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Abstract
We examine general decision problemswith loss functions that are bounded below.We
allow the loss function to assume the value ∞. No other assumptions are made about
the action space, the types of data available, the types of non-randomized decision rules
allowed, or the parameter space.Byallowingprior distributions and the randomizations
in randomized rules to be finitely-additive, we prove very general complete class and
minimax theorems. Specifically, under the sole assumption that the loss function is
bounded below, we show that every decision problem has a minimal complete class
and all admissible rules are Bayes rules. We also show that every decision problem
has a minimax rule and a least-favorable distribution and that every minimax rule is
Bayes with respect to the least-favorable distribution. Some special care is required to
deal properly with infinite-valued risk functions and integrals taking infinite values.
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1 Introduction

1.1 Motivation

The following example, adapted fromExample 3 of Schervish et al. (2009), is a case in
which countably-additive randomized rules do not contain a minimal complete class.
It involves a discontinuous version of squared-error loss in which a penalty is added if
the prediction and the event being predicted are on opposite sides of a critical cutoff.

Example 1 A decision maker is going to offer predictions for an event B and its com-
plement. The parameter space is Θ = {B, BC } while the action space isA = [0, 1]2,
pairs of probability predictions. The decision maker suffers the sum of two losses (one
for each prediction) each of which equals the usual squared-error loss (square of the
difference between indicator of event and corresponding prediction) plus a penalty of
0.5 if the prediction is on the opposite side of 1/2 from the indicator of the event. In
symbols, the loss function equals

L(θ, (a1, a2)) = (IB − a1)
2 + (IBC − a2)

2

+1

2

{
I[0,1/2](a1) + I(1/2,1](a2) if θ = B,
I(1/2,1](a1) + I[0,1/2](a2) if θ = BC .

To keep matters simple, we assume that no data are available, but one could rework
the example with potential data at the cost of more complicated calculations. Figure 1
is a plot of all of the pairs (L(B, (a1, a2)), L(BC , (a1, a2))), which shows all of the
possible risk functions of non-randomized rules (pure strategies when there are no
data available). The admissible non-randomized strategies are the pairs (p, 1− p) for
p ∈ [0, 1]. The corresponding points in Fig. 1 are

(i) from but not including (1.5,0.5) to (3,0) in the lower right, corresponding to
p ∈ [0, 1/2),

(ii) (1,1) in the middle section, corresponding to p = 1/2, and
(iii) from (0,3) up to but not including (0.5,1.5) in the upper left, corresponding to

p ∈ (1/2, 1].
The countably-additive randomized rules have risk functions in the convex hull of
the set plotted in Fig. 1. The resulting set is not closed, and its lower boundary is
missing all points on the closed line segment from (0.5, 1.5) to (1.5, 0.5) except (1, 1).
One consequence of these points being missing is that there are many inadmissible
rules, corresponding to points just above that line segment, that are dominated by
other inadmissible rules, but not dominated by an admissible rule. In other words, the
admissible rules do not form a complete class in this problem.

If, however, one is willing to introduce finitely-additive randomizations, all of the
missing risk functions of admissible rules become available. For example, there are
finitely-additive probabilities P− and P+ on the power set of [0, 1] such that P−(A) =
1 for every set of the form A = (1/2 − ε, 1/2) and P+(C) = 1 for every set of the
form C = (1/2, 1/2+ ε). Every missing point on the line segment between (0.5, 1.5)
and (1.5, 0.5) is the risk function of a randomized rule that gives a1 the distribution
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Fig. 1 The risk functions of non-randomized rules in Example 1

αP− + (1−α)P+ for some α ∈ [0, 1/2)∪ (1/2, 1] and sets a2 = 1−a1. For example,
the risk function for α = 0 is the point (0.5, 1.5) while the risk function for α = 1 is
the point (1.5, 0.5).

One result (Theorem 1) that we prove in this paper is that every decision problem
with a loss function bounded below has a minimal complete class consisting of Bayes
rules if finitely-additive randomizations are allowed. There are several complete class
theorems in the countably-additive literature that make additional assumptions about
the loss function (e.g., continuous, convex) and about the distributions of the available
data (e.g., exponential family distributions). Some of these results can be found in
Berger and Srinivasan (1978), Brown (1971), and Lehmann and Casella (1998, Sec-
tion 5.7). Our other main theorem is a general minimax theorem (Theorem 2) stating
that every decision problem with a loss function bounded below has a minimax rule
and least-favorable prior such that all minimax rules are Bayes with respect to that
least-favorable prior. A finitely-additive minimax theorem when risk functions are
bounded is proven in Heath and Sudderth (1972). Cases in which a Bayesian analysis
will be performed and the joint distribution of data and parameter can be computed by
integration in both orders (a property not possessed by all finitely-additive distribu-
tions) is the subject of Heath and Sudderth (1978), which presents results about Bayes
rules and extended admissible rules.

Our results also cover cases in which the loss function is allowed to assume the
value ∞. An example of such a loss function is the logarithmic loss for predicting
events. In the notation of Example 1, replace (IB −a1)2+(IBC −a2)2 by− log(a1[1−
a2])IB − log(a2[1 − a1])IBC . Dealing with loss functions that assume the value ∞
requires special care. In particular, the set of functions that need to be integrated is
not a linear space. In order to get ∞ into the range of our loss and risk functions, we
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use ÎR = IR ∪ {∞} as the range, and endow ÎR with the topology that is generated by
the open intervals together with sets of the form (c,∞) ∪ {∞} for all real c. This is
similar to the usual two-point compactification of the reals, but we leave out all the sets
containing −∞. As a result, ÎR is not compact, but each “interval” of the form [c,∞]
(for finite c) is compact. Our topology also differs from the one-point compactification
of Alexandroff (see Kelley 1955, Theorem 21, p. 150) whose “intervals” around ∞
include both positive and negative numbers with arbitrarily large absolute value.

Throughout the paper, we adhere to the convention that ∞ × 0 = 0. We take
arithemetic that includes ∞ − ∞ to be undefined. For example, if f and g are both
functions on the same space Z , and f (z) = g(z) = ∞ for some z, then f (z) − 2g(z)
is not defined. In particular, f − 2g does not have the same domain as f and g.

1.2 Organization

The paper is organized as follows. We start with an introduction to finitely-additive
expectations in Sect. 2. Section 3 contains a general overview of decision theory. We
then prove some facts about the structure of the risk set in Sect. 4. The first of the
main theorems is the complete class theorem (Theorem 1) that appears in Sect. 5. It
states that every decision problem has a minimal complete class of rules consisting of
admissible Bayes rules. The second theorem (Theorem 2 in Sect. 6) says that every
decision problem has a minimax rule and a least-favorable prior. Also, each minimax
rule is Bayes with respect to the least-favorable prior. Section 7 gives some results on
the existence and non-existence of Bayes rules with respect to specific types of priors.

We place a large amount of mathematical background needed to prove the main
theorems in an appendix and in the Online Resource. Section A of the appendix gives
an overview of the theory of finitely-additive expectations. Section B lists some results
which are cited in this paper andwhose proofs appear in theOnlineResource. Section 1
of the Online Resource includes background on topology and convergence. Section 2
of the Online Resource gives more detail on finitely-additive expectations. Section 3
of the Online Resource gives some results on separation of convex sets of unbounded
functions. The randomized rules thatwe construct in Sect. 3 of this paper are seemingly
less general than the randomized rules that typically arise in the countably-additive
decision theory. Section 4 in the Online Resource demonstrates that the risk set that we
construct from our finitely-additive randomizations includes the risk functions for the
more general randomizations when all probabilities are countably-additive. Section 5
of the Online Resource presents an interesting property of pointwise convergence that
helps to understandwhy some prior distributions (both finitely-additive and countably-
additive) might not have Bayes rules.

2 Finitely-additive expectations

Because risk functions are expected values of loss functions with respect to various
probability distributions, it is necessary to understand what we mean by finitely-
additive expectations. Our brief introduction here consists of two parts:
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– Important features of the countably-additive theory of expectations.
– How we generalize those features in the finitely-additive setting.

More details are provided in Sect. A of the appendix and in the Online Resource.
Let P be a countably-additive probability defined on a σ -field � of subsets of a

set Z . If f is a bounded real-valued �-measurable function on Z , there is a unique
definition of the integral

∫
Z f (z)P(dz) in terms of the function f and the probability

P . (A similar unique definition exists for the integral of a function that is bounded
below. Since functions that are bounded below do not form a linear space, special care
is needed to deal with them in general.) The integral is also called the expectation of f .

Temporarily identify each set A ∈ � with its indicator function

IA(z) =
{
1 if z ∈ A,
0 if z ∈ AC .

Then, we can think of � as a subset of the linear space F of bounded �-measurable
functions onZ . In this way, the integral

∫
Z f (z)P(dz) can be thought of as a function

P( f ) that is a natural extension of the probability P . The domain of P was originally
�, but we have now extended the domain to F . As a function on F , P(·) is a linear
functional with two other key properties:

(i) P(1) = 1 (normalized), and
(ii) f ≤ g implies P( f ) ≤ P(g) (monotone).

Every normalized monotone linear functional can be interpreted as a finitely-additive
expectation that extends the domain of a probability P to a linear space of functions.
(See Sect. A of the appendix for more details.) What distinguishes countably-additive
P from merely finitely-additive P is a third property, which is a form of continu-
ity. (See Royden 1968, Chapter 13 on Daniell integrals for more detail, if desired.)
The countably-additive theory allows us to extend the domain of a countably-additive
expectation to include functions that are bounded below. The same extension is avail-
able for finitely-additive expectations. Since all of our loss and risk functions are
bounded below, we will not pursue possible ways to further extend the domain of an
expectation to include functions that are unbounded in both directions.

Countably-additive expectations are typically defined on sets of functions that are
measurable with respect to σ -fields of subsets of their domain space Z . Except in
special cases, they cannot be extended to countably-additive expectations on the set of
all functions in IRZ . In contrast, finitely-additive expectations can be extended to arbi-
trary sets of real-valued functions, although the linearity property must be modified
to accommodate some unbounded functions. For example, the set MZ of ÎR-valued
functions that are bounded below is not a linear space, so not all linear combinations
of its elements need to be in the domain of a finitely-additive expectation. Further-
more, two functions f and g might both have infinite expectation. If their difference
is well-defined and bounded below, the expectation of f − g can be defined, but we
will not need it.

Section A.1 (starting with Definition 8) contains the details on how we handle the
fact that MZ is not a linear space. We assume that our finitely-additive probabilities
on Z are defined for all elements of 2Z , and we assume that our finitely-additive
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expectations are defined on all ofMZ . These may seem like strong assumptions, but
the domain of every finitely-additive probability, nomatter how small, can be extended
to all of 2Z . Similarly every finitely-additive expectation on a set of bounded functions
can be extended to MZ .

In addition, Sect. A of the appendix gives details on how we extend the concept of
finitely-additive expectation to domains that include functions that assume the value
+∞, producing a meaningful definition of expectation and/or integral with respect to
a finitely-additive probability. One feature that distinguishes the countably-additive
theory from the finitely-additive theory that we adopt in this paper is the acceptability
of non-uniqueness in the extension of a finitely-additive expectation from the domain
consisting of bounded functions to the domain that consists of all functions that are
bounded below. In the countably-additive theory, the expectation of a function f
that is bounded below is the supremum of the expectations of all measurable bounded
functions g such that g ≤ f . The same idea canbe applied in thefinitely-additive theory
to define what we call the minimum extension in Definition 9 in Sect. A.1. However,
for each finitely-additive expectation P on the set of bounded functions, there are
multiple extensions to the domain of functions that are bounded below. One of them is
the minimum extension but there are others. De Finetti (1974, Section 6.54) embraces
this non-uniqueness, but does not pursue its consequences very far. Because of this
non-uniqueness, we distinguish between what we call a finitely-additive integral and
the more general finitely-additive expectations that extend the same finitely-additive
probability P .

Throughout the rest of the paper,whenwewrite an integral of a function f : Z → ÎR
with respect to a finitely-additive probability P ,

∫
Z f (z)P(dz), we are referring to

the minimum extension of P . General finitely-additive expectations will be denoted
with notation such as Q( f ). The restriction of each such general expectation to the
domain of indicators of subsets Z is a finitely-additive probability (call it PQ). If Q
happens to be the minimum extension of PQ , then PQ( f ) = Q( f ) = ∫

Z f (z)Q(dz)
for all f that are bounded below. If Q is not the minimum extension of PQ , then
Q( f ) ≥ PQ( f ) for all f that are bounded below, and there exists at least one f such
that Q( f ) > PQ( f ). (See Lemma 4 in Sect. 4.2.)

Finitely-additive expectations will arise in the following places in this paper:

– To calculate the risk functions of non-randomized rules, we use expectations of ÎR-
valued functions defined on a data space X . As in the familiar countably-additive
decision theory, these expectations, denoted Pθ , are indexed by a parameter θ from
a parameter spaceΘ . Our theory is general enough to allow an arbitrary parameter
space, and the Pθ can be either countably-additive or merely finitely-additive.

– To calculate the risk functions of randomized rules, we use expectations of ÎR-
valued functions of non-randomized rules. Our theory is general enough to allow
an arbitrary action spaceA, and an arbitrary subsetH0 ⊆ AX of non-randomized
rules. The randomized rules are expectations of ÎR-valued functions defined onH0.
These expectations can be either countably-additive or merely finitely-additive.

– To calculate the Bayes risks of decision rules, we use expectations (called priors)
of ÎR-valued functions defined on the parameter space Θ . These expectations can
be either countably-additive or merely finitely-additive.
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Table 1 Notation used
throughout this document

Symbol Meaning

A The action space

X The space where available data take their values

Θ The parameter space that indexes the set of data
distributions

ÎR IR ∪ {∞} endowed with the topology generated by all
open subsets of IR together with all sets of the form
(c, ∞) ∪ {∞}

Z A generic set that serves as the domain of a class of
ÎR-valued functions

MZ The subset of ÎRZ consisting of those elements that are
bounded below

L(·, ·) The loss function mapping Θ × A to ÎR and bounded
below

Pθ For each θ ∈ Θ , Pθ is an expectation onMX
PZ The set of all finitely-additive expectations (see Sect. A

of the appendix) onMZ
ΛZ The subset of PZ consisting of those finitely-additive

expectations that are minimum extensions (see
Definition 9)

SZ The subset of ΛZ corresponding to extensions of all
simple probability measures on 2Z , i.e., those
supported on a finite set

H0 The subset ofAX consisting of all non-randomized
rules available to the decision maker

R0(·, γ ) The risk function of a non-randomized rule γ as defined
in Definition 1

R(·, δ) The risk function of a rule δ as defined in Definition 2

R The set of risk functions for all finitely-additive
randomized rules

R1 The subset ofR whose randomizations are minimum
extensions (see Definition 9)

The subscriptZ on symbols likeMZ , ΛZ , etc. will vary when refer-
ring to a specific set like Θ orH0

3 General decision theory

Table 1 contains some notation that gets used frequently.

