirely external. The formal meaning of
“external” is not important here, but it includes the ability to refer to subsets of the standard reals (the familiar IR) as
subsets of *IR. The cost of an external analysis includes, among other things, the inability to carry theorems and proofs
back and forth between the standard and nonstandard models. The external approach also requires us to distinguish
between standard and nonstandard notions of finite, infinite, and countable. The main thing that we gain from the
external approach is the non-Archimedean nature of *IR as opposed to IR. One manifestation of a non-Archimedean
property is the non-existence of suprema and/or infima for certain bounded external subsets of *IR.

Next, we describe a popular class of nonstandard models of the reals known as ultraproducts. They rely on the
concept of ultrafilter.
A.1. Ultrafilters
Definition 21. Let be a set. A nonempty subset of 2 is called an ultrafilter on if it has the following properties:

• (A ∈  ) ∧ (A ⊆ B) implies B ∈  .
• (A ∈  ) ∧ (B ∈  ) implies A ∩ B ∈  .
• For each A ⊆  either A ∈  or AC ∈  but not both.

The simplest example of an ultrafilter is to let z0 ∈  and define
 = {A ⊆  ∶ z0 ∈ A}.

Such an ultrafilter is called principal. All other ultrafilters are called non-principal.
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Ultrafilters on  are equivalent to 0 − 1-valued probabilities on . It is straightforward to show that a (possibly
finitely-additive) probability P defined on (, 2) takes only the values 0 and 1 if and only if {A ⊆  ∶ P (A) = 1}
is an ultrafilter. Principal ultrafilters correspond to countably-additive probabilities, while non-principal ultrafilters
correspond to merely finitely-additive probabilities. The existence of ultrafilters for general sets  depends on the
axiom of choice. Theorem 7.1 of Comfort and Negrepontis (1974) gives a simple condition that insures that a subset
of 2 can be extended to an ultrafilter. That theorem relies on the following concept.
Definition 22. A nonempty collection  of subsets of a set  has the finite intersection property if the intersection of
every nonempty finite collection of elements of  is nonempty.
Theorem 7.1 of Comfort and Negrepontis (1974) then says that if  has the finite intersection property, then there is
an ultrafilter  ⊇  .
Example 10. Let  = ZZ, the positive integers. Let  be the collection of all subsets of the form {n, n+ 1, n+ 2,…}.
There are many ultrafilters that contain . All such ultrafilters are non-principal, and they all correspond to merely
finitely-additive probabilities. The reason is that, if  ⊆  and n0 ∈ ZZ, then {n0+1, n0+2,…} ∈  , so P ({n0}) = 0.
⋄

A.2. Ultraproducts
In this section we introduce a popular method of constructing and extending nonstandard models of the reals. The

construction and extension of nonstandard models are viturally identical. In what follows, the initial construction uses
 = IR, the standard reals. Later extensions (if needed) use  equal to an existing nonstandard model.

Let  be an infinite set, let  be an ultrafilter on , and let  be a nonstandard model of the reals (possibly IR
itself.) The elements of  are functions from  to  . Define a binary relation of  by

f ∼ g if and only if {z ∈  ∶ f (z) = g(z)} ∈  .

It is easy to see that∼ is an equivalence relation because the intersection of finitely many elements of is in . Call
* = ∕ ∼ (the set of equivalence classes corresponding to ∼ ) the ultraproduct corresponding to  , and .
The embedding of  into * (which we call the natural embedding) is x↦ [dx] , where (for x ∈  ) dx ∈  is the
constant function dx(z) = x for all z ∈ . We take the liberty of using the symbol x to stand for [dx] when x ∈  .
If is a principal ultrafilter with {z0} ∈  , then *IR is essentially  because g ∈ [dg(z0)] for every g ∈ . The
classic ultraproducts are those that start with  = IR,  = ZZ (the positive integers,) and  a non-principal ultrafilter
on .

The following examples of ultraproducts are non-Archimedean extensions of the standard real numbers, and we
will use one of them the first time that we need to construct nonstandard numbers.
Example 11. Let  = ZZ, let  be a non-principal ultrafilter of subsets of  that contains {n, n + 1,…} for every
integer n, and let  = IR. Let *IR denote the ultraproduct nonstandard model * in the above construction. Let
f (n) = 1∕n for all n. It is easy to check that [f ] < x for every strictly positive standard real x. Just note that each
set of the form {n ∶ f (n) < x} equals {mx, mx + 1, mx + 2,…} where mx is the first integer m such that m > 1∕x. At
the other extreme, let g(n) = n for all n. Then [−g] < x < [g] for every standard x. Finally, let x be an arbitrary
finite standard. For every standard y < x and every standard z > x, we have y < [f − x] < x < [f + x]U < z. In
words, *IR includes numbers that are squeezed in between x and every standard less than (or greater than) x. In this
way *IR is non-Archimedean. ⋄