3.1 Decision rules

Definition 1 A non-randomized rule is a function γ : X → A. We denote by H0 the
set of all non-randomized rules that the decision maker has available. The risk function
of a non-randomized rule γ is the function R0(·, γ ) : Θ → ÎR defined by

R0(θ, γ ) = Pθ

[
L(θ, γ (·))] , (1)

123



M. J. Schervish et al.

which can be written
∫
X L(θ, γ (x))Pθ (dx), if Pθ is a minimum extension.

To be clear, for each non-randomized rule γ , each loss function L , and each θ ∈ Θ

there is a function fγ,L,θ : X → ÎR defined by

fγ,L,θ (x) = L(θ, γ (x)).

The risk function of γ is R0(θ, γ ) = Pθ ( fγ,L,θ ). We see that R0(θ, γ ) is an element
ofMΘ as a function of θ for fixed γ , and it is an element ofMH0 as a function of γ

for fixed θ .

Definition 2 A randomized rule δ is a finitely-additive expectation on MH0 . In gen-
eral, its risk function is

R(θ, δ) = δ[R0(θ, ·)], (2)

which can be written
∫
H0

R0(θ, γ )δ(dγ ), if δ is a minimum extension. A randomized
rule δ ∈ SMH0

is called simple.

To be clear, for each loss function L , and each θ ∈ Θ there is a function gL,θ :
H0 → ÎR defined by

gL,θ (δ) = R0(θ, δ).

The risk function of δ is R(θ, δ) = δ(gL,θ ), and is an element of MΘ for fixed δ.
The operational understanding of a randomized rule δ is that a decision maker can

select a γ from H0 using an auxiliary randomization with distribution δ.
We can think of a non-randomized rule γ as the special case of a randomized rule

δ with δ( f ) = f (γ ), for f ∈ MH0 . With this understanding, (2) is a generalization
of (1). In this case, R0(θ, γ ) = R(θ, δ) for all θ .

We are deliberately vague about which elements of AX constitute the setH0. The
reason is that our results are general enough to cover whatever set H0 one wishes to
contemplate. One could choose all of AX , or just those rules that are formal Bayes
rules with respect to various priors, or whatever subset of AX one wishes. The rules
can arise from fixed-sample-size experiments or from sequential experiments. The
only structure we assume for the decision problem is that the loss L is bounded below
and that all finitely-additive randomizations (as defined in Definition 2) are allowed.

Two types of randomized rules are described by Wald and Wolfowitz (1951). That
article refers to the randomizations we defined in Definition 2 as special random-
izations. A different kind of randomization, that is common in countably-additive
decision theory, is called a general randomization. A general randomization is a map-
ping δ from X to probability distributions over A. In this manner, the randomization
performed after observing a particular x can be virtually unrelated to the randomiza-
tion that is performed after observing each other x . The only requirement is that the
following integral be defined and be a measurable function of x :

L(θ, δ(x)) =
∫
A
L(θ, a)δ(x)(da). (3)

123



What finite-additivity can add to decision theory

Then (3) is inserted directly into (1) to define the risk function of a general random-
ization δ as

R(θ, δ) = Pθ

[∫
A
L(θ, a)δ(·)(da)

]
. (4)

Special randomizations are special cases of general randomizations. For the case in
which all of the Pθ probabilities and all of the general randomizations are countably
additive, Section 4 of the Online Resource contains the proof that the risk functions
that result from general randomizations are included in the set of risk functions that
result from finitely-additive special randomizations. Aside from the restriction to
countably additive probabilities, the major difference between general and special
randomizations involves the orders in which the expectations are performed. For gen-
eral randomizations, the inner expectation is over the randomization with the outer
expectation over the data distribution Pθ . For special randomizations, the expectation
over the data distribution is inside, and the outer expectation is over the randomization.
For finitely-additive expectations, the order in which these expectations is computed
matters to a larger extent than it does in the countably-additive case. (See Section 2.4
in the Online Resource for more detail.)

3.2 Admissibility, risk sets, Bayes rules, andminimax rules

Dominance is defined in Definition 3 to match the idea that “smaller is better” when
comparing risk functions in decision theory.

Definition 3 Let Z be a set, and let f , g ∈ ÎR
Z
. We say that g dominates f if (i)

g(z) ≤ f (z) for all z ∈ Z and (ii) there is z such that g(z) < f (z). The lower

boundary of a subset A of ÎR
Z
, denoted ∂L A, is the set of all functions f ∈ A such

that there is no g ∈ A that dominates f . (Here, A denotes the closure of A.)

The lower boundary of a set A of functions is defined in terms of the closure of A. If
more than one topology is available, one needs to be clear about which closure one
is using. The topology of pointwise convergence of functions is always available for
a function space since it is the product topology (see Definition 1 in Section 1 of the
Online Resource) obtained by identifying each function from a space S1 to S2 as an
element of SS12 . If the functions are all bounded, the topology of uniform convergence
is also available. Since our results will apply to general function spaces, we will use
only the topology of pointwise convergence.

Definition 4 The risk set is the set of all risk functions of decision rules. A decision
rule δ dominates another decision rule δ′ if R(·, δ) dominates R(·, δ′). A rule δ is
admissible if no other rule dominates δ. A subset C of the set of all decision rules is
called a complete class if, for every δ′ /∈ C, there exists a δ ∈ C such that δ dominates
δ′. A set C is an essentially complete class if, for every δ′ /∈ C, there exists δ ∈ C
such that R(θ, δ) ≤ R(θ, δ′) for all θ . A(n essentially) complete class is minimal if
no proper subset is (essentially) complete.

In addition to (as well as related to) the risk function, the Bayes risk of a decision
rule with respect to one or several prior distributions is important to decision making.
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A prior distribution λ over Θ can also be extended (as in Sect. A) to a finitely-additive
expectation on MΘ , hence we can treat such λ as elements of PΘ .

Definition 5 If δ is a randomized rule, the Bayes risk of δ with respect to λ is the value

r(λ, δ) = λ [R(·, δ)] (5)

Let r0(λ) = infδ r(λ, δ). If
r(λ, δ0) = r0(λ), (6)

then δ0 is called a Bayes rule with respect to λ.

An alternative to choosing a rule to minimize the Bayes risk is to choose a rule to
minimize the supremum of the risk function.

Definition 6 A rule δ is called a minimax rule if

sup
θ

R(θ, δ) = inf
γ

sup
θ

R0(θ, γ ). (7)

A finitely-additive expectation λ0 onMΘ is called a least-favorable prior if r0(λ0) =
supλ r0(λ). The right-hand side of (7) is called the minimax value of the decision
problem.

4 The risk set

Consider a decision problem with loss function that is bounded below. We assume
that the set of all randomized rules, as defined in Definition 2, are available to the
decision maker. We denote the risk set R. The set of risk functions for randomized
rules with minimum extension randomizations is the smaller set R1. The following
two results, whose proofs are included in this section, are important to the proofs of
the main theorems of this paper.

Lemma 1 The setR is a compact Hausdorff space.

Lemma 2 The lower boundary of R is the same as the lower boundary ofR1.

The reason that we care that R is a Hausdorff space is so that, when we have a
convergent net, we know that the limit is unique:

Proposition 1 (Willard 1970: Theorem13.7, p. 86)For a convergent net in aHausdorff
space, there is a unique limit that is also the unique cluster point.

4.1 Proof of Lemma 1

The proof relies on a number of topological results. The first is straightforward and
stated without proof.
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Proposition 2 Let x = {xη}η∈D be a net in a topological space T with a subnet
{yγ }γ∈D′ . Let f : T → V be a function to another topological space V . Then
{ f (xη)}η∈D is a net in T with a subnet { f (yγ )}γ∈D′ .

The following results contain references to well-known sources for their proofs.

Proposition 3 (Dunford and Schwartz 1957: I.5.7(a), p. 17) A closed subset of a com-
pact space is compact.

Proposition 4 (Dunford and Schwartz 1957: I.7.2, p. 27 orKelley 1955: Theorem2(b),
p. 66) The closure of a set C is the set of all limits of nets in C that converge.

Proposition 5 (Dunford and Schwartz 1957: I.7.9, p. 29 or Kelley 1955: Theorem 2,
p. 136) A topological space is compact if and only if every net has a cluster point.

Proposition 6 (Willard 1970: Theorem 11.5 and Example 11.4(e), p. 75) A net has p
as a cluster point if and only if there is a subnet that converges to p. A net converges
if and only if every subnet converges to the same limit.

Proposition 7 (Dunford and Schwartz 1957: I.8.2, p. 32 or Kelley 1955: Theorem 5,
p. 92) The product of a collection of Hausdorff spaces is Hausdorff in the product
topology.

Proposition 8 (Dunford and Schwartz 1957: I.8.5, p. 32 or Kelley 1955: Theorem 13,
p. 143) The product of a collection of compact spaces is compact in the product
topology.

In addition, we need a result that concerns the way that we have defined ÎR.

Lemma 3 For finite c0, [c0,∞] is a compact Hausdorff subset of ÎR.
Proof First, we prove that ÎR is Hausdorff, hence so is every subset. Let x 
= y ∈ ÎR.
If both are finite then the following open intervals (x − ε, x + ε) and (y − ε, y + ε)

are disjoint, where ε < |x − y|/2. If x < ∞ = y, then (x − 1, x + 1) and (x + 2,∞]
are disjoint open intervals. Next, we prove that [c0,∞] is compact. LetA = {Aα}α∈C
be an open cover of [c0,∞]. Since ∞ ∈ ÎR, there exists α0 ∈ C such that Aα0

contains a set of the form (c,∞]. For the other elements of A, let Bα = Aα\{∞}.
Then {Bα}α 
=α0 is an open cover of [c0, c], which has a finite subcover {Bα1 , . . . , Bαk },
because [c0, c] is a compact subset of IR. Then {Aα0 , . . . , Aαk } is a finite subcover of
[c0,∞] from A. ��

Finally, we can prove Lemma 1.

Proof (Lemma 1) Let c0 be a finite lower bound for the loss function. Recall that each
element of R has the form R(θ, δ) = δ [R0(θ, ·)] for some δ ∈ PH0 . Propositions 7
and 8 and Lemma 3 tell us that [0,∞]Θ is a compact Hausdorff space, where each
net has at least one cluster point by Proposition 5. Since R ⊆ [0,∞]Θ , we have that
R a Hausdorff space. Using Proposition 3, we need only show that R is closed. By
Proposition 4, we can do this by showing thatR contains the limit of every convergent
net in R. Each net in R can be expressed as R = {R(·, δη)}η∈D for some net D =

123



M. J. Schervish et al.

{δη}η∈D in PH0 . Suppose that such a net R converges to a limit r(·) ∈ MΘ . We need
to show that r ∈ R. Proposition 10 (in Sect. B) says that PH0 is a compact set. Hence,
the net D has a cluster point δ ∈ PH0 , which is the limit of a convergent subnet D′.
Let R′ = {R(·, βγ )}γ∈D′ be the subnet of R corresponding to the convergent subnet
D′ = {βγ }γ∈D′ of D (Proposition 2.) Then R′ also converges to r (Proposition 6.)
That is, r(θ) = limγ βγ [R0(θ, ·)]. Since limγ βγ = δ, we have that, for all θ , r(θ) =
δ[R0(θ, ·)] = R(θ, δ), so r is an element of R. ��

4.2 Proof of Lemma 2

The proof of Lemma 2 relies on the following result.

Lemma 4 Let Z be a set. Let P be a finitely-additive expectation on the bounded
elements ofMZ . Let Q and L be the minimum and maximum extensions of P respec-
tively. (See Definition 9 in Sect.A.1.) Let S be a general extension of P toMZ . Then,
for all f ∈ MZ , Q( f ) ≤ S( f ) ≤ L( f ). If S 
= Q, there exists f ∈ MZ such that
S( f ) > Q( f ).

Proof To see that Q( f ) ≤ S( f ), we know that S(g) ≤ S( f ) for every bounded
g ≤ f . Since S(g) = Q(g) = P(g) for every bounded g, the definition of Q implies
that Q( f ) ≤ S(g). That S( f ) ≤ L( f ) follows from the fact that L( f ) = ∞ for all f
such that S( f ) 
= L( f ). The final claim is obvious. ��

Now, we prove Lemma 2.

Proof (Lemma 2) Let f ∈ ∂LR. Since R is closed, f is not dominated by another
element of R. Suppose that f is the risk function of a randomized rule δ that is not
a minimum extension. Let δ′ be the minimum extension of the restriction of δ to
the bounded elements of MH0 , and let f ′ be the corresponding risk function. By
Lemma 4, f ′ ≤ f . Since f is not dominated by f ′ we must have f = f ′. Since f
is not dominated by another element of R, it is not dominated by another element of
R1 (a subset of R). Hence f ∈ ∂LR1.

Finally, let g ∈ ∂LR1. Suppose, to the contrary, that g /∈ ∂LR. Then, there is g′ ∈ R
that dominates g. By the argument in the previous paragraph, there is h ∈ R1 such
that h ≤ g, hence h dominates g. But this contradicts g ∈ ∂LR1. ��

5 A complete class theorem

In this section, we state and prove a general complete class theorem. The proof refers
to several results that appear in Sect. B of the appendix (with appropriate forward
references) or in Sect. 4.

Theorem 1 (Complete Class Theorem) The decision rules whose risk functions are
on ∂LR form a minimal complete class. Each admissible rule is a Bayes rule.

Proof Let HL be the set of decision rules whose risk functions are on ∂LR. By the
definition of ∂LR, we see that every rule in HL is admissible, and every rule not in
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HL is inadmissible. No proper subsetC ofHL could be a complete class because each
element of HL\C is not dominated by an element of C (or by anything else.) What
remains to the first claim (about a minimal complete class) is to show that every rule
not inHL (i.e., is inadmissible) is dominated by a rule inHL . The proof will proceed
in terms of the risk functions rather than the decision rules.

Let f0 ∈ R\∂LR, and let F0 be { f0} union with the set of all elements of R that
dominate f0. We show next that F0 is compact. If F0 = R, then F0 is compact
becauseR is compact by Lemma 1. IfR\F0 
= ∅, we will show that F0 is closed and
apply Proposition 3. Let h ∈ R\F0. We need to show that h has a neighborhood that
is disjoint from F0. Since h 
= f0 and h does not dominate f0, there exists θ0 such
that h(θ0) > f0(θ0). Let N = {g : g(θ0) > f0(θ0)}, which is a neighborhood of h. It
is clear that N

⋂
F0 = ∅, because for every element k of F0 k(θ0) ≤ f0(θ0). Since

F0 is compact, every net in F0 has a convergent subnet (Propositions 5 and 6.)
The bulk of the proof proceeds by transfinite induction.Well-order (≺) the elements

of Θ as {θγ : γ ∈ �}. For γ = 1, let ξ1 = infg∈F0 g(θ1). Let {gn}∞n=1 be a sequence
(hence a net) of elements ofF0 such that limn→∞ gn(θ1) = ξ1. Proposition 6 says that
there is f1 ∈ F0 that is the limit of a convergent subnet. Let F1 = {g ∈ F0 : g(θ1) =
ξ1}, which we just showed was non-empty, and which is closed by Proposition 11 (in
Sect. B.) We just proved the following induction hypothesis for γ = 1:

Induction hypothesis: Let γ ∈ �. There is a non-empty closed set Fγ that is
a subset of Fη for all η < γ and a function fγ ∈ Fγ such that fγ (θη) =
infg∈Fη

g(θη) for all η � γ .

Let γ be a successor ordinal, and assume that Induction hypothesis is true for each
η ≺ γ . Let ξγ = infg∈Fγ−1 g(θγ ). Let {gn}∞n=1 be a sequence (net) of elements of
Fγ−1 such that limn→∞ gn(θγ ) = ξγ . As in the γ = 1 case above, let fγ ∈ Fγ−1 be
the limit of a convergent subnet. Let Fγ = {g ∈ Fγ−1 : g(θγ ) = ξγ }, which is closed
and which we just showed was non-empty. Then Induction hypothesis is true for γ .

Next, let γ be a limit ordinal. Define Fγ− = ⋂
η<γ Fη. For each η ≺ γ , let

hη ∈ Fη. By Proposition 6, the net {hη}η≺γ has a convergent subnet, whose limit we
will call fγ−. By construction, for every η ≺ γ , hψ(θη) is constant in ψ for ψ � η,
hence fγ−(θη) = hη(θη) for every η ≺ γ and fγ− ∈ Fγ− which is closed, non-empty,
and a subset of every Fη for η ≺ γ . Now, apply the successor ordinal argument to γ

with γ− standing in for γ − 1 wherever it appears. So, for every γ ∈ �, there is fγ
that satisfies Induction hypothesis. Let f be a cluster point of the net { fγ }γ∈� , which
exists by Proposition 5.

Next, we show that f is in the lower boundary. Assume, to the contrary, that f is
not in the lower boundary. Then, there exists g and θ0 such that g(θ) ≤ f (θ) for all
θ and g(θ0) < f (θ0). Let γ ∈ � be such that θγ = θ0. Let F∗ = Fγ−1 if γ is a
successor and F∗ = Fγ− if γ is a limit ordinal. By construction,

f (θ0) = fγ (θ0) = inf
g∈F∗

g(θ0).

This contradicts g(θ0) < f (θ0).
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Finally, we show that all admissible rules are Bayes. Let δ be admissible with risk
function k, which we just proved is in ∂LR. Now apply Proposition 12 (in Sect. B)
with G = {g : g ≥ f for some f ∈ R} and Z = Θ . ��

Theorem 1 together with Lemma 2 provide the following essentially complete class
theorem.

Corollary 1 The setH1 of decision rules whose randomizations are inΛH0 and whose
risk functions are on ∂LR1 is an essentially complete class. Each subset of H1 that
contains one and only one decision rule with each of the risk functions in ∂LR1 is a
minimal essentially complete class.

6 Aminimax theorem

In this section, we state and prove a general minimax theorem. The proof refers to sev-
eral results that appear in Sect. B of the appendix (with appropriate forward references)
or in Sect. 4.

Theorem 2 (Minimax theorem)There exist aminimax rule and a least-favorable prior.
Every minimax rule is Bayes with respect to the least-favorable prior.

Proof Let R0 be the subset of R consisting of the bounded elements. First, suppose
that R0 = ∅. Define λ0 in two stages. First, let λ0 be an arbitrary finitely-additive
expectation on the subset ofMΘ that consists of the bounded functions. Themaximum
extension of λ0 from Lemma 10 (in Sect. A.1) has λ0( f ) = ∞ for all f ∈ R. Clearly,
λ0 is least-favorable. Every risk function is unbounded if and only if theminimax value
of the decision problem is∞, in which case every rule is minimax. Since r0(λ0) = ∞,
every rule is Bayes with respect to λ0.

For the rest of the proof, suppose that R0 
= ∅. Without loss of generality, assume
that the loss function L is non-negative. Let f∗ ∈ R0, and let s∗ = supθ f∗(θ). Let F
be the set of all elements ofMΘ that are bounded above by s∗. By Proposition 14 (in
Sect. B,) F is a closed set, so F ∩R is closed. Also, note that F ∩R = F ∩R0. No
decision rule outside of F could be a minimax rule because the supremum of its risk
function would be larger than s∗. For each real s ≤ s∗, let As = { f ∈ F : supθ f (θ) ≤
s}. Let s0 = inf{s : As ∩ R0 
= ∅}. It is clear then that s0 = infδ supθ R(θ, δ). Let
{ fn}∞n=1 be a sequence of elements ofR0 ∩F such that supθ fn(θ) ≤ s0 + 1/n. Since
R0 ∩ F is closed (and compact) Proposition 5 says that there is f0 ∈ R0 ∩ F that
is a cluster point of { fn}∞n=1 and supθ f0(θ) ≤ s0 by Proposition 13 (in Sect. B.) So
supθ f0(θ) = s0 and f0 is the risk function of a minimax rule.

Let

G =
{
f ∈ ÎR

Θ : f ≥ g, for some g ∈ R
}

.

Let Z = Θ , and let k(θ) = s0 for all θ . Then the conditions of Proposition 15 (in
Sect. B) hold. There exists a finitely-additive expectation λ0 such that λ0(k) = s0 and
λ0(g) ≥ s0 for all g ∈ R. In particular,
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λ0( f ) ≥ s0, for each f that is the risk function of a minimax rule. (8)

Because the risk function f of a minimax rule satisfies supθ f (θ) ≤ s0 we also have

λ( f ) ≤ s0, for all λ. (9)

In particular, λ0( f ) ≤ s0 which combines with (8) to imply that λ0( f ) = s0, and f is
Bayes with respect to λ0. This makes r0(λ0) = s0. But (9) implies that r0(λ) ≤ s0 for
all λ. This makes λ0 least-favorable. ��

7 Bayes rules

In this section, we present some results on the existence and admissibility of Bayes
rules and one result about uniform dominance of rules that fail to be Bayes. The proofs
and examples rely on results from the appendix.

Lemma 5 Let λ ∈ SΘ . Then, there is a Bayes rule with respect to λ with risk function
on the lower boundary.

Proof Let c = inf f ∈R λ( f ). For each positive integer m, there is fm ∈ R such that
λ( fm) ≤ c + 1/m. Since R is compact, Proposition 5 says that there is a subnet of
{ fm}∞m=1 that converges to an element f ∈ R. Proposition 16 (in Sect. B) says that
λ is continuous, so λ( f ) = limn→∞ λ( fn) = c. If f is on the lower boundary, let
g = f . If f is not on the lower boundary, Theorem 1 says that there is g on the lower
boundary that dominates f , hence λ(g) = c because it cannot be any lower. Every δ

such that R(θ, δ) = g is a Bayes rule. ��
When the loss function is bounded, we can show that Bayes rules exist with respect

to a larger class of priors. In this case,R = R1 because all risk functions are integrals
over a ∈ A of bounded functions of (θ, a).

Lemma 6 Suppose that the loss function is bounded. Let λ be the minimum extension
of a countably-additive discrete probability on Θ . Then, there is a Bayes rule with
respect to λ with risk function on the lower boundary.

Proof Let c = r0(λ) = inf f ∈R λ( f ). For each positive integer m, there is fm ∈ R
such that c ≤ λ( fm) ≤ c + 1/m. Since R is compact, { fm}∞m=1 has a cluster point
f ∈ R. Lemma 14 (in Sect. A.2) says that there is an ultrafilter U of subsets of ZZ+
with corresponding probability P such that f (θ) = ∫

ZZ+ fm(θ)P(dm). We then have

∫
Θ

f (θ)λ(dθ) =
∫

Θ

∫
ZZ+ fm(θ)P(dm)λ(dθ)

=
∫
ZZ+

∫
Θ

fm(θ)λ(dθ)P(dm)

=
∫
ZZ+ λ( fm)P(dm) = c,
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where the second equality follows from Proposition 18 (in Sect. B,) and the final
equality follows fromLemma14again, this time applied to the net of constant functions
{λ( fm)}∞m=1 which has only one cluster point, c. If f is on the lower boundary, let
g = f . If f is not on the lower boundary, Theorem 1 says that there is g on the lower
boundary that dominates f , hence λ(g) = c because it cannot be any lower. Every δ

such that R(θ, δ) = g is a Bayes rule. ��

Lemma 7 If a Bayes rule with respect to λ exists, then there is an admissible Bayes
rule with respect to λ.

Proof Let δ1 be a Bayes rule with respect to λ with risk function f1. Then r0(λ) =
r(λ, δ1). If f1 ∈ ∂LR, then f1 is admissible. If f1 /∈ ∂LR, Theorem 1 shows that there
is f2 ∈ ∂LR that dominates f1. So that f2 ≤ f1,

r0(λ) ≤ r(λ, f2) ≤ r(λ, f1) = r0(λ),

and f2 is also Bayes with respect to λ. ��

The one theorem conspicuous by its absence is one that says that every prior has a
Bayes rule. The following is a counterexample to the missing theorem.

Example 2 Let Θ = (0, 1), and let A be the set of all non-empty open sub-intervals
of Θ . Let the loss function be L(θ, a) = Ia(θ)/|a| + 0.1(1 − |a|), where |a| is the
length of the interval a. Consider the prior λ0 which is the minimum extension of
the probability corresponding to an ultrafilter containing sets of the form (0, b) for
b ∈ (0, 1). Such an ultrafilter exists by Proposition 9 (in Sect. A.2.) Also, consider
the sequence of non-randomized rules {γn}∞n=2 with γn = (1/n, 1). The Bayes risk of
each such rule is r(λ0, γn) = 0.1/n, and the infimum of the Bayes risks is 0, which is
clearly the infimum of the Bayes risks over all decision rules. The remainder of this
example is devoted to showing that no decision rule has Bayes risk equal to 0. In light
of Corollary 1, we can restrict attention to rules whose randomizations are in ΛH0 .
Proposition 17 (in Sect. B) says that every such decision rule δB has a risk function
R(·, δB) that is the limit of some convergent net {R(·, δη)}η∈D of risk functions of
simple randomized rules. Each element of the convergent net has the form

R(θ, δη) =
nη∑
j=1

αη, j

bη, j − aη, j
I(aη, j ,bη, j )(θ) + 0.1

nη∑
j=1

αη, j (1 − bη, j + aη, j ), (10)

where nη is the number of components of the simple randomization δη, the j th com-
ponent is (aη, j , bη, j ), and the αη, j are the coefficients in the convex combination.
Let fη(θ) denote the first sum on the right-hand side of (10), and let �η denote the
second sum (together with the 0.1 factor.) Without loss of generality, we can assume
that � = limη �η exists and f (θ) = limη fη(θ) exists for all θ . (If not, there exists
a subnet of {�η}η∈D that converges and then the corresponding subnet of { fη(·)}η∈D
converges pointwise.) Then R(θ, δB) = f (θ) + �. Since the ultrafilter that defines
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λ0 contains all sets of the form (0, b) and others, Lemma 13 (in Sect. A.2) says that
λ0( f ) ≥ lim infθ↓0 f (θ). The Bayes risk of δB with respect to λ0 then satisfies

r(λ0, δB) ≥ lim inf
θ↓0 f (θ) + �. (11)

We will prove that the right-hand side of (11) is strictly positive.
If � > 0, then the right-hand side (11) is strictly positive. For the rest of the proof,

assume that � = 0. Let θ ∈ (0, 1/2). Since � = 0, we know there exists ηθ such that
η ≥ ηθ implies �η < θ/20. It follows that

∑nη

j=1 αη, j (bη, j − aη, j ) > 1 − θ/2, for
η ≥ ηθ . Let J = { j : (bη, j − aη, j ) > 1 − θ}, which is clearly non-empty. Also,∑

j∈J αη, j ≥ 1/2, and θ ∈ (aη, j , bη, j ) for j ∈ J . Since I(aη, j ,bη, j )(θ)/(bη, j −aη, j ) ≥
1 for j ∈ J , fη(θ) ≥ 1/2 for η > ηθ . It follows that f (θ) ≥ 1/2 for θ ∈ (0, 1/2),
and the right-hand side of (11) is strictly positive.

The failure of some priors to have Bayes rules may seem puzzling. For each prior λ,
there are rules that have Bayes risk arbitrarily close to r0(λ), and the lower boundary is
contained in every risk set. The problem is that not all finitely-additive expectations are
continuous functions onMΘ . The lack of continuity is due not to the finite-additivity
but rather to the large number of nets that converge in the pointwise topology. By
contrast, in the topology of uniform convergence, all finitely-additive expectations are
continuous. We explore the relationship between priors and pointwise convergence in
more detail in Section 5 of the Online Resource.

The following is a generalization of a theoremof Pearce (1984)whichwas restricted
to finite action and parameter spaces. It is also an extension of Heath and Sudderth
(1978, Theorem 2) to cases in which it matters in which order the data and parameter
integrals are performed. For a different generalization of Pearce (1984) applied to
ambiguity aversion, see Battigalli (2016, Lemma 1).

Lemma 8 Assume that the there is a rule δ0 with bounded risk function such that
r(λ, δ0) > r0(λ) for every λ. That is, there is no λ such that δ0 is Bayes with respect
to λ. Then there is a rule δ1 and ε > 0 such that R(θ, δ0) > R(θ, δ1) + ε for all θ .

Proof Consider a new decision problem with loss L ′(θ, a) = L(θ, a) − R(θ, δ0), so
that L ′ is bounded below. Let R′ be the new risk function, so that

R′(θ, δ) = R(θ, δ) − R(θ, δ0), (12)

for all δ and θ . In this new problem, there is no λ such that δ0 is a Bayes rule. Also
R′(θ, δ0) = 0 for all θ . Theorem 2 applies, and there is a minimax rule δ1. and a
least-favorable prior λ1. Let ε = − supθ R′(θ, δ1). Since δ0 is not Bayes with respect
λ1, it is not minimax. Since supθ R′(θ, δ0) = 0, it follows that

−ε = sup
θ

R′(θ, δ1) < 0,

So, R′(θ, δ1) ≤ −ε < 0 for all θ . It follows that ε > 0 and

−ε ≥ R(θ, δ1) − R(θ, δ0),
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for all θ . So R(θ, δ0) ≥ R(θ, δ1) + ε for all θ . ��

8 Discussion

We consider a general decision problem with general loss function. The only assump-
tion that we make about the loss function is that it is bounded below. The loss is
allowed to take the value ∞. We put no restrictions on the distributions of the data
that might be observed and used in decision rules. We allow all finitely-additive and
countably-additive randomized rules. We prove that the risk set contains its lower
boundary, and we prove general complete class and minimax theorems. In particular,
all decision problems have a minimal complete class consisting of Bayes rules and all
decision problems have minimax rules and a least-favorable prior.