Definition 23. A nonstandard z such that |z| < y for every positive standard y is called infinitesimal. A nonstandard z
such that |z| > y for every positive standard y is called externally infinite. A nonstandard that is not externally infinite
is called externally finite.
The infinitesimals and standard reals are externally finite, as are hybrid nonstandards such as 1 + x, where x is
infinitesimal.
Lemma 10. The ultraproducts constructed at the start of this section are nonstandard models of the reals.
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Proof. The extension of ≤ to * is [f ] ≤ [g] if {z ∶ f (z) ≤ g(z)} ∈  . This ≤ is a linear order on * . The
extension of each arithmetic operation ◦ ∈ {+,−,×, ∕} to * is [f ] ◦[g] = [f◦g] .6 All of these extensions
are well-defined because is closed under finite intersections of its elements. The additive identity (zero element) in
* is [0] where 0 is the additive identity in  . Similarly, the multiplicative identity (1 element) in * is [1] .
The additive and multiplicative inverses of an element [f ] are respectively [−f ] and [1∕f ] , the latter applying
only when f is not the zero element of  .
It is straigtforward that each ultraproduct extension of a non-Archimedean nonstandard model of the reals is also
non-Archimedean.
Lemma 11. Each externally finite nonstandard x has a nearest standardℜ(x).

Proof. If x is itself standard, no other standard is closer to x, so ℜ(x) = x. For the remainder of the proof, assume
that x is not itself standard. Let L = {z ∈ IR ∶ z < x} and U = {z ∈ IR ∶ x < z}. Then both L and U are nonempty,
L ∩U = ∅, and L ∪U = IR. Also, each element of U is an upper bound for L and each element of L is a lower bound
for U . Since both L and U are sets of standards, supL = inf U , and we call the common value x′, which is standard.
We now show that ℜ(x) = x′ is the nearest standard to x. Let z < x′ so that z < (z + x′)∕2 < x′. Since (z + x′)∕2 is
closer to x than z, no standard less than x′ is closer to x. Similarly, let y > x′ so that (y + x′)∕2 is closer to x than y,
so no y < x′ is closer to x.
We callℜ(x) the standard part of x. Note that x and z have the same standard part if and only if x− z is infinitesimal.
For convenience, we say that the standard part of an externally infinite x is infinite and express the fact as ℜ(x) = ∞
orℜ(x) = −∞ as appropriate. Note that Lemma 11 doesn’t depend on how the nonstandard model is constructed.

The externally finite nonstandards have upper and lower bounds that are externally infinite, but there is neither
a least upper bound nor a greatest lower bound. An example of a bounded external set of nonstandards that has no
supremum or infimum is the following.
Example 12. Let x0 be a standard real, and let A = {x ∶ ℜ(x) = x0}. It is clear that, for every x ∈ A, x + z ∈ A for
every positive infinitesimal z, so no element of A is an upper bound for A. Similarly, no element of A is a lower bound
for A. Hence, every upper bound y for A has standard part ℜ(y) > x0. For every such y, (x0 +ℜ(y))∕2 is an upper
bound for A that is smaller than y. Similarly, for every lower bound z for A, (x0 +ℜ(z))∕2 is a larger lower bound for
A. Hence, A has neither a greatest lower bound nor a least upper bound. ⋄

In the theorems of Section 2, we assign numerical values to objects in a trading system sequentially. There are two
different situations when the number system we are using does not have a value that is appropriate for the next object.
One situation arises when the next object to be assigned a value is strictly preferred (dispreferred) to every element
of a set B and each number in  is already less (greater) than or equal to the value assigned to an element of B. In
this case, we need to expand  to include values that are larger (smaller) than everything already in  . The second
situation arises when the next object needs to be assigned a value strictly between two non-empty sets B1 and B2 thatalready partition  . The following lemma shows how to extend a number system  in each of those situations.
Lemma 12. Let  be a nonstandard model of the reals.

1. There exists a nonstandard model * of the reals such that (i)  is naturally embedded in * and (ii) there exist
z−, z+ ∈ * such that z− < x < z+ for all x ∈  .

2. Let B1 ⊆  and B2 = BC1 . Suppose that, for all b1 ∈ B1 and all b2 ∈ B2, b1 < b2. There exists a nonstandard
model * of the reals such that (i) is naturally embedded in * and (ii) there exists z ∈ * such that b1 < z < b2
for all b1 ∈ B1 and b2 ∈ B2.

Proof. If  = IR, the nonstandard model of Example 11 satisfies both claims 1 and 2. If  is already nonstandard, start
with claim 1. Let =  , and let  be the collection of all subsets of of the form {z ∈  ∶ z > z0} for some z0 ∈ .
The collection  has the finite intersection property because every finite subset of  has a maximum element. Let 
be an ultrafilter of subsets of  that contains , so that  is non-principal. Let * be the corresponding ultraproduct
nonstandard model. Then  is naturally embedded in * . Let f (z) = z define a function in . The equivalence class

6[f∕g] is defined if and only if {z ∶ g(z) = 0} ∉  , which is equivalent to [g] ≠ [0] .
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[f ] is greater than every element of  by construction and [−f ] is smaller than every element of  . For claim 2, if
B1 has a least upper bound b, then b is also a greatest lower bound for B2. In this case x = b + [1∕f ] satisfies claim
2 if b ∈ B1, and x = b − [1∕f ] satisfies claim 2 if b ∈ B2.The only case remaining is claim 2 when B1 has no least upper bound. In this case, let  = B2 with  being the
collection of sets of the form {z ∈  ∶ z < z0} for some z0 ∈ . Then  has the finite intersection property. Let 
be a (non-principal) ultrafilter that contains , and let f (z) = z for all z ∈ . The equivalence class [f ] > b1 for all
b1 ∈ B1 because every f (z) > b1. Also, [f ] < b2 for all b2 ∈ B2 because {z ∶ f (z) < b2} ∈  .