We have defined the various parts of the decision problem to match the classical
countably-additive theory as closely as we could. In particular, we defined a risk
function for each randomized rule before introducing prior distributions. The Bayes
risk then becomes the expectation of the risk function with respect to the prior. For
non-randomized rules, we defined the risk function as the expectation of the loss
function with respect to the distribution of the data. We then defined the risk of a
randomized rule to be the expectation of the risk functions of non-randomized rules
with respect to a finitely-additive expectation over the set H0 of non-randomized
rules. This type of randomization is what Wald and Wolfowitz (1951) called a special
randomization in the countably-additive setting. Special randomizations differ from
general randomizations where the loss function is redefined for randomized rules by
integrating the loss function for a specific data value x with respect to an x-specific
randomization overA.We show that our risk set for special randomizations contains all
of the risk functions that result from general randomizations in the countably-additive
setting (Lemma 19 in Section 4 of the Online Resource.)

We have done no a posteriori Bayesian analysis. That is, we have computed neither
posterior distributions of parameters nor formal Bayes rules, whichminimize posterior
risk. In fact, we have made no concessions to a Bayesian who might wish to start
with a general finitely-additive joint distribution of data and parameter, as Heath and
Sudderth (1972, 1978) do. Instead, we require that the data integral (given θ ) be
performed before the parameter integral (prior). A Bayesian with a general finitely-
additive joint distribution of data and parameter might require that the integration be
performed differently. Example 5 in Section 2.4 of the Online Resource illustrates
how the order in which one does integrals can make a difference with finitely-additive
distributions evenwhen the the integrands are positive and/or bounded. This is in sharp
contrast to the countably-additive theory in which Fubini and Tonelli theorems apply.
In addition, decision problems involve a third integral over the action space, so there
are six possible orders in which integrals could be computed. The one we have chosen
is (as we mentioned above) as close as we could come to the order used in the classical
countably-additive approach to decision theory, and it accommodates all of the risk
functions that are available in the countably-additive theory.

Another fundamental difference between finitely-additive and countably-additive
probabilities and expectations is their domains of definition. Countably-additive prob-
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abilities are traditionally defined on σ -fields of subsets of their underlying spaces
and their associated expectation operators are defined on sets of functions that are
measurable with respect to that same σ -field. A countably-additive probability can
be extended in some cases beyond the σ -field on which it was originally defined.
(Example 5 in Section 2.4 of the Online Resource contains an example of such an
extension.) Such extensions, beyond the measure completion of a probability, are
rarely studied in detail due to the fact that they are not unique and fail to admit
regular conditional probabilities. (See Seidenfeld et al. 2001, Corollary 1.) Finitely-
additive probabilities can be defined on arbitrary collections of subsets of their
underlying spaces, including the power sets. The associated finitely-additive expec-
tations can be defined on arbitrary sets of real-valued functions. Measurability of
sets and/or functions is rarely an issue except when proving that some extension is
unique.

Acknowledgements The authors wish to offer thanks to two excellent reviewers and the editors for their
invaluable help and limitless patience in the processing of this article.

A Finitely-additive integrals and expectations

A.1 Unbounded and infinite-valued functions

In de Finetti (1974), de Finetti laid out the theory of coherent previsions for bounded
random variables, which he related to finitely-additive probability. De Finetti’s defi-
nition of coherent prevision is the following.

Definition 7 Let F be a set of bounded functions defined on a space Z . For each
f ∈ F , let P( f ) be a real number. De Finetti called {P( f ) : f ∈ F} coherent
previsions for F if, for every finite integer n, every n-tuple ( f1, . . . , fn) ∈ Fn , and
every n-tuple (α1, . . . , αn) of real numbers,

sup
z

n∑
j=1

α j [ f j (z) − P( f j )] ≥ 0. (13)

If F consists solely of indicator functions of events, coherent previsions for F can
be shown to form a finitely-additive probability. (See de Finetti 1974, Chapter 3 for
a long-winded, but elementary treatment.) Also, a finitely-additive probability can
be defined on an arbitrary collection of subsets of a general set Z , including the
power set. A number of theorems in Bhaskara Rao and Bhaskara Rao (1983, Chap-
ter 3) show how to extend a partially defined finitely-additive probability to arbitrary
larger domains. Theorems 3.2.9 and 3.2.10 on pages 69–70 of Bhaskara Rao and
Bhaskara Rao (1983) are very general. For this reason, measurability conditions are
often not included in theorems about finitely-additive probabilities. In this paper, we
assume that each finitely-additive probability is defined on 2Z . If the reader starts with
a finitely-additive probability P defined on a smaller domain, our results will apply
to every extension of P to 2Z .
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Extending a finitely-additive probability P defined on 2Z to a coherent prevision on
the set of all bounded functions in MZ is straightforward. For each simple function
f = ∑n

j=1 α j IA j on Z (with all α j finite), there is a unique value for the coher-
ent previson P( f ) = ∑n

j=1 α j P(A j ). (See Bhaskara Rao and Bhaskara Rao 1983,
Proposition 4.4.2 on page 97.) Because every bounded function is uniformly approx-
imable both above and below by simple functions, for each bounded function f onZ ,
there is a unique value for the finitely-additive expectation

P( f ) = sup
simple g ≤ f

P(g) = inf
simple g ≥ f

P(g).

In this paper, we need an extension of the finitely-additive theory from bounded
functions both to unbounded functions, as was done by Schervish et al. (2014), and
to functions that assume the value ∞ as well. The extension to unbounded functions
in Schervish et al. (2014) generalizes the concept of coherence to allow P( f ) = ∞
without requiring the symbol ∞ to appear in (13). They then prove in Schervish et
al. (2014, Definition 7, Lemmas 4 and 6) that previsions are coherent if and only if
they are the values of a normalized monotone linear functional. The assumption that
the loss function is bounded below allows us to avoid dealing with functions that both
assume the value ∞ and are unbounded below. This has the added benefit of allowing
us to avoid arithmetic that leads to ∞ − ∞.

Because the setMZ of functions that are bounded below is not a linear space, we
need to generalize the concept of normalized monotone linear functional.

Definition 8 Let Z be a space, and let F be a subset ofMZ that contains all constant
functions and has the following restricted linearity property:

If f , g ∈ F and h = α f + βg ∈ MZ with α, β ∈ IR, then h ∈ F . (14)

We call such a set F a restricted-linear space. If F is a restricted-linear space, a
function L : F → ÎR that satisfies

L(α f + βg) = αL( f ) + βL(g), (15)

whenever f , g, α f + βg ∈ F and the arithmetic on the right-hand side of (15) is
well defined (i.e., does not involve ∞ − ∞,) is called a restricted-linear functional.
A restricted-linear functional is called monotone if f ≤ g implies L( f ) ≤ L(g). A
monotone restricted-linear functional is called a finitely-additive Daniell integral. If
L(1) = 1, we say that L is normalized. A normalized finitely-additive Daniell integral
is called a finitely-additive expectation.

Note thatMZ is a restricted-linear space, as is the set of bounded functions. The unique
coherent prevision on the bounded functions constructed above from a finitely-additive
probability on 2Z is an example of a finitely-additive expectation.

The various conditions in Definition 8 prevent ∞ − ∞ from appearing on either
side of (15). Note that one cannot have α and β both negative in (14) unless both f
and g are bounded. If at least one of the functions f , g is unbounded in (14), then at
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least one of the unbounded functions must have a positive coefficient in order for the
linear combination to be well-defined and bounded below. Examples of each of the
following situations arise, and they are the reason that we do not enforce (15) when
the arithmetic on the right-hand side involves ∞ − ∞:

– The difference between two functions that are unbounded above can be bounded
below.

– The difference of two functions, each with infinite finitely-additive expectation,
can have finite expectation.

Although there is no unique extension of a finitely-additive expectation from the
set of bounded functions to MZ , there are two special extensions that exist and
prove useful. Lemmas 9 and 10 apply to unbounded and infinite-valued functions.
Equation 1.2 of Heath and Sudderth (1978) states a result like Lemma 9 without proof
and without being explicit about the fact that the extension might take the value ∞.
The restriction to functions that are bounded below is important (even for the result
of Heath and Sudderth 1978) in order to avoid ∞ − ∞.

Lemma 9 Let J be the set of all bounded real-valued functions defined on a set Z ,
and let P be a finitely-additive expectation on J . For each f ∈ MZ , define

Q( f ) = sup
g ∈ J , g ≤ f

P(g).

Then Q = P on J , and Q is a finitely-additive expectation on MZ .

Proof Because P is a finitely-additive expectation, g ≤ f implies P(g) ≤ P( f ) for
f , g ∈ J . Hence Q( f ) = P( f ) for f ∈ J .
Next, we show that Q is restricted-linear. Let f1, f2 ∈ MZ , α1, α2 ∈ IR, and

α1 f1 + α2 f2 ∈ MZ . We need to show that Q(α1 f1 + α2 f2) = α1Q( f1) + α2Q( f2)
whenever the arithmetic on the right-hand side is well-defined. Since Q(α j f j ) =
α j Q( f j ) if α j > 0, there is no loss of generality in assuming that α1, α2 are each
either 1 or −1. First, we show that Q( f1 + f2) = Q( f1) + Q( f2) for f1, f2 ∈ MZ .
Notice that Q( f ) = limm→∞ P( f ∧ m) because every bounded g ≤ f is bounded
above by f ∧ m where m = supz g(z). Then notice that, for all m,

( f1 ∧ m/2) + ( f2 ∧ m/2) ≤ ( f1 + f2) ∧ m ≤ ( f1 ∧ m) + ( f2 ∧ m).

The limits of the left-hand and right-hand expressions are both Q( f1) + Q( f2) while
the limit of the middle expression is Q( f1 + f2). To complete the proof that Q is
restricted-linear, we need to show that Q( f1− f2) = Q( f1)−Q( f2) if f1− f2 ∈ MZ
and Q( f2) is finite. What we just proved implies that

Q( f1) = Q( f1 − f2 + f2) = Q( f1 − f2) + Q( f2). (16)

Since Q( f2) is finite, we can subtract it from both sides of (16) to complete this part
of the proof.
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Next, we show that Q is monotone. Let f , g ∈ MZ with f ≤ g. We need to show
that Q( f ) ≤ Q(g). Define

g′(z) =
{
g(z) − f (z) if f (z) < ∞,
0 otherwise.

Then g = f + g′, g′ ≥ 0, and g′ ∈ MZ . Hence, 0 ≤ Q(g′) from the definition of Q.
From the previous part of the proof,

Q(g) = Q( f + g′) = Q( f ) + Q(g′) ≥ Q( f ).

��
At the other extreme from Lemma 9, we have the following alternative extension

of a finitely-additive expectation from bounded functions to MZ .

Lemma 10 Assume the conditions of Lemma 9. Define L onMZ as follows: L( f ) =
P( f ) if f ∈ J , and L( f ) = ∞ if f ∈ MZ\J . Then L is a finitely-additive
expectation on MZ that extends P.

Proof Clearly, L extends P . Also, L is monotone since every instance of f ≤ g either
has both f , g ∈ J or L(g) = ∞. For (15), if either α or β is 0, the equation holds.
When both α and β are nonzero, consider four cases:

(i) α f , βg ∈ J . In this case both sides of (15) are the same because P is linear
on J .

(ii) α f ∈ J and βg /∈ J . In this case, β > 0 so that both sides of (15) are ∞.
(iii) α f /∈ J and βg ∈ J . In this case, α > 0 so that both sides of (15) are ∞.
(iv) α f , βg /∈ J . In this case, at least one of α or β must be positive. If α and

β are both positive, both sides of (15) are ∞. If one of them is negative, the
right-hand side of (15) is ∞ − ∞, and (15) has no force.

��
Definition 9 We refer to Q in Lemma 9 as the minimum extension of P . If a prevision
Q is the minimum extension of its restriction to the bounded random variables, then
we say that Q is a minimum extension. We refer to the L in Lemma 10 as themaximum
extension of P . We also use the notation

∫
Z f (z)P(dz) to stand for Q( f ) because

Q( f ) is a finitely-additive Daniell integral and is determined uniquely from P and f .

The terms “minimum extension” and “maximum extension” are used for Q and L
respectively because they assign the minimum and maximum of all possible finitely-
additive expectations that extend P toMZ .

It is also straightforward to see that the measure-theoretic definition of expectation
with respect to a countably-additive probability P is the restriction of a minimum
extension to the functions in MZ that are measurable with respect to the σ -field
on which P is defined. Nothing in the countably-additive theory corresponds to the
maximum extension. There are extensions that are neither minimum nor maximum,
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but these cannot generally be constructed in one step, like we did for the minimum
and maximum extensions.

The following is a generalization of a well-know measure-theoretic result.

Lemma 11 Let Z and Y be sets. Let P be a finitely-additive expectation onMY . Let
h : Y → Z be a function. Then P ′ defined by P ′( f ) = P[ f (h)] is a finitely-additive
expectation defined on MZ which we call the finitely-additive expectation induced
by h.

Proof Clearly P ′ ∈ ÎR
MZ , and P ′(1) = P(1) = 1. If f ≤ g, then f (h) ≤ g(h)

and P ′( f ) ≤ P ′(g). We need to show that P ′ is extended-linear. Assume that
f , g, α f + βg ∈ MZ and αP ′( f ) and βP ′(g) are not both infinite of opposite
signs. Then αP[ f (h)] and βP[g(h)] are not both infinite of opposite signs and
P[α f (h) + βg(h)] = αP[ f (h)] + βP[g(h)], which implies P ′(α f + βg) =
αP ′( f ) + βP ′(g). ��

A.2 Ultrafilter probabilities

Definition 10 Let S be a set and let U be a non-empty collection of subsets of S. We
call U an ultrafilter on S if (i) A ∈ U and A ⊆ B implies B ∈ U , (ii) A, B ∈ U implies
A ∩ B ∈ U , and (iii) for every A ⊆ S, A ∈ U if and only if AC /∈ U . An ultrafilter on
S is principal if there exists s ∈ S such that U consists of all subset of S that contain
s. Such an s is called the atom of U . Other ultrafilters are called non-principal.

Proposition 9 gives general conditions under which ultrafilters exist. It requires a
definition first.

Definition 11 A collection F of subsets of a set Z has the finite-intersection property
if every finite subcollection has non-empty intersection.

Proposition 9 (Comfort and Negrepontis 1974: Special case of Theorem 2.18, p. 39)
Let Z be a set, and let F be a collection of subsets. If F has the finite intersection
property, then there is an ultrafilter on Z that contains F .

We have two main uses for ultrafilters in this paper. One is to use them as examples
ofmerely finitely-additive probabilities viaLemma12below.The other is to exploit the
connection between limits of nets and integrals with respect to ultrafilter probabilities
defined on directed sets via Lemma 14 below.

There is a correspondence between ultrafilters and 0–1-valued probabilities.

Lemma 12 Let Z be a set, and let F be a field of subsets of Z . A finitely-additive
probability P defined on F takes only the values 0 and 1 if and only if (i) P can be
extended to P ′ defined on 2Z and (ii) there is an ultrafilter U of subsets ofZ such that
P ′(E) = 1 if and only if E ∈ U .