Some of our results rely on the possibility of applying Lemma 12 infinitely many times, in a well-ordered manner.
To be specific, let Γ be an ordinal. Let 0 = IR. For each successor  ≤ Γ, let  be the result of applying Lemma 12 to
−1. For each limit  ≤ Γ (if any), let − = ⋃

�< � . It is straightforward to show that − is a nonstandard model
of the reals when  is a limit ordinal.
A.3. Some Notes About Infinity

The use of the symbol ∞ to stand for “larger than every standard number” has a long history, and rarely causes
trouble when discussing standard reals. Certain conventions allow some arithmetic with∞. For example,

• for all finite x,∞+ x = ∞, and
• for all finite, non-zero x, x∞ equals ±∞, with the sign matching that of x.

However, there is no place for standard infinity in a nonstandard model of the reals. Externally infinite, but internally
finite, nonstandards replace standard infinity, and they require no special conventions to allow internally finitary
arithmetic. Whenever we need to represent something in a nonstandard model that is larger than every number in the
model, we appeal to Lemma 12 which essentially iterates the ultraproduct construction to produce a larger nonstandard
model that contains internally finite numbers to represent what we need.
A.4. Countable Additivity

Nonstandard models of the reals are designed to have all of the finitary properties of the reals along with non-
Archimedean structure. One must be careful not to expect everything that one knows about infinite sets of standard
reals to apply to nonstandards. We already saw examples of bounded sets with no suprema or infima. (See Example 12.)
A related property is that externally countable sums do not behave the same in nonstandard arithmetic as they do in
standard arithmetic. See Section 4.3 of Halpern (2010) for more discussion of this point. For example, when the
sequence of finite partial sums of a standard positive countable sequence is bounded, one can define the sum of the
entire sequence to be the supremum of the partial sums. The same is not always possible for nonstandards.
Example 13. Let � > 0 be infinitesimal, and let xn = �∕2n for each standard positive integer n. One might think that
that ∑∞

n=1 xn = �. However, we show next that, despite the fact that the sequence of finite partial sums is bounded,
there is no least upper bound. Clearly, each finite partial sum ym =

∑m
n=1 xn < � for every standard positive integer

m, so that � is an upper bound on the finite partial sums. Let w be an arbitrary finite upper bound on the finite partial
sums. Next, we show that there is a smaller upper bound than w.

Let z = �2 so that z < xn for every standard positive integer n. It follows that, for each standard positive integer m,
ym + xm+1 < w,

ym + z < w,
ym < w − z.

Hence w − z is a smaller upper bound on the sequence of partial sums. ⋄

The remainder of this section is devoted to exploring the extent to which one canmake sense of the sum of externally
countably many elements of a nonstandard model of the reals. First, we note that the sequence of finite partial sums
{

ym =
∑m
k=1 xk

}∞
m=1 of an externally countable sequence {xk}∞k=1 in a nonstandard model of the reals converges to an

element x of the same model if and only if {|ym−x|}∞m=1 converges to 0. So, we state our results in terms of externally
countable sequences of strictly positive numbers converging to 0. To say that a strictly positive externally countable
sequence {wk}∞k=1 converges to 0 means that, for every � > 0 in the model, there is a standard integerN� such that forall k > N� , wk < �. To show that such a sequence fails to converge, we need to find an � > 0 in the model such that
wk > � for infinitely many k. The first step is the following.
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Lemma 13. Let *IR be the nonstandard model in Example 11. No externally countable sequence of strictly positive
elements of *IR converges to 0.

Proof. Let {tk}∞k=1 be an externally countable sequence of strictly positive elements of *IR. Represent each tk =
[(yk,1, yk,2,…)] , where  is the appropriate ultrafilter. Since each tk > 0, we can assume without loss of generality
that yk,n > 0 for all k, n. Construct another strictly positive nonstandard u = [(v1, v2,…)] as follows. Let
0 < v1 < y1,1, and for each n > 1, let 0 < vn < min{y1,n,⋯ , yn,n}. For each k,

{n ∶ 0 < vn < yk,n} ⊇ {k, k + 1,…} ∈  .

Hence, 0 < u < tk for all k.
The next step is to extend the conclusion of Lemma 13 to further applications of Lemma 12.

Lemma 14. Let  be a nonstandard model of the reals such that no externally countable sequence of strictly positive
elements of  converges to 0. Apply Lemma 12 to create * . Then no externally countable sequence of strictly positive
elements of * converges to 0.

Proof. Let  and  be the set and ultrafilter used in the extension of  to * . Let {[xk] }∞k=1 be an externally
countable sequence of strictly positive elements of * . For each z ∈ , {xk(z)}∞k=1 is an externally countable
sequence of strictly positive elements of  , hence there exists �(z) > 0 in  such that xk(z) > �(z) for all k. Then
[xk] > [�] > 0 for all k, and {[xk] }∞k=1 does not converge to 0 in * .

Recall that convergence of an externally countable sum to an element x of a nonstandard model of the reals requires
convergence to 0 of the difference between x and the finite partial sums. Since convergence to 0 of a countable sequence
in nonstandard models of the reals is so difficult to ensure, we assume only that probabilities are finitely additive.
Furthermore, the non-Archimedean nature of the preferences that we model leads to utilities being nonstandard-
valued. Integrating a nonstandard-valued function with respect to countably-additive probability runs into the same
problems we just exhibited for nonstandard-valued probabilities. The limits required to define the integral of a non-
simple nonstandard-valued function do not exist in general. The next section discusses a finitely-additive definition of
expected value that is suitable for use with nonstandard-valued functions and/or probabilities.

B. Expected Values for Nonstandard-Valued Functions
In the theory of countably-additive probability and expected value for standard-valued functions, each probability

P on a measurable space (,Γ) has a unique extension from indicators of elements of Γ to an expected value for all
bounded measurable functions and for all non-negative measurable functions (where∞may be the resulting expected
value.) Finally, there is a unique extension to all functions whose positive and negative parts don’t both have∞ as their
expected valued. The first step is the trivial extension to the simple functions, those that assume only finitely many
values. This trivial extension applies equally well in the nonstandard-valued and/or the finitely-additive cases, namely

P

( n
∑

j=1
ajIAj

)

=
n
∑

j=1
ajP (Aj).

The extension of expected value to a bounded measurable function f is done by a sequence of uniform
approximations of f by a sequence of pairs of simple functions {(fn,<, fn,>}∞n=1 where fn,<(z) ≤ fn,>(z) and
fn,>(z)−1∕n ≤ f (z) ≤ fn,<(z)+1∕n for all z ∈  and all n ∈ ZZ+. The sequences of expected values {P (fn,>)}∞n=1 and
{P (fn,>)}∞n=1 both converge to the same number, and that number is P (f ). This feature applies in the finitely-additive
standard-valued case, but not so much to nonstandard-valued cases. In particular, we can get uniform approximations
of bounded functions by simple functions to within each positive standard value, which allows us to pin down the
standard part of P (f ), but we cannot uniquely determine the value of P (f ) from these simple functions alone. To
get a uniform approximation to within an infinitesimal amount requires a “simple” function with an externally infinite
nonstandard integer number of terms. The sum of countably many nonstandard values is generally not possible to
define, and countably-additive probabilities are not generally additive over an externally infinite nonstandard number
of values.
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The standard-valued countably-additive extension to a non-negative measurable function f is done by
P (f ) = sup

simple g ≤ f
P (g), (14)

which is still possible in the standard-valued finitely-additive case. In the nonstandard-valued cases, there are many
sets of finite numbers, even bounded sets of finite numbers, for which no supremum (least upper bound) exits, as
noted in Appendix A. So, one cannot use (14) to define the expected value of a non-negative nonstandard-valued
function. Instead, P (f ) must be at least as large as P (g) for every simple g ≤ f . This makes expected values
of unbounded standard-valued functions and general nonstandard-valued functions non-unique extensions of the
underlying probabilities, be they countably-additive or merely finitely-additive. Example 8 in Section 4.9 is a case
of a countably-additive probability with a finitely-additive extension to unbounded functions.

The implications of the non-uniqueness of extensions are handled as follows. In the finitely-additive standard-
valued case, it is coherent, in the sense of de Finetti (1974) and for a single unbounded non-negative function f , to
assign a value to P (f ) that equals the right-hand side of (14) plus c for c > 0. However, doing so has implications
for the expected values of other unbounded non-negative functions. Our extension Theorems 1 and 2 are set up to
take into account all of those implications if and when they arise. The reader should also note that, (14) often forces
P (f ) = ∞ because there can be simple functions g ≤ f with arbitrarily large P (g). In our nonstandard approach,
we would assign a nonstandard externally infinite expected value as P (f ). In fact, the very idea of what counts as
“bounded” or “unbounded” changes when nonstandard externally infinite numbers are being used.

For the above reasons, we use Definition 19 to define expected values of nonstandard-valued functions with respect
to a finitely-additive (or even a countably-additive) probability P . Essentially, an expected-value functional W with
respect to P is a standard-linear mappingW ∶ → *IR, where is a standard-linear space of (possibly nonstandard-
valued) functions that includes the indicators of the sets on which P is defined as well as other functions for which one
desires expected values. The functionalW needs to have two additional properties: (i) g ≤ f impliesW (g) ≤ W (f )
(monotonicity) and (ii)W (1) = 1 (normalized.) Each finitely-additive probability P has multiple extensions to each
that includes non-simple (even unbounded) functions. Each extension involves the space of functions whose expected
values need to be computed as well as the specific expected values assigned to the functions. For each finitely-additive
probability P and each standard-linear space  of functions whose expected values we want, there is a convex set
P , of possible extensions of P to  .