Proof For the “if” direction, the restriction of P ′ to F takes only the values 0 and
1. For the “only if” direction, V = {E ∈ F : P(E) = 1} has the finite-intersection
property, hence there is an ultrafilter U of subsets ofZ such V ⊆ U . Define P ′(E) = 1
if E ∈ U and P ′(E) = 0 if E /∈ U . It is clear that P ′ is finitely-additive on 2Z . ��
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Definition 12 LetU be an ultrafilter of subsets of some setZ .We call the probability P
defined by P(E) = 1 if E ∈ U and P(E) = 0 if E /∈ U the probability corresponding
to U .

Lemma 13 LetD be a set. LetU be an ultrafilter of subsets ofD. Let P be theminimum
extension of the probability on D corresponding to U . Then, for each f ∈ MD,

∫
D

f (η)P(dη) = sup
B∈U

inf
η∈B f (η) = inf

B∈U
sup
η∈B

f (η).

Proof Let k0 = ∫
D f (η)P(dη). Since (i) P(B) = 1 for all B ∈ U , (ii) P is amonotone

restricted-linear functional, and (iii) P is a minimum extension, k0 ≤ supη∈B f (η),
for all B ∈ U . Similarly, k0 ≥ infη∈B f (η), for all B ∈ U . It follows that

sup
B∈U

inf
η∈B f (η) ≤ k0 ≤ inf

B∈U
sup
η∈B

f (η). (17)

If the two endpoints, call them a ≤ b, of (17) are not equal, then for each c ∈ (a, b)
precisely one of {η : f (η) ≤ c} or {η : f (η) > c} is in U . If it is the first of
these, it contradicts b = infB∈U supη∈B f (η). If it is the second one, it contradicts
a = supB∈U infη∈B f (η). Hence a = b, and both inequalities in (17) are equality. ��

The final result requires a definition first.

Definition 13 Let x = {xη}η∈D be a net in a topological space T . We call a net
y = {yγ }γ∈D′ a subnet of x if there exists a function h : D′ → D with the following
properties: (i) yγ = xh(γ ) for all γ ∈ D′, (ii) γ1 ≤D′ γ2 implies h(γ1) ≤D h(γ2) and
(iii) for every η ∈ D there exists γ ∈ D′ such that h(γ ) ≥D η. A cluster point of x is
a point p ∈ T such that, for every neighborhood N of p and every η ∈ D, there exists
η′ ∈ D such that η′ ≥D η and xη′ ∈ N .

See Section 1 of the Online Resource for more detail about nets and subnets.

Lemma 14 Let Z be a set. Let D be a directed set and let f = { fη}η∈D be a net in

MZ . An element g of ÎR
Z

is a cluster point of f if and only if there is an ultrafilter
U that contains all tails of D whose corresponding probability on D has minimum
extension P such that g(z) = ∫

D fη(z)P(dη) for all z ∈ Z .

Proof For the “only if” direction, assume first that f converges to g. Let U be any
ultrafilter that contains all tails of D, and let P be the minimum extension of the
corresponding probability onD. Let h(z) = ∫

D fη(z)P(dη) for each z ∈ Z . We need
to show that, for each z ∈ Z and each neighborhood N of g(z), h(z) ∈ N . Let z ∈ Z .
Lemma 13, applied to ultrafilters of subsets of D, says that

sup
B∈U

inf
η∈B fη(z) = h(z) = inf

B∈U
sup
η∈B

fη(z). (18)

If g(z) is finite, let ε > 0, and let N be the interval (g(z) − ε, g(z) + ε). Because
f converges to g, there exists η ∈ D such that fβ(z) ∈ N for all β ≥D η. Let B =
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Aη = {β ∈ D : η ≤D β}, which is in U . It follows that the left and right sides of (18)
are respectively at least g(z)− ε and at most g(z)+ ε. Hence h(z) ∈ N . If g(z) = ∞,
let N = (c,∞]. Then there exists η ∈ D such that fβ(z) > c for all β ≥D η. Let
B = Aη, which is inU . It follows that the left side of (18) is at least c, so that h(z) ∈ N .
Next, assume that g is merely a cluster point of f . By Proposition 6, there exists a
subnet f ′ = {rτ }τ∈D′ that converges to g. The previous argument shows that for every
ultrafilter U ′ on D′ that contains all tails of D′, g(z) = ∫

D′ rτ (z)P ′(dτ), where P ′ is
the probability corresponding to U ′. Let h : D′ → D be the function in Definition 13
that embedsD′ intoD. Then rτ = fh(τ ), so that g(z) = ∫

D′ fh(τ )(z)P ′(dτ). Let P be
the probability on D induced by h from P ′ (Lemma 11.) Then

∫
D

fη(z)P(dη) =
∫
D′

fh(τ )(z)P
′(dτ).

For the “if” direction, let U be an ultrafilter that contains all tails of D such that
g(z) = ∫

D fη(z)P(dη) for all z ∈ Z , where P is the minimum extension of the
probability on D corresponding to U . We need to show that g is a cluster point of f .
Specifically, we need to show that, for every neighborhood N of g and η ∈ D, there
exists β ≥D η such that fβ ∈ N . It suffices to prove this claim for all neighborhoods
of the form N = {h : h(z j ) ∈ N j , for j = 1, . . . , n}, for arbitrary positive integer n,
distinct z1, . . . , zn ∈ Z and neighborhoods N1, . . . , Nn of the form N j = (g(z j ) −
ε, g(z j ) + ε) for ε > 0 if g(z j ) is finite and N j = (c,∞] if g(z j ) = ∞. So, let N be
of the form just described, and let η ∈ D. We need to find β ∈ D such that η ≤D β

and fβ(z j ) ∈ N j for j = 1, . . . , n. We know that, for all z ∈ Z ,

sup
B∈U

inf
β∈B fβ(z) = g(z) = inf

B∈U
sup
β∈B

fβ(z).

For each j such that g(z j ) is finite, let Bj ∈ U be such that

inf
η∈Bj

fβ(z j ) > g(z j ) − ε,

sup
η∈Bj

fβ(z j ) < g(z j ) + ε.

For each j such that g(z j ) = ∞, let Bj ∈ U be such that

inf
β∈Bj

fβ(z j ) > c.

If we replace Bj by Bj ∩ Aη, all of the last three inequalities above continue to hold.
For each j , let β j ∈ Bj , and let β ≥D β j for all j . Then η ≤D β and fβ(z j ) ∈ N j

for all j . ��

B Results whose proofs are in the online resource

This appendix contains results whose proofs are located in the Online Resource.
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Proposition 10 (Lemma 10 in Section 2.3 of the Online Resource) Let Z be a set.
Then PZ is compact.

Proposition 11 (Lemma 2 in Section 1.2 of the Online Resource) Let Z be a set. For

every z ∈ Z and every c ∈ ÎR, H = { f ∈ ÎR
Z : f (z) = c} is closed. Also, both

H< = { f ∈ ÎR
Z : f (z) < c} and H> = { f ∈ ÎR

Z : f (z) > c} are open.
Proposition 12 (Lemma 18 in Section 3 of the Online Resource) Let G be a closed
convex subset of IRZ consisting of non-negative functions such that g ∈ G and f ≥ g
implies f ∈ G. Let k ∈ ∂LG. Then there exists a finitely-additive expectation λk ∈ ΛZ
such that λk(k) ≤ λk(g) for all g ∈ G.

Proposition 13 (Lemma 1 in Section 1.2 of the Online Resource) Let { fη}η∈D be a

convergent net (with limit f0) in ÎR
Z
for some set Z .

– If supz∈Z fη(z) ≤ cη for all η and {cη}η∈D converges to c0, then supz∈Z f0(z) ≤
c0.

– If inf z∈Z fη(z) ≥ cη for all η and {cη}η∈D converges to c0, then inf z∈Z f0(z) ≥ c0.

Proposition 14 (Corollary 1 in Section 1.2 of the Online Resource) Let c ∈ IR. Then
{ f : inf z∈Z f (z) ≥ c} and { f : supz∈Z f (z) ≤ c} are closed.
Proposition 15 (Lemma 17 in Section 3 of the Online Resource) Let G be a closed

convex subset of ÎR
Z
consisting of non-negative functions such that g ∈ G and f ≥ g

implies f ∈ G. Let k be a real-valued function, and define

Hk = {h ∈ MZ : h(z) < k(z), for each z}.

Suppose that Hk ∩G = ∅. Then there exists λk ∈ ΛZ such that λk(k) ≤ λk(g) for all
g ∈ G.

Proposition 16 (Lemma 22 in Section 5 of the Online Resource) Let Z be a set. A
finitely-additive expectation λ on MZ is continuous in the pointwise topology if and
only if λ is simple and is a minimum extension.

Proposition 17 (Lemma 11 in Section 2.3 of the Online Resource) Let Z be a set.
Then SZ is dense in ΛZ .

Proposition 18 (Lemma 12 in Section 2.4 of the Online Resource) Let X and Y be
sets. Let P be a finitely-additive probability on 2Y . Let Q be a countably-additive
discrete probability on 2X . Then P[Q]( f ) = Q[P]( f ) for each bounded function f .
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Online Resource for “What Finite-Additivity Can Add
to Decision Theory”

Mark J. Schervish,1 Teddy Seidenfeld, Rafael B. Stern, and Joseph B.
Kadane

Abstract This Online Resource includes background material for the paper
Schervish et al. (2019). The background begins with topology and conver-
gence in Section 1. At that point, we have enough tools to give an overview
of the theory of finitely-additive expectations in Section 2. The final bit of
background includes some results on separation of convex sets of unbounded
functions in Section 3. The randomized rules constructed in Schervish et al.
(2019) are seemingly less general than the randomized rules that typically
arise in the countably-additive decision theory. Section 4 demonstrates that
the risk set that we construct from our finitely-additive randomizations in-
cludes the risk functions for the more general randomizations when all prob-
abilities are countably-additive. Section 5 presents an interesting property of
pointwise convergence that helps to understand why some prior distributions
(both finitely-additive and countably-additive) might not have Bayes rules.

1 Topology Background

Our results rely on the theory of product sets, nets, and ultrafilters.

1.1 Product Sets

Definition 1 Let {Zα}α∈A be a collection of sets, each of which has a topol-
ogy. The product topology on the product set

∏
α∈AZα is the topology that has

as a sub-base the collection of all sets of the form
∏
α∈A Yα where Yα = Zα

for all but at most one α, and for that one α, Yα is an open subset of Zα.

If we let Z =
⋃
α∈AZα, then the product set

∏
α∈AZα can be thought of as

the set of all functions f : A→ Z such that f(α) ∈ Zα for all α. If all Zα are
the same set Z, then the product set is often written ZA.

Definition 2 Let {Zα}α∈A be a collection of sets. For each β ∈ A, the func-
tion fβ :

∏
α∈AZα → Zβ defined by fβ(g) = g(β) is called an evaluation

functional or a coordinate-projection function.

It is not difficult to show that the product topology has two other equivalent
characterizations: (i) the smallest topology such that all of the evaluation
functionals are continuous, and (ii) the topology of pointwise convergence of
the functions in the product set.

1 Corresponding author affiliation: Carnegie Mellon University, Pittsburgh, PA 15213
USA, email: mark@cmu.edu
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Every open set in a topological space is the union of arbitrarily many basic
open sets. Each basic open set is the intersection of finitely many sub-basic
open sets. Hence, the following result is straightforward.

Proposition 1 For every open set N in a product space
∏
α∈AZα, there exist

a finite integer n, points α1, . . . , αn ∈ A, and open sets Nj ⊆ Zαj for j =
1, . . . , n such that N contains

{f : f(αj) ∈ Nj , for j = 1, . . . , n}. (1)

In particular, every neighborhood of a function g in the product space must
contain a set of the form (1) such that g(αj) ∈ Nj for j = 1, . . . , n.

1.2 Nets

Our main use for nets is to identify the closure of a set.

Definition 3 A partial order on a set D is a binary relation ≤D with the
following properties: (i) for all η ∈ D, η ≤D η (reflexive), and (ii) if η ≤D β
and β ≤D γ, then η ≤D γ (transitive). A directed set is a set D with a partial
order ≤D that has the following additional property: (iii) for all η, β ∈ D,
there exists γ ∈ D such that η ≤D γ and β ≤D γ.

Definition 4 Let D be a directed set with partial order ≤D. A function r :
D → T is called a net on D in T . Such a net is denoted either (D, r) or
x = {xη}η∈D, where xη = r(η) for η ∈ D. If {xη}η∈D is a net, then for each
η ∈ D, the set

Aη = {xβ : η ≤D β}
is called a tail of x. If T is a topological space, we say that the net x converges
to x∗ ∈ T if every neighborhood of x∗ contains a tail of x.

Note that the set ZZ+ of positive integers is a directed set, and each sequence
is a net on ZZ+. Every result that holds for all nets holds a fortiori for all
sequences. There are nets that are not sequences.

Example 1 Let D be the collection of all finite subsets of an uncountable set
X . Create the partial order ≤D on D defined by η1 ≤D η2 if η1 ⊆ η2. Notice
that ηj ≤D (η1 ∪ η2) for j = 1, 2, making D a directed set. Let T be the
collection of all indicator functions of subsets of X , and let xη = Iη for each
η ∈ D. It is straightforward to show that {xη}η∈D converges to IX . It is also
easy to see that no sequence of indicators of finite sets can converge to the
indicator of an uncountable set.

Definition 5 Let x = {xη}η∈D be a net in a topological space T . We call
a net y = {yγ}γ∈D′ a subnet of x if there exists a function h : D′ → D
with the following properties: (i) yγ = xh(γ) for all γ ∈ D′, (ii) γ1 ≤D′ γ2
implies h(γ1) ≤D h(γ2) and (iii) for every η ∈ D there exists γ ∈ D′ such
that h(γ) ≥D η. A cluster point of x is a point p ∈ T such that, for every
neighborhood N of p and every η ∈ D, there exists η′ ∈ D such that η′ ≥D η
and xη′ ∈ N .
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It is trivial to see that a net is a subnet of itself. If we think of a sequence as
a net, then it is also trivial that a subsequence is a subnet. As Willard (1970,
Example 11.4(b)) points out, a subnet of a sequence need not be a subsequence
because the directed set D′ for the subnet might be merely partially ordered,
unlike the integers. An example of such a subnet can be constructed from the
proof of Kelley (1955, Lemma 5, p.70).

The following result is straightforward.

Proposition 2 Let Z be a set, and let {fη}η∈D and {gη}η∈D be convergent

nets in ÎR
Z

. Let f and g be the respective limits. If fη(z) ≤ gη(z) for all z ∈ Z
and η ∈ D, then f(z) ≤ g(z) for all z ∈ Z.

The supremum and infimum are functionals defined on spaces of ÎR-valued
functions. They are not continuous in general, but they do have the following
property.

Lemma 1 Let {fη}η∈D be a convergent net (with limit f0) in ÎR
Z

for some
set Z.

– If supz∈Z fη(z) ≤ cη for all η and {cη}η∈D converges to c0, then supz∈Z f0(z) ≤
c0.

– If infz∈Z fη(z) ≥ cη for all η and {cη}η∈D converges to c0, then infz∈Z f0(z) ≥
c0.