Our assumptions refer to an agent’s willingness to engage in various trades amongst elements of a set  . If the
agent’s willingness to trade satisfies our assumptions, then there is a (possibly nonstandard-valued) function U on 
that represents the trades that the agent is willing to make. We then show that U (X) can be interpreted as an expected
value of a state-dependent utility of the value of X in state ! with respect to a probability over (Ω,Σ). Unless we
impose more restrictions on which trades an agent should be willing to make, i.e., make more restrictive assumptions,
the inferred expected-value functionals could be arbitrary elements of P , .

C. Lengthy Proofs
This appendix contains the lengthier proofs of the results in the main paper.

C.1. Proof of Lemma 2
If  ′ =  , then  ′ =  satisfies the conclusions of the lemma. For the remainder of the proof, assume that  is a

proper subset of  ′.
We start with the case in which it is not required that  ′ be coherent. Define ≾′ on  ′ as follows: For X, Y ∈  ′,

X ≾′ Y if Y − X ∈  . Then ≾′ is an extension2 of ≾. If ≪ on  is nonempty, define ≪′ on  ′ as follows:
For X, Y ∈  ′, X ≪′ Y if 0 ≪ Y − X. Since 0 ∈  , Assumption 1 holds. For Assumption 2, suppose that
X, Y ,X′, Y ′ ∈  ′ with Y −X = Y ′−X′. ThenX ≾′ Y if and only if Y ′−X′ = Y −X ∈  if and only ifX′ ≾′ Y ′.
For Assumption 3, suppose that Xj ≾′ Yj for and �j > 0 is standard for j = 1, 2. Then

�1Y1 + �2Y2 − (�1X1 + �2X2) = �1(Y1 −X1) + �2(Y2 −X2) ∈  ,

hence �1X1 + �2X2 ≾′ �1Y1 + �2Y2. For Assumption 4 on  ′, only the final two bullets need to be proven. To
that end, (X ≪′ Y ) ∧ (Y ≾′ Z) implies [0 ≪ (Y − X)] ∧ [0 ≾ (Z − Y )], and (X ≾′ Y ) ∧ (Y ≪′ Z) implies
[0 ≾ (Y −X)] ∧ [0≪ (Z − Y )]. Each of the last two implies 0≪ (Z −X), hence X ≪′ Z.
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If  is coherent and it is desired that  ′ be coherent, define ≾′ on  ′ as follows: For X, Y ∈  ′, X ≾′ Y if there
is V ∈  such that V ≤ Y −X. Then ≾′ extends2 ≾ and  ′ satisfies the final claim of the lemma. Define≪′ on  ′

as follows: For X, Y ∈  ′, X ≪′ Y if there is V ∈  such that either V ≺Dom Y − X or 0 ≪ V ≤ Y − X. This
makes  ′ satisfy Assumption 5. Since 0 ∈  and 0 ≤ X −X, Assumption 1 holds. For Assumption 2, suppose that
X, Y ,X′, Y ′ ∈  ′ with Y −X = Y ′−X′. ThenX ≾′ Y if and only if there is V ∈  such that V ≤ Y −X = Y ′−X′

if and only if X′ ≾′ Y ′. For Assumption 3, suppose that Xj ≾′ Yj and �j > 0 is standard for j = 1, 2. For j = 1, 2, let
Vj ∈  be such that Vj ≤ Yj −Xj . Then V = �1V1 + �2V2 ∈  , and

V ≤ �1Y1 + �2Y2 − (�1X1 + �2X2).

hence �1X1 + �2X2 ≾′ �1Y1 + �2Y2. For Assumption 4 on  ′, the first bullet is immediate from the definition of ⊲′.
For the last two bullets,

(X ≪′ Y ) ∧ (Y ≾′ Z) implies X ≪′ Z, and
(X ≾′ Y ) ∧ (Y ≪′ Z) implies X ≪′ Z,

there are several things that could lead to the left-hand clauses:
(i) there is V1 ∈  such that V1 ≺Dom Y −X,
(ii) there is V2 ∈  such that 0≪ V2 ≤ Y −X,
(iii) there is V3 ∈  such that V3 ≤ Z − Y ,
(iv) there is V4 ∈  such that V4 ≤ Y −X,
(v) there is V5 ∈  such that V5 ≺Dom Z − Y ,
(vi) there is V6 ∈  such that 0≪ V6 ≤ Z − Y .

Similarly, there are two ways to achieve the right-hand clause(s):
(vii) there is V7 ∈  such that V7 ≺Dom Z −X,
(viii) there is V8 ∈ T such that 0≪ V8 ≤ Z −X.
We need to prove two implications based on the above possibilities:

1 [{(i) or (ii)} and (iii)] implies [(vii) or (viii)], and
2 [(iv) and {(v) or (vi)}] implies [(vii) or (viii)].

For 1, [(i) and (iii)] implies V1+V3 ≺Dom Z−Y +Y −X = Z−X, which implies (vii) with V7 = V1+V3. Alternatively,[(ii) and (iii)] implies 0 ≪ V2 + V3 ≤ Y − X + Z − Y = Z − X, which implies (vii) with V8 = V2 + V3. For 2, (iv)and (v) implies V4 +V5 ≺Dom Y −X +Z − Y = Z −X, which implies (vii) with V7 = V4 +V5. Alternatively (iv) and(vi) implies 0≪ V4 + V6 ≤ Z − Y + Y −X = Z −X, which implies (viii) with V8 = V4 + V6.
C.2. Lemma 15 and Its Proof

The proofs of Theorems 1 and 2 are transfinite inductions. Lemma 15 is a template for the successor ordinal steps
in the transfinite inductions. Lemma 3 (whose proof is in Appendix Appendix C.3) is the remainder of the transfinite
induction, including the limit ordinal steps.

The proof of Lemma 15 uses an argument that resembles the proof of de Finetti’s fundamental theorem of prevision.
The main step is constructing bounds for the possible values of the agreeing function (prevision in de Finetti’s case,
U in Theorem 1) at a new object Z given previously chosen values of the agreeing function. In de Finetti’s theorem,
one uses existing previsions of random variables X for which either X ≤ Z or Z ≤ X. In Theorem 1, we replace
prevision by an agreeing function U , and we replaceX ≤ Z by a combination ofX ≾ Z,X ≪ Z, and/orX ≺Dom Z.
Additional steps are needed to deal with strict preferences of a non-Archimedean nature and with sets of nonstandards
that don’t have suprema and/or infima.
Lemma 15. Assume the following structure:
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•  and are linear spaces of functions from Ω to  with  a proper subset of  .

• Y = ( , ≾ , ≺ ) is a total trading system that is represented by the standard-linear function U ∶  → *IR,
where *IR is a nonstandard model of the reals.

•  = ( , ≾ ,≪ ) is the extension2 of Y obtained from Lemma 2.

Let Z ∈  . Let  be the standard-linear span of 
⋃

{Z}. Then U can be extended to a standard-linear function
U ′ ∶  → *IR′, where *IR′ contains *IR and such that U ′ represents a total trading system  ′ = (, ≾′, ≺′) that is an
extension2 of Y . Also, if  is coherent, then  ′ can be chosen to be coherent.

Proof. If coherence is an issue, note that dominance has the same type (uniform, strict, or weak) in both  and , so
we will use the same notation X ≺Dom Y to mean that Y dominates X regardless of whether X, Y are both in  , both
in or one in each. We have

 ⧵  = {�Z +X ∶ X ∈  , � ∈ IR ⧵ {0}}. (15)
It is straightforward to show that the representation of elements of  ⧵ in (15) is unique. Define U ′(X) = U (X) for
X ∈  .

Start with the case in which there is Y ∈  such that Y ∼ Z. In this case, set U ′(Z) = U (Y ), *IR′ = *IR, and
U ′(�Z +X) = �U ′(Z) + U (X), (16)

for all other elements of. Set ≾′ to be the total preorder on that U ′ represents. The only thing that remains to show,
in this case, is that  ′ = (, ≾′, ≺′) is coherent if  is coherent. Suppose that �Z +W ≺Dom �′Z + Y , for �, �′
standard andW ,Y ∈  . If � = �′, thenW ≺Dom Y andW ≪ Y , soW ≺ ,W ≺′ Y , and �Z +W ≺′ �Z + Y . If
� > �′, thenZ ≺Dom (Y −W )∕(� − �′) andZ ≺ (Y −W )∕(� − �′). LetX ∼ Z. ThenX ≺ (Y −W )∕(� − �′),
X ≺ (Y −W )∕(� − �′), X ≺′ (Y −W )∕(� − �′), and Z ≺′ (Y −W )∕(� − �′). Hence �Z +W ≺′ �Z + Y . A
similar argument works of � < �′.

For the remainder of the proof, assume that for all X ∈  , ¬(X ∼ Z). We start by choosing a value for U ′(Z).
After that, we make U ′ standard-linear by defining it through (16). Then, we show that setting ≪′ to ≺′ satisfies
Assumption 4. Finally, we prove that the trading system  ′ that U ′ represents (recall Lemma 1) is coherent if  is
coherent. Since U ′ extends U ,  ′ extends Y .When we attempt to choose a value for U ′(Z), we need to attend to instances of≪ , if any.

1 = {U (X) ∶ X ∈  , X ≾ Z},
1 = {U (X) ∶ X ∈  , Z ≾ X},
2 = {U (X) ∶ X ∈  , X ≪ Z},
2 = {U (X) ∶ X ∈  , Z ≪ X}.

The definition of ≪ and the fact that U represents Y guarantee that, for j = 1, 2, l < u for all l ∈ j and
u ∈ j . Also, 2 ⊆ 1 and 2 ⊆ 1. (If≪ is empty, then 2 = 2 = ∅.)There are several cases (and subcases) to handle:
(a) Both 1 and 1 are nonempty, and

(a)(i) there is x ∈ *IR such that l ≤ x ≤ u for all l ∈ 1 and u ∈ 1, and at least one such x satisfies
x ∉ 2

⋃

2, or
(a)(ii) there is no x as described in case (a)(i).