Proof Consider the claim about the supremum first. The claim is vacuous if
c0 = ∞. If c0 < ∞, suppose, to the contrary, that supz∈Z f0(z) > c0. Then
there exists ε > 0 and z0 ∈ Z such that f0(z0) > c0 + ε. Because fη converges
to f0, there exists η0 such that η ≥D η0 implies that fη(z0) > c0 + 2ε/3. Since
cη converges to c0, there exists η1 such that η ≥D η1 implies that cη < c0+ε/3,
hence fη(z0) < c0+ε/3. There exists η2 such that ηj ≤D η2 for j = 0, 1. Hence,
η ≥D η2 implies both fη(z0) > c0+2ε/3 and fη(z0) < c0+ε/3, a contradiction.
A similar argument works for the claim about the infimum.

Lemma 1 has a useful corollary.

Corollary 1 Let c ∈ IR. Then {f : infz∈Z f(z) ≥ c} and {f : supz∈Z f(z) ≤
c} are closed.

The following result is used in the proof of Theorem 1 of Schervish et al.
(2019).

Lemma 2 Let Z be a set. For every z ∈ Z and every c ∈ ÎR, H = {f ∈
ÎR
Z

: f(z) = c} is closed. Also, both H< = {f ∈ ÎR
Z

: f(z) < c} and

H> = {f ∈ ÎR
Z

: f(z) > c} are open.

Proof For finite c, each of H> and H< are sub-basic open sets, hence their
union HC is open. For c =∞, H> = ∅ and every cluster point f of every net
in H has f(z) =∞, hence H is closed.
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1.3 Ultrafilters

Definition 6 Let S be a set and let U be a non-empty collection of subsets
of S. We call U an ultrafilter on S if (i) A ∈ U and A ⊆ B implies B ∈ U , (ii)
A,B ∈ U implies A ∩ B ∈ U , and (iii) for every A ⊆ S, A ∈ U if and only
if AC 6∈ U . An ultrafilter on S is principal if there exists s ∈ S such that U
consists of all subset of S that contain s. Such an s is called the atom of U .
Other ultrafilters are called non-principal.

Proposition 3 gives general conditions under which ultrafilters exist. It
requires a definition first.

Definition 7 A collection F of subsets of a set Z has the finite-intersection
property if every finite subcollection has non-empty intersection.

Proposition 3 (Comfort and Negrepontis 1974: Special case of The-
orem 2.18, p. 39) Let Z be a set, and let F be a collection of subsets. If
F has the finite intersection property, then there is an ultrafilter on Z that
contains F .

Example 2 Let D be a directed set. Then the collection of all tails of D has
the finite-intersection property. (Every finite subcollection has non-empty in-
tersection.) By Proposition 3, there is an ultrafilter UD that contains all tails
of D.

We have two main uses for ultrafilters in this paper. One is to use them as
examples of merely finitely-additive probabilities via Lemma 7 in Section 2.2.
The other is to exploit the connection between limits of nets and integrals
with respect to ultrafilter probabilites defined on directed sets via Lemma 9
in Section 2.2.

2 Finitely-Additive Integrals and Expectations

2.1 Unbounded and Infinite-Valued Functions

In de Finetti (1974), de Finetti laid out the theory of coherent previsions for
bounded random variables, which he related to finitely-additive probability.
De Finetti’s definition of coherent prevision is the following.

Definition 8 Let F be a set of bounded functions defined on a space Z. For
each f ∈ F , let P (f) be a real number. De Finetti called {P (f) : f ∈ F} coher-
ent previsions for F if, for every finite integer n, every n-tuple (f1, . . . , fn) ∈
Fn, and every n-tuple (α1, . . . , αn) of real numbers,

sup
z

n∑
j=1

αj [fj(z)− P (fj)] ≥ 0. (2)



5

If F consists solely of indicator functions of events, coherent previsions for
F can be shown to form a finitely-additive probability. (See de Finetti 1974,
Chapter 3 for a long-winded, but elementary treatiment.) Also, a finitely-
additive probability can be defined on an arbitrary collection of subsets of a
general set Z, including the power set. A number of theorems in Bhaskara Rao
and Bhaskara Rao (1983, Chapeter 3) show how to extend a partially de-
fined finitely-additive probability to arbitrary larger domains. Theorems 3.2.9
and 3.2.10 on pages 69–70 of Bhaskara Rao and Bhaskara Rao (1983) are very
general. For this reason, measurability conditions are often not included in
theorems about finitely-additive probabilities. In this paper, we assume that
each finitely-additive probability is defined on 2Z . If the reader starts with a
finitely-additive probability P defined on a smaller domain, our results will
apply to every extension of P to 2Z .

Extending a finitely-additive probability P defined on 2Z to a coherent
prevision on the set of all bounded functions in MZ is straightforward. For
each simple function f =

∑n
j=1 αjIAj on Z (with all αj finite), there is a unique

value for the coherent previson P (f) =
∑n
j=1 αjP (Aj). (See Bhaskara Rao

and Bhaskara Rao 1983, Proposition 4.4.2 on page 97.) Because every bounded
function is uniformly approximable both above and below by simple functions,
for each bounded function f on Z, there is a unique value for the finitely-
additive expectation

P (f) = sup
simple g ≤ f

P (g) = inf
simple g ≥ f

P (g).

In this paper, we need an extension of the finitely-additive theory from
bounded functions both to unbounded functions, as was done by Schervish
et al. (2014), and to functions that assume the value∞ as well. The extension
to unbounded functions in Schervish et al. (2014) generalizes the concept of
coherence to allow P (f) = ∞ without requiring the symbol ∞ to appear in
(2). They then prove in Schervish et al. (2014, Definition 7, Lemmas 4 and 6)
that previsions are coherent if and only if they are the values of a normalized
monotone linear functional. The assumption that the loss function is bounded
below alows us to avoid dealing with functions that both assume the value ∞
and are unbounded below. This has the added benefit of allowing us to avoid
arithmetic that leads to ∞−∞.

Because the set MZ of functions that are bounded below is not a lin-
ear space, we need to generalize the concept of normalized monotone linear
functional.

Definition 9 Let Z be a space, and let F be a subset of MZ that contains
all constant functions and has the following restricted linearity property:

If f, g ∈ F and h = αf + βg ∈MZ with α, β ∈ IR, then h ∈ F . (3)

We call such a set F a restricted-linear space. If F is a restricted-linear space,
a function L : F → ÎR that satisfies

L(αf + βg) = αL(f) + βL(g), (4)
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whenever f, g, αf + βg ∈ F and the arithmetic on the right-hand side of (4)
is well defined (i.e., does not involve ∞ − ∞,) is called a restricted-linear
functional. A restricted-linear functional is called monotone if f ≤ g im-
plies L(f) ≤ L(g). A monotone restricted-linear functional is called a finitely-
additive Daniell integral. If L(1) = 1, we say that L is normalized. A normalized
finitely-additive Daniell integral is called a finitely-additive expectation.

Note that MZ is a restricted-linear space, as is the set of bounded functions.
The unique coherent prevision on the bounded functions constructed above
from a finitely-additive probability on 2Z is an example of a finitely-additive
expectation.

The various conditions in Definition 9 prevent ∞ − ∞ from appearing
on either side of (4). Note that one cannot have α and β both negative in
(3) unless both f and g are bounded. If at least one of the functions f, g is
unbounded in (3), then at least one of the unbounded functions must have
a positive coefficient in order for the linear combination to be well-defined
and bounded below. Examples of each of the following situations arise, and
they are the reason that we do not enforce (4) when the arithmetic on the
right-hand side involves ∞−∞:

– The difference between two functions that are unbounded above can be
bounded below.

– The difference of two functions, each with infinite finitely-additive expec-
tation, can have finite expectation.

Although there is no unique extension of a finitely-additive expectation
from the set of bounded functions toMZ , there are two special extensions that
exist and prove useful. Lemmas 3 and 4 apply to unbounded and infinite-valued
functions. Equation 1.2 of Heath and Sudderth states a result like Lemma 3
without proof and without being explicit about the fact that the extension
might take the value ∞. The restriction to functions that are bounded below
is important (even for the result of Heath and Sudderth) in order to avoid
∞−∞.

Lemma 3 Let J be the set of all bounded real-valued functions defined on a
set Z, and let P be a finitely-additive expectation on J . For each f ∈ MZ ,
define

Q(f) = sup
g ∈ J , g ≤ f

P (g).

Then Q = P on J , and Q is a finitely-additive expectation on MZ .

Proof Because P is a finitely-additive expectation, g ≤ f implies P (g) ≤ P (f)
for f, g ∈ J . Hence Q(f) = P (f) for f ∈ J .

Next, we show that Q is restricted-linear. Let f1, f2 ∈ MZ , α1, α2 ∈ IR,
and α1f1 + α2f2 ∈ MZ . We need to show that Q(α1f1 + α2f2) = α1Q(f1) +
α2Q(f2) whenever the arithmetic on the right-hand side is well-defined. Since
Q(αjfj) = αjQ(fj) if αj > 0, there is no loss of generality in assuming that
α1, α2 are each either 1 or −1. First, we show that Q(f1 +f2) = Q(f1)+Q(f2)
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for f1, f2 ∈MZ . Notice that Q(f) = limm→∞ P (f∧m) because every bounded
g ≤ f is bounded above by f ∧m where m = supz g(z). Then notice that, for
all m,

(f1 ∧m/2) + (f2 ∧m/2) ≤ (f1 + f2) ∧m ≤ (f1 ∧m) + (f2 ∧m).

The limits of the left-hand and right-hand expressions are both Q(f1) +Q(f2)
while the limit of the middle expression is Q(f1 + f2). To complete the proof
that Q is restricted-linear, we need to show that Q(f1 − f2) = Q(f1)−Q(f2)
if f1 − f2 ∈MZ and Q(f2) is finite. What we just proved implies that

Q(f1) = Q(f1 − f2 + f2) = Q(f1 − f2) +Q(f2). (5)

Since Q(f2) is finite, we can subtract it from both sides of (5) to complete this
part of the proof.

Next, we show that Q is monotone. Let f, g ∈ MZ with f ≤ g. We need
to show that Q(f) ≤ Q(g). Define

g′(z) =

{
g(z)− f(z) if f(z) <∞,
0 otherwise.

Then g = f + g′, g′ ≥ 0, and g′ ∈ MZ . Hence, 0 ≤ Q(g′) from the definition
of Q. From the previous part of the proof,

Q(g) = Q(f + g′) = Q(f) +Q(g′) ≥ Q(f).

At the other extreme from Lemma 3, we have the following alternative
extension of a finitely-additive expectation from bounded functions to MZ .

Lemma 4 Assume the conditions of Lemma 3. Define L on MZ as follows:
L(f) = P (f) if f ∈ J , and L(f) = ∞ if f ∈ MZ \ J . Then L is a finitely-
additive expectation on MZ that extends P .

Proof Clearly, L extends P . Also, L is monotone since every instance of f ≤ g
either has both f, g ∈ J or L(g) = ∞. For (4), if either α or β is 0, the
equation holds. When both α and β are nonzero, consider four cases:
(i) αf, βg ∈ J . In this case both sides of (4) are the same because P is linear
on J .
(ii) αf ∈ J and βg 6∈ J . In this case, β > 0 so that both sides of (4) are ∞.
(iii) αf 6∈ J and βg ∈ J . In this case, α > 0 so that both sides of (4) are ∞.
(iv) αf, βg 6∈ J . In this case, at least one of α or β must be positive. If α and
β are both positive, both sides of (4) are ∞. If one of them is negative, the
right-hand side of (4) is ∞−∞, and (4) has no force.

Definition 10 We refer to Q in Lemma 3 as the minimum extension of P .
If a prevision Q is the minimum extension of its restriction to the bounded
random variables, then we say that Q is a minimum extension. We refer to
the L in Lemma 4 as the maximum extension of P . We also use the notation∫
Z f(z)P (dz) to stand for Q(f) because Q(f) is a finitely-additive Daniell

integral and is determined uniquely from P and f .
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The terms “minimum extension” and “maximum extension” are used for Q
and L respectively because they assign the minimum and maximum of all
possible finitely-additive expectations that extend P to MZ .

It is also straightforward to see that the measure-theoretic definition of ex-
pectation with respect to a countably-additive probability P is the restriction
of a minimum extension to the functions in MZ that are measurable with
respect to the σ-field on which P is defined. Nothing in the countably-additive
theory corresponds to the maximum extension. There are extensions that are
neither minimum nor maximum, but these cannot generally be constructed in
one step, like we did for the minimum and maximum extensions. The next
example includes such an extension.

Example 3 Let F0 be the set of all bounded functions on a set Z, and let f0 be
an unbounded function (possibly infinite-valued.) Let Tf0 = {z : f0(z) =∞}.
Let P0 be a finitely-additive expectation on F0. Define

F = {αf0 + g : α ≥ 0, g ∈ F0},
c = sup

h ∈ F0, h ≤ f0
P0(f0),

q = P0(Tf0).

If Tf0 6= ∅, the representation of elements of F as f = αf0 + g is not unique
because arbitrary changes to g on Tf0 do not affect f . This degree of non-
uniqueness does not affect the example. However, if f0 is bounded on TCf0 , there
is a more serious non-uniqueness in f = αf0 + g. For example, let h = f0IT c

f0
.

Then αf0 +g = (α+1)f0 +g−h. In this case, which we will call the “bounded
case,” replace f0 by ∞ITf0 in the definition of F above. In this way the set
F does not change. Then, the representation of elements of F as α∞ITf0 + g
with α ∈ {0, 1} and g ∈ F0 is unique except for the values that g takes on the
set Tf0 . Throughout this example, when we refer to generic elements f1, f2 of
F , we will denote fj = αjf0 + gj with αj ≥ 0 (or αj ∈ {0, 1} in the bounded
case) and gj ∈ F0 for j = 1, 2.

To see that F is restricted-linear, let f1, f2 ∈ F . The proof depends on
whether or not f0 takes the value ∞. If there is z ∈ Z such that f0(z) = ∞,
then αf1+βf2 ∈ F if and only if both αα1 and βα2 are non-negative. Similarly,
αf1 + βf2 ∈ MZ if and only if both αα1 and βα2 are non-negative. If f0 is
real-valued, then αf1 + βf2 ∈ F if and only if αα1 + βα2 ≥ 0. Similarly,
αf1 + βf2 ∈MZ if and only if αα1 + βα2 ≥ 0.

Next, extend P0 to the domain F . Let f = αf0+g with α ≥ 0 (or α ∈ {0, 1}
for the bounded case) and g ∈ F0. If q > 0 or c =∞, define

P (f) =

{
∞ if α > 0,
P0(g) if α = 0.

If q = 0 and c < ∞, let d ≥ c be arbitrary (d = ∞ is allowed,) and define
P (f) = αd + P0(g). This extension is well-defined because (i) if α = 0, g is
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unique, (ii) if α > 0 and q = 0, the values of g on Tf0 are irrelevant to P (f),
and (iii) if α > 0 and q > 0, all of g is irrelevant to P (f). Note that

P (f0) =

{
∞ if q > 0 or c =∞,
αd if q = 0 and c <∞.

If we choose d = c, P will agree with the minimum extension on F . If we choose
d =∞, P will agree with the maximum extension. If we choose d ∈ (c,∞), P
will agree with an extension that is between the two extremes.

For those cases in which P (f0) = ∞, it is not difficult to see that P is
a finitely-additive expectation on F . The key step is to notice that f1 ≤ f2
implies that α2 ≥ α1. If at least one of α1, α2 is non-zero, then P (f2) =∞ and
P (f1) ≤ P (f2). If α1 = α2 = 0, then P (f1) ≤ P (f2) because P (fj) = P0(fj)
for j = 1, 2 and P0 is is a finitely-additive expectation.

For the rest of the example, assume that P (f0) is finite. In particular,
q = 0, d is finite, and P (f) is finite for all f ∈ F . First, we show that P is
restricted-linear. If f1, f2, αf1 +βf2 ∈ F , then αP (f1)+βP (f2) is not∞−∞,
and both sides of (4) are

(αα1 + βα2)d+ αP0(g1) + βP0(g2).

Next, we show that P is monotone. For j = 1, 2, we have P (fj) = αjd +
P0(gj), so

P (f2)− P (f1) = d(α2 − α1) + P0(g2 − g1). (6)

Let f1 ≤ f2, so that (as above) α2 ≥ α1 and for all z 6∈ Tf0 ,

g2(z)− g1(z) ≥ (α1 − α2)f0(z).

If α2 = α1, then, P0(g2− g1) ≥ 0 because P0 is monotone. If α2 > α1, we have

g1(z)− g2(z)

α2 − α1
≤ f0(z),

for all z 6∈ Tf0 . Since P0(Tf0) = 0,

(α2 − α1)c ≥ P0(g1 − g2).

Combining this with (6) and d ≥ c yields P (f2)− P (f1) ≥ 0.

The following is a useful result concerning minimum extensions.

Lemma 5 Let f be bounded below. Let P be a minimum extension such that
P (f) <∞. Then P (f) = limm→∞ P [fI{f≤m}].

Proof Since P [fI{f≤m}] is non-decreasing in m, it converges to some number
c1 ≤ P (f). Hence mP (f > m) converges to c2 = P (f) − c1 ≥ 0. We need to
prove that c2 = 0. Assume, to the contrary, that c2 > 0. Then

lim
n→∞

2nP (f > 2n)

2n−1P (f > 2n−1)
= 1.
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Also,

P (f) ≥
∞∑
n=1

2n−1P (2n−1 < f ≤ 2n). (7)

For each n ≥ 1, let dn = 2P (f > 2n)/P (f > 2n−1). We have assumed
that limn→∞ dn = 1. So P (2n−1 < f ≤ 2n) = P (f > 2n)(1 + εn) where
limn→∞ εn = 0. It follows from (7) that

P (f) ≥
∞∑
n=1

2n−1P (f > 2n−1)(1 + εn) =∞,

which contradicts P (f) <∞.

The following is a generalization of a well-know measure-theoretic result.

Lemma 6 Let Z and Y be sets. Let P be a finitely-additive expectation on
MY . Let h : Y → Z be a function. Then P ′ defined by P ′(f) = P [f(h)] is a
finitely-additive expectation defined on MZ which we call the finitely-additive
expectation induced by h.

Proof Clearly P ′ ∈ ÎR
MZ

, and P ′(1) = P (1) = 1. If f ≤ g, then f(h) ≤ g(h)
and P ′(f) ≤ P ′(g). We need to show that P ′ is extended-linear. Assume that
f, g, αf + βg ∈ MZ and αP ′(f) and βP ′(g) are not both infinite of opposite
signs. Then αP [f(h)] and βP [g(h)] are not both infinite of opposite signs
and P [αf(h) + βg(h)] = αP [f(h)] + βP [g(h)], which implies P ′(αf + βg) =
αP ′(f) + βP ′(g).

2.2 Ultrafilter Probabilities

There is a correspondence between ultrafilters and 0-1-valued probabilities.

Lemma 7 Let Z be a set, and let F be a field of subsets of Z. A finitely-
additive probability P defined on F takes only the values 0 and 1 if and only
if (i) P can be extended to P ′ defined on 2Z and (ii) there is an ultrafilter U
of subsets of Z such that P ′(E) = 1 if and only if E ∈ U .

Proof For the “if” direction, the restriction of P ′ to F takes only the values
0 and 1. For the “only if” direction, V = {E ∈ F : P (E) = 1} has the
finite-intersection property, hence there is an ultrafilter U of subsets of Z such
V ⊆ U . Define P ′(E) = 1 if E ∈ U and P ′(E) = 0 if E 6∈ U . It is clear that P ′

is finitely-additive on 2Z .

Definition 11 Let U be an ultrafilter of subsets of some set Z. We call the
probability P defined by P (E) = 1 if E ∈ U and P (E) = 0 if E 6∈ U the
probability corresponding to U .
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Lemma 8 Let D be a set. Let U be an ultrafilter of subsets of D. Let P be
the minimum extension of the probability on D corresponding to U . Then, for
each f ∈MD, ∫

D
f(η)P (dη) = sup

B∈U
inf
η∈B

f(η) = inf
B∈U

sup
η∈B

f(η).

Proof Let k0 =
∫
D f(η)P (dη). Since (i) P (B) = 1 for all B ∈ U , (ii) P is

a monotone restricted-linear functional, and (iii) P is a minimum extension,
k0 ≤ supη∈B f(η), for all B ∈ U . Similarly, k0 ≥ infη∈B f(η), for all B ∈ U . It
follows that

sup
B∈U

inf
η∈B

f(η) ≤ k0 ≤ inf
B∈U

sup
η∈B

f(η). (8)

If the two endpoints, call them a ≤ b, of (8) are not equal, then for each
c ∈ (a, b) precisely one of {η : f(η) ≤ c} or {η : f(η) > c} is in U . If it is the
first of these, it contradicts b = infB∈U supη∈B f(η). If it is the second one, it
contradicts a = supB∈U infη∈B f(η). Hence a = b, and both inequalities in (8)
are equality.

Lemma 9 Let Z be a set. Let D be a directed set and let f = {fη}η∈D be a

net in MZ . An element g of ÎR
Z

is a cluster point of f if and only if there is
an ultrafilter U that contains all tails of D whose corresponding probability on
D has minimum extension P such that g(z) =

∫
D fη(z)P (dη) for all z ∈ Z.

Proof For the “only if” direction, assume first that f converges to g. Let U
be any ultrafilter that contains all tails of D, and let P be the minimum
extension of the corresponding probability on D. Let h(z) =

∫
D fη(z)P (dη)

for each z ∈ Z. We need to show that, for each z ∈ Z and each neighborhood
N of g(z), h(z) ∈ N . Let z ∈ Z. Lemma 8, applied to ultrafilters of subsets of
D, says that

sup
B∈U

inf
η∈B

fη(z) = h(z) = inf
B∈U

sup
η∈B

fη(z). (9)

If g(z) is finite, let ε > 0, and let N be the interval (g(z)− ε, g(z)+ ε). Because
f converges to g, there exists η ∈ D such that fβ(z) ∈ N for all β ≥D η.
Let B = Aη = {β ∈ D : η ≤D β}, which is in U . It follows that the left and
right sides of (9) are respectively at least g(z)− ε and at most g(z) + ε. Hence
h(z) ∈ N . If g(z) = ∞, let N = (c,∞]. Then there exists η ∈ D such that
fβ(z) > c for all β ≥D η. Let B = Aη, which is in U . It follows that the left side
of (9) is at least c, so that h(z) ∈ N . Next, assume that g is merely a cluster
point of f . By Proposition 6 in Schervish et al. (2019), there exists a subnet
f ′ = {rτ}τ∈D′ that converges to g. The previous argument shows that for
every ultrafilter U ′ on D′ that contains all tails of D′, g(z) =

∫
D′ rτ (z)P ′(dτ),

where P ′ is the probability corresponding to U ′. Let h : D′ → D be the
function in Definition 5 that embeds D′ into D. Then rτ = fh(τ), so that
g(z) =

∫
D′ fh(τ)(z)P

′(dτ). Let P be the probability on D induced by h from
P ′ (Lemma 6.) Then∫

D
fη(z)P (dη) =

∫
D′
fh(τ)(z)P

′(dτ).
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For the “if” direction, let U be an ultrafilter that contains all tails of D such
that g(z) =

∫
D fη(z)P (dη) for all z ∈ Z, where P is the minimum extension of

the probability on D corresponding to U . We need to show that g is a cluster
point of f . Specifically, we need to show that, for every neighborhood N of g
and η ∈ D, there exists β ≥D η such that fβ ∈ N . It suffices to prove this claim
for all neighborhoods of the form N = {h : h(zj) ∈ Nj , for j = 1, . . . , n},
for arbitrary positive integer n, distinct z1, . . . , zn ∈ Z and neighborhoods
N1, . . . , Nn of the form Nj = (g(zj) − ε, g(zj) + ε) for ε > 0 if g(zj) is finite
and Nj = (c,∞] if g(zj) = ∞. So, let N be of the form just described, and
let η ∈ D. We need to find β ∈ D such that η ≤D β and fβ(zj) ∈ Nj for
j = 1, . . . , n. We know that, for all z ∈ Z,

sup
B∈U

inf
β∈B

fβ(z) = g(z) = inf
B∈U

sup
β∈B

fβ(z).

For each j such that g(zj) is finite, let Bj ∈ U be such that

inf
η∈Bj

fβ(zj) > g(zj)− ε,

sup
η∈Bj

fβ(zj) < g(zj) + ε.

For each j such that g(zj) =∞, let Bj ∈ U be such that

inf
β∈Bj

fβ(zj) > c.

If we replace Bj by Bj ∩ Aη, all of the last three inequalities above continue
to hold. For each j, let βj ∈ Bj , and let β ≥D βj for all j. Then η ≤D β and
fβ(zj) ∈ Nj for all j.

2.3 Topology of Finitely-Additive Expectations

Let Z be a set with MZ the set of ÎR-valued functions defined on Z that
are bounded below. The set of finitely-additive expectations PZ is a set of ÎR-
valued functions defined on MZ . As such, PZ has a product topology, which
is also the topology of pointwise convergence. That is, a net {Qη}η∈D in PZ
converges to Q if and only if {Qη(f)}η∈D converges to Q(f) for all f ∈ MZ .
The key topological feature of PZ is that it is compact.

Lemma 10 Let Z be a set. Then PZ is compact.

Proof First, we show that PZ is a closed subset of ÎR
MZ

. To do this, we show
that the limit of every convergent net in PZ is an element of PZ . Let {Pη}η∈D
be a net of elements of PZ such that Pη(f) converges to P (f) for each f ∈MZ .
We will show that P ∈ PZ . Since Pη(1) = 1 for all η, P (1) = 1. If f ≤ g, then
Pη(f) ≤ Pη(g) for all η ∈ D, so limη Pη(f) ≤ limη Pη(g) by Proposition 2. Let
f, g, αf + βg ∈MZ be such that αP (f) + βP (g) is not ∞−∞. Then

Pη(αf + βg) = αPη(f) + βPη(g),
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for each η such that the right-hand side is not ∞ − ∞. Since αPη(f) and
βPη(g) converge to αP (f) and βP (g) respectively, the two limits cannot be
infinite of opposite signs. Since Pη(αf +βg) converges to P (αf +βg), we have
that

P (αf + βg) = αP (f) + βP (g).

Hence, P is a finitely-additive expectation on MZ .
The rest of the proof is to show that PZ is compact. Let Q be the set of

restrictions of the elements of PZ to elements of MZ that are non-negative,
i.e., to the subset G = [0,∞]Z ⊂ MZ . Note that the elements of Q are not
restricted-linear functionals because G is not a restricted-linear space.

Next, we prove that for each element Q of Q, there is a unique P ∈ PZ
such that Q is the restriction of P to G. Let Pj ∈ PZ be such that Q is the
restriction of Pj to G for j = 1, 2. Let f ∈MZ , and let g = f− infz f(z) which
is an element of [0,∞]Z . So, Pj(g) = Q(g) for j = 1, 2. But

Pj(f) = Pj(f − inf
z
f(z)) + inf

z
f(z) = Q(f − inf

z
f(z)) + inf

z
f(z), (10)

for j = 1, 2, hence P1 = P2.
Next, we prove that Q is compact. Each Q ∈ Q is an element of [0,∞]G ,

which is compact. It now suffices to show that Q is closed. Let {Qη}η∈D be
a convergent net in Q with limit Q. We need to show that Q ∈ Q. For each
η ∈ D, there is a unique Pη ∈ PZ such that Qη is the restriction of Pη to G. We
know that Pη(f) = Qη(f) converges to Q(f) for all f ∈ G. Let f ∈MZ . Then
Pη(f − infz f(z)) = Pη(f)− infz f(z) converges to Q(f − infz f(z)). Hence, for
each f ∈ MZ , Pη(f) converges to Q(f − infz f(z)) + infz f(z), which is the
right-hand side of (10). Since PZ is closed, the right-hand side of (10) defines
the limit P of the net {Pη}η∈D, which makes P an element of PZ . Clearly, Q
is the restriction of P to G, hence Q is closed. As a closed subset of a compact
set, Q is compact.

Finally, let {Pη}η∈D be a net in PZ . We need to show that it has a cluster
point in PZ . For each η, let Qη be the restriction of Pη to G. Then {Qη}η∈D
has a cluster point Q, which is in Q because Q is compact. Let {Rγ}γ∈D′ be
a subnet of {Qη}η∈D that converges to Q. Let P be the unique element of PZ
that extends Q to MZ . For each γ ∈ D′, let Tγ be the unique element of PZ
that extends Rγ . Then {Tγ}γ∈D′ is a subnet of {Pη}η∈D that converges to P
by the argument in the previous paragraph.

The set of minimum extensions ΛZ is not compact, as the next example
illustrates.

Example 4 Let Z = ZZ+. Let {Pn}∞n=1 be the sequence of minimum extensions
of the following countably-additive simple probabilities for n = 1, 2, . . .:

Pn(z) =

2−z for z = 1, . . . , n,
2−n for z = 2n,
0 otherwise.
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For each bounded f , Pn(f) converges to the countably-additive expectation
of f under the geometric distribution with parameter 1/2. However, for the
function g(z) = z, Pn(g) converges to 3, which is 1 plus the countably-additive
expectation of g. Every cluster point P of the sequence {Pn}∞n=1 will have
P (g) = 3, so none of the cluster points will be minimum extensions.

Note that the sequence of finitely-additive expectations in Example 4 is
contained in SZ , the simple expectations. Even though the closure of SZ con-
tains finitely-additive expectations outside of ΛZ , the following result says that
ΛZ is a subset of the closure of SZ .

Lemma 11 Let Z be a set. Then SZ is dense in ΛZ .