(b) 1 is empty, 1 is nonempty, and
(b)(i) there is x ∈ *IR such that x ≤ u for all u ∈ 1, and at least one such x satisfies x ∉ 2, or
(b)(ii) there is no x as described in case (b)(i).
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(c) 1 is empty, 1 is nonempty, and
(c)(i) there is x ∈ *IR such that l ≤ x for all l ∈ 1, and at least one such x satisfies x ∉ 2, or
(c)(ii) there is no x as described in case (c)(i).

(d) Both 1 and 1 are empty.
In cases (a)(i), (b)(i), and (c)(i) set U ′(Z) = x and *IR′ = *IR.
In case (a)(ii), apply claim 2 of Lemma 12 (in Appendix A.2) to find an extension *IR′ of *IR and x ∈ *IR′ such that
l < x < u for all l ∈ 1 and all u ∈ 1, and set U ′(Z) = x.In case (b)(ii), apply claim 1 of Lemma 12 to find an extension *IR′ of *IR and x ∈ *IR′ such that x < u for all u ∈ 1,and set U ′(Z) = x.
In case (c)(ii), apply claim 1 of Lemma 12 to find an extension *IR′ of *IR and x ∈ *IR′ such that x > l for all l ∈ 1,and set U ′(Z) = x.
In case (d), we have two choices. One choice is to let U ′(Z) ∈ *IR and set *IR′ = *IR. The other choice is to apply
either claim of Lemma 12 to find an extension *IR′ of *IR and let x ∈ *IR′.
By construction, we have that U ′ extends U from  to .

We define  ′ = (, ≾′, ≺′) by saying that
X ≾′ Y if and only if U ′(X) ≤ U ′(Y ).

It follows that ≾′ extends2 ≾ from  to . If≪ is empty, the proof is over.
For the remainder of the proof, assume that ≪ is not empty. We must show that, if X, Y ∈  and X ≪ Y ,

then X ≺′ Y . This involves comparing U ′(X) to U ′(Y ) for various X, Y ∈ . Represent such X and Y as in (15) by
X = q(X)Z +X′,
Y = q(Y )Z + Y ′,

with X′, Y ′ ∈  and q(X), q(Y ) ∈ IR. Then
Y −X = [q(Y ) − q(X)]Z + Y ′ −X′, (17)

U ′(Y ) − U ′(X) = [q(Y ) − q(X)]x + U (Y ′ −X′), (18)
where x = U ′(Z). If q(X) = q(Y ), then Y −X = Y ′ −X′,X′ ≺ Y ′, and U ′(Y ) −U ′(X) = U (Y ′ −X′) > 0, so that
X ≺′ Y . If q(X) < q(Y ), then

Y ′ −X′

q(X) − q(Y )
≪ Z,

and x = U ′(Z) > [U (X′ − Y ′)]∕[q(X) − q(Y )] by construction. It follows from (18) that U ′(X) < U ′(Y ), as needed.
If q(X) > q(Y ), a similar argument shows that U ′(X) < U ′(Y ), so  ′ preserves instances of X ≪ Y .

Finally, assume that Y is coherent. It follows from the previous paragraph, that U ′ respects dominance. We
complete the proof by showing that U ′ is monotone. Suppose that X, Y ∈  with X ≤ Y . If q(X) = q(Y ), then
(17) yields 0 ≤ Y ′ −X′ = Y −X and

U ′(Y ) − U ′(X) = U (Y ′ −X′) ≥ 0.

If q(X) > q(Y ), then
X′ − Y ′

q(Y ) − q(X)
≤ Z,

and x = U ′(Z) ≥ [U (X′ − Y ′)]∕[q(Y ) − q(X)] by construction. It follows from (18) that
U ′(Y ) − U ′(X) ≥ U (X′ − Y ′) + U (Y ′ −X′) = 0.

If q(X) < q(Y ), a similar argument shows that U ′(Y ) ≥ U ′(X), so U ′ is monotone.
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C.3. Proof of Lemma 3
The proof proceeds by transfinite induction on ⧵ . Let Λ be an ordinal, and let {X�}0<�<Λ be a well-ordering

of the elements of  ⧵  . Let 0 =  , 0 =  , *IR0 = *IR, and U0 = U . Then the following induction hypothesis
holds for � = 0:

Induction hypothesis: Let � < Λ be an ordinal. There is a total trading system � = (�, ≾�) such that
• � contains {X}≤�,
• ≾� is a total preorder and is an extension2 of ≾ to �,
• � is represented by a standard-linear function U� ∶ � → *IR�, where *IR� is a nonstandard model

of the reals that contains *IR for each  < �, and
• � is coherent if  is coherent.

Next, we deal with an arbitrary successor ordinal  . Assume that the induction hypothesis holds for � =  − 1. We
must prove that the induction hypothesis holds for � =  . Apply Lemma 15 with  = −1, Z = X , U = U−1,
≾=≾−1, and *IR = *IR−1. Then  is the  in Lemma 15. Let U and *IR be respectively the U ′ and *IR′ that
result from Lemma 15. Then, the induction hypothesis holds for � =  .

Finally, we prove that the induction hypothesis holds for each limit ordinal �. We start by creating objects to play
the roles of  , U , ≾ , and *IR in the statement of Lemma 15. Define

*IR<� =
⋃

<�
*IR ,

<� =
⋃

<�
 .

Clearly, *IR<� is a nonstandard model of the reals that contains *IR for all  < �. ForX ∈ <�, let U<�(X) = U (X),where  is the first ordinal such that X ∈  . Each such  is strictly less than �. This makes U<� ∶ <� → *IR<�.Define ≾<� on <� by X ≾<� Y if X ≾ Y for  being the first ordinal such that both X, Y ∈  . Then  < � and
U<� represents ≾< on <�. To see that U<� is standard-linear, let X1, X2 ∈ <�. Let  be the first ordinal for which
both X1 and X2 are in  . Then  < � and U<�(Xj) = U (Xj) for j = 1, 2. Since U is standard-linear,

U<�(�X1 + �X2) = U (�X1 + �X2)

= �U (X1) + �U (X2)

= �U<�(X1) + �U<�(X2),

so U<� is standard-linear.To complete the proof, apply Lemma 15 with  = <�, *IR = *IR<�, Z = X�, and U = U<�.
C.4. Proof of Lemma 4

Note that each function f ∈  is a special case of a horse-lottery ℎ for which each lottery ℎ(!) puts probability
1 on a single prize (consequence) f (!). In this way, we can think of  as a subset of a set of horse lotteries. Savage
(1954) proves that there is a probability P on Ω and a utility U ∶  → IR such that for all f, g ∈  , f ≾′ g if and
only if P [U (f (⋅))] ≤ P [U (g(⋅))]. Let  be the set of finite mixtures of elements of  , and let  ′ be the set of finite
mixtures of elements of  . Define U ′ on  ′ by U ′

(

∑n
j=1 �jpj

)

=
∑n
j=1 �jU (pj).

Next, we show that U ′ is well defined. Suppose that
n
∑

j=1
�jpj =

m
∑

k=1
�′kp

′
k, (19)

with all �j and all �′k strictly positive. A necessary condition for (19) is that the set of distinct pj be the same as the set
of distinct p′k. Another necessary condition is that, if pj = p′k, the sums of the �j and/or �′k corresponding to repeated
values of pj and/or p′k must be equal. This makes U ′ well defined. Hence, U ′[ℎ(!)] is well defined for every ! and
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every ℎ ∈ . It follows that V (ℎ) = P (U ′[ℎ(⋅)]) is well defined, and can be used to represent a preorder ≾∗ on  by
“ℎ ≾∗ g if and only if V (ℎ) ≤ V (g).” It is straightforward that V (�ℎ+[1−�]g) = �V (ℎ)+(1−�)V (g) for all � ∈ [0, 1]
and all ℎ, g ∈ . There is a corresponding 0 = {�(ℎ − g) ∶ ℎ, g ∈ }, and U†(�[ℎ − g]) = �[V (ℎ) − V (g)] is also
well defined on 0.Next, we show that U† is standard-linear. Let kj = �j(ℎj − gj) for j = 1, 2. Then

�1k1 + �2k2 = �1�1(ℎ1 − g1) + �2�2(ℎ2 − g2)
= �1�1ℎ1 + �2�2ℎ2 − �1�1g1 − �2�2g2
= (J1 − J2),

where , J1, J2 depend on the signs of �1, �1, �2, �2. For example, if both �j > 0 and both �j < 0,
 = �1�1 + �2�2,

J1 =
�1�1

ℎ1 +

�2�2

ℎ2,

J2 =
�1�1

g1 +

�2�2

g2.

Each of J1, J2 ∈ 0, so
U†(�1k1 + �2k2) = [V (J1) − V (J2)]

= �1�1V (ℎ1) + �2�2V (ℎ2) − �1�1V (g1) − �2�2V (g2)
= �1U

†(k1) + �2U†(k2).

There are fifteen other combinations of signs that produce various formulae for , J1, J2, but all of them lead to the
same conclusion. Lemma 1 says that U† represents a total trading system  that satisfies Assumptions 1–4.

Finally, we show that  = (0, ≾, ≺) as described in Section 3.2.2. According to the discussion in Section 3.2.2,
≾ corresponds to ≾∗ as follows. Let k1, k2 ∈ 0 be expressed as kj = �j(ℎj − gj) with �j > 0 and ℎj , gj ∈  for
j = 1, 2. First, we need to express k2−k1 = (s2− s1) with  > 0 and s1, s2 ∈ . Then, we need to show that k1 ≾ k2if and only if s1 ≾∗ s2. First, note that

k2 − k1 = �1ℎ1 + �2g2 − [�2g1 + �1ℎ2]
= (s2 − s1),

where  = �1 + �2, and
s1 = �ℎ1 + (1 − �)g2,
s2 = �ℎ2 + (1 − �)g1,

where � = �1∕ . Next, note that k1 ≾ k2 if and only if U†(k1) ≤ U†(k2), which is true if and only if
�1[V (ℎ1) − V (g1)] ≤ �2[V (ℎ2) − V (g2)],

which is true if and only if
V (�ℎ1 + [1 − �]g2) ≤ V ([1 − �]ℎ2 + �g1),

which is true if and only if s1 ≾∗ s2.
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