Proof Let λ0 ∈ ΛZ . Let N ′ be a neighborhood of λ0. Then N contains a basic
open set of the form

N = {λ ∈ ΛZ : λ(fj) ∈ Nj , for j = 1, . . . , n}, (11)

where each fj ∈ ÎR
Z

is bounded below and each Nj is a neighborhood of λ0(fj)

in ÎR. Define

J1 = {j : λ0(fj) <∞},
J2 = {j : λ0(fj) =∞}.

Without loss of generality, we can assume that there exist εj > 0 for each
j ∈ J1 and cj for each j ∈ J2 such that Nj = (P (fj) − εj , P (fj) + εj)
for each j ∈ J1, and Nj = (cj ,∞] for each j ∈ J2. Let ε = minj∈J1 εj and
c = maxj∈J2

cj . For each j ∈ J2, there exists mj , such that λ0(fj∧mj) > c+ε.
Let a = minj infz fj(z). Let gj = fj − a for j ∈ J1 and gj = (fj ∧mj)− a for
j ∈ J2. It follows that each gj is non-negative and has λ0(gj) < ∞. We will
find a simple probability measure λN such that

|λ0(gj)− λN (gj)| < ε for all j ∈ J1 and λN (gj) > c− a for all j ∈ J2.

Since fj ≥ gj + a, for j ∈ J2, the above clearly implies that λN ∈ N . Let
g =

∑n
j=1 gj . Since λ0(gj) <∞ for all j, we have λ0(g) <∞. Let m be large

enough so that λ0(g) < λ0(gI{g≤m}) + ε/3, which exists by Lemma 5. Note
that

n∑
j=1

λ0(gjI{g≤m}) = λ0(gI{g≤m})

> λ0(g)− ε

3
,

=

n∑
j=1

λ0(gj)−
ε

3
.

Hence
ε

3
>
∑
j∈J1

[
λ0(gj)− λ0(gjI{g≤m})

]
.
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Since each λ0(gj) ≥ λ0(gjI{g≤m}), we have λ0(gj) < λ0(gjI{g≤m}) + ε/3 for
each j. Let A = {z : g(z) ≤ m}. Let ` = d3m/εe. For each j ∈ J1 and
k = 1, . . . , `, let Aj,k = A∩ {z : (k− 1)ε ≤ gj(z) < kε}. Then, for each j ∈ J1,
Aj,1, . . . , Aj,` partitions A. Let B1, . . . , Br be the elements of the common
refinement of these partitions that satisfy λ0(Bk) > 0 for each k. If zk ∈ Bk
for all k, then ∣∣∣∣∣

r∑
k=1

λ0(Bk)gj(zk)− λ0(gjIA)

∣∣∣∣∣ < 2ε

3
,

for all j. Let z0 ∈ A and B0 = AC . For E ⊆ Z, define

λN (E) =

r∑
k=0

λ0(Bk)IE(zk).

Then

λN (gj) =

r∑
k=1

λ0(Bk)gj(zk) + λ0(AC)gj(z0).

Since gj(z0) ≥ 0, for each j ∈ J2, we have

λN (gj) ≥ λ0(gjIA)− 2ε

3
> λ0(gj)− ε > c+ ε− a ≥ c− a.

Because z0 ∈ A, we have 0 ≤ gj(z0) ≤ g(z0) ≤ m. Hence, for j ∈ J1,

gj(z0)λ0(AC) ≤ λ0(gIAC ) ≤ ε

3
.

It follows that, for j ∈ J1,

λ0(gj)−ε < λ0(gjIA)−2ε

3
≤ λN (gj) ≤ λ0(gjIA)+

2ε

3
+gj(z0)λ0(AC) ≤ λ0(gj)+

2ε

3
.

So |λN (gj)− λ0(gj)| < ε for all j ∈ J1 and λN (gj) > c− a for all j ∈ J2 and
λN ∈ N .

2.4 Order Matters

In this section, we deal only with bounded functions, so all finitely-additive
expectations are integrals. Since risk functions and Bayes risks are defined in
terms of integrals of functions of multiple variables with respect to probability
measures over multiple spaces, we need to understand how finitely-additive
multiple integration behaves. Let X and Y be sets. Let P and Q be finitely-
additive probabilities defined on 2Y and 2X respectively. For each A ∈ 2X×Y ,
define the x-section and y-section for each x ∈ X and y ∈ Y as follows

Ax = {y ∈ Y : (x, y) ∈ A},
Ay = {x ∈ X : (x, y) ∈ A}.
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For each x ∈ X , Ax ∈ 2Y , which has a probability P (Ax). Hence P (Ax) is a
bounded function of x which we temporarily denote fA,1(x). The integral of
fA,1 with respect to Q is denoted

Q[P ](A) =

∫
X
fA,1(x)Q(dx) =

∫
X

[∫
Y
IA(x, y)P (dy)

]
Q(dx).

Similarly, if fA,2 is the bounded function on Y defined by fA,2(y) = Q(Ay),
then P [Q](A) denotes

∫
Y fA,2(y)P (dy). Each of P [Q] and Q[P ] has a unique

extension to bounded functions on X × Y:

P [Q](f) =

∫
Y

[∫
X
f(x, y)Q(dx)

]
P (dy),

Q[P ](f) =

∫
X

[∫
Y
f(x, y)P (dy)

]
Q(dx).

If P and Q were countably-additive probabilities defined on σ-fields ΣY and
ΣX respectively, then the theorems of Fubini and Tonelli imply that P [Q](f) =
Q[P ](f) for all bounded f that are measurable with respect to the product
σ-field ΣX ⊗ΣY (as well as for some unbounded f .) The same is not generally
true for finitely-additive probabilities.

The following is as close as we come to a Fubini/Tonelli theorem involving
finitely-additive integrals.

Lemma 12 Let X and Y be sets. Let P be a finitely-additive probability on
2Y . Let Q be a countably-additive discrete probability on 2X . Then P [Q](f) =
Q[P ](f) for each bounded function f .

Proof If a finitely-additive prevision is defined on all indicators, it extends
uniquely to all bounded functions, so we prove the result for indicators only.
Let A ⊆ X ×Y. For each x ∈ X , let Ax and Ay be the sections defined above.

First, consider the case in which the support ofQ is a finite subset {x1, . . . , xn}
of X . Then

P [Q](A) =

∫
Y
Q(Ay)P (dy) =

∫
Y

n∑
j=1

Q({xj})IAy (xj)P (dy)

=

n∑
j=1

Q({xj})
∫
Y
IAy (xj)P (dy)

=

n∑
j=1

Q({xj})P (Axj ) =

∫
X
P (Ax)Q(dx) = Q[P ](A).

Finally, assume that there is a countably infinite subset {z1, z2, . . .} of X
such that

∑∞
j=1Q({zj}) = 1. Let ε > 0, and let Cε = {x1, . . . , xn} be a large

enough finite subset of CA so that qε = Q(Cε) > 1 − ε/2. Let xn+1 6∈ Cε.
Define Qε(B) for B ⊆ X by

Qε(B) = Q(B ∩ Cε) + (1− qε)ICCε (xn+1),
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That is, Qε is like Q on subsets of Cε but has all of Q(CCε ) assigned to the one
point xn+1. Then Qε[P ] = P [Qε]. The proof will be complete when we show
the following two facts hold for all A ⊆ X × Y:

|P [Q](A)− P [Qε](A)| ≤ ε

2
, (12)

|Q[P ](A)−Qε[P ](A)| ≤ ε

2
. (13)

First, notice that xn+1 ∈ Ay if and only if y ∈ Axn+1
. Then

P [Qε](A) =

∫
Y

[∫
X
IA(x, y)Qε(dx)

]
P (dy)

=

∫
Y
Qε(A

y)P (dy)

=

∫
Y
Q(Ay ∩ Cε)P (dy) + (1− qε)

∫
Y
IAy (xn+1)P (dy)

=

∫
Y
Q(Ay)P (dy)−

∫
Y
Q(Ay ∩ CCε )P (dy) + (1− qε)P (Axn+1

)

= P [Q](A)−
∫
Y
Q(Ay ∩ CCε )P (dy) + (1− qε)P (Axn+1),

which is between P [Q](A)− ε
2 and P [Q](A) + ε

2 , so, (12) is true. Next, notice
that

Qε[P ](A) =

∫
X

[∫
Y
IA(x, y)P (dy)

]
Q(dx)

=

∫
X
P (Ax)Qε(dx)

=

n∑
j=1

P (Axj )Q({xj}) + P (Axn+1
)(1− qε)

= Q[P ](A)−
∞∑

j=n+1

[P (Axj )− P (Axn+1
)]Q({xj}),

which is between Q[P ](A)− ε
2 and Q[P ](A) + ε

2 , so, (13) is true, and the proof
is complete.

Here is an example to show why Lemma 12 has the condition that Q
be a discrete countably-additive probability rather than a general countably-
additive probability. A few cautions are in order first. If a countably-additive
probabilitiy Q assigns probability 0 to every singleton, it is often the case
that every extension to the power set is merely finitely-additive. Hence, the Q
in Example 5 will violate the assumption that we use for all finitely-additive
probabilities in this paper, namely that it be defined for every event. The point
of the example is that, even if we relax that assumption and allow Q to be
defined on a proper σ-field of 2X , we still get different results by integrating
in the two different orders.
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Example 5 Let X = {0, 1}∞, the set of countable binary sequences, and let
Σ0 be the product σ-field of subsets of X . Let Q0 be the probability on Σ0

that is the distribution of a sequence F = {fn}∞n=1 of independent Bernoulli
random variables each with Pr(fn = 1) = 1/2. Let Y be the positive integers,
and let P be the finitely-additive probability corresponding to a non-principal
ultrafilter U of subsets of the integers. Let E ⊆ X×Y be defined as follows: For
each y ∈ Y, let Ey = {x : xy = 1}, i.e., the set of sequences in which the yth
coordinate is 1. Each Ey is a measurable set. Set E =

⋃∞
y=1E

y, which is also
measurable, and each Ey is the y-section of E. For each x ∈ X , the x-section
of E is Ex = {y : xy = 1}, i.e. the subscripts of those terms in the sequence
x that equal 1. We will also need to use the set A = {x : Ex ∈ U}, which is
not measurable. To see this, suppose that A is measurable. Then A is in the
tail σ-field of the sequence F . By the Kolmogorov 0-1 law, Q0(A) ∈ {0, 1}.
Similarly, AC is in the tail σ-field, so Q0(AC) ∈ {0, 1}. But AC = {x : ECx ∈ U}
where ECx = {y : xy = 0}. By the inherent symmetry in the distribution of F ,
we must have Q0(A) = Q0(AC). But we cannot have Q0(A) = Q0(AC) = 0,
and we cannot have Q0(A) = Q0(AC) = 1, so A is not measurable. It follows
that the inner and outer measures of A are not equal, so there is a number
c 6= 1/2 that is between the inner and outer measures. By symmetry the
interval between the inner and outer measures is symmetric around 1/2, so we
can take c > 1/2. Extend Q0 to the measure Q on the σ-field Σ generated by
Σ0 ∪{A} using a construction similar to that of Doob (1953, p. 624). That is,
each B ∈ Σ has the form B = (A ∩ B1) ∪ (AC ∩ B2) with B1, B2 ∈ Σ0. Set
Q(B) = cQ0(B1) + (1− c)Q0(B2). Then Q(A) = c.

The remainder of the example is devoted to showing that P [Q](E) 6=
Q[P ](E). First, note that Q(Ey) = Q(fy = 1) = 1/2 for all y ∈ Y, hence

P [Q](E) =

∫
Y
Q(Ey)P (dy) =

1

2
.

Next, note that P (Ex) = IA(x), so

Q[P ](E) =

∫
X
P (Ex)Q(dx) =

∫
X
IA(x)Q(dx) = Q(A) = c >

1

2
.

3 Separation of Convex Sets

The following definition extends some common terms to deal with ÎR-valued
functions.

Definition 12 Let Z be a set. Let F ⊆ ÎR
Z

be convex. For each p ∈ F and

f ∈ ÎR
Z

, define
Ap,f,F = {a ∈ (0,∞) : p+ f/a ∈ F}.

We say that p is an internal point of F if for every bounded f , Ap,f,F 6= ∅. If
0 is an internal point of F , define

tF (f) = inf A0,f,F .
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We call tF the support function of F .

Example 6 Let g ∈ IRZ and F = {f ∈ IRZ : f(z) < g(z), for all z}. Then F
is convex and g − ε is an internal point for each ε > 0. In fact, for every ε > 0
and every bounded h ≥ ε, g − h is an internal point of F . Functions that get
arbitrarily close to g are not internal.

In discussing separation of convex sets A and B, it is common to use the
notation A−B to stand for {a− b : a ∈ A, b ∈ B}. We use this notation freely
througout the following results and proofs.

Lemma 13 Let g and k be real-valued functions. Let F be a convex set with
g as an internal point. Let F ′ be another convex set that contains k. Suppose
that f ′ − f is well defined for every f ′ ∈ F ′ and every f ∈ F . Then k − g is
internal to F ′ − F .

Proof Let h be a bounded function. We need to show that there exists a > 0
such that k−g+h/a ∈ F ′−F . Since g is internal to F and −h is bounded, there
exists a > 0 such that g+ (−h)/a ∈ F . Then k− [g+ (−h)/a] = k− g+h/a ∈
F ′−F . (Note that none of the arithmetic in this proof involved infinite values.)

Lemma 14 Let F be a convex set with 0 as an internal point. Then

(i) if f ∈ F , tF (f) ∈ [0, 1],
(ii) if f 6∈ F , tF (f) ∈ [1,∞],

(iii) tF (f1 + f2) ≤ tF (f1) + tF (f2) for all f1, f2,
(iv) tF (αf) = αtF (f) for all f and all α > 0, and
(v) FF = {f : tF (f) <∞ and tF (−f) <∞} is a linear space that contains all

bounded functions.

Proof Part (i): Let f ∈ F . Since f/1 = f , we see that 1 ∈ A0,f,F and tF (f) ≤ 1.
Part (ii): Let f 6∈ F . If A0,f,F = ∅, then tF (f) =∞ > 1. For the rest of the

proof of part (ii), suppose that A0,f,F 6= ∅. Note that f = a(f/a) + (1 − a)0
for all a ∈ (0, 1]. So f/a 6∈ F for a ∈ (0, 1] and tF (f) ≥ 1.

Part (iii): The inequality holds if either tF (f1) =∞ or tF (f2) =∞. For the
rest of the proof of part (iii), assume that αj = tF (fj) <∞ for both j = 1, 2.
Let ε > 0. Then fj/(αj + ε) ∈ F for j = 1, 2. Since F is convex

α1 + ε

α1 + α2 + 2ε

f1
α1 + ε

+
α2 + ε

α1 + α2 + 2ε

f2
α2 + ε

=
f1 + f2

α1 + α2 + 2ε
,

is in F . Hence tF (f1 +f2) ≤ α1 +α2 + 2ε for all ε, which implies tF (f1 +f2) ≤
α1 + α2.

Part (iv): Let α > 0. For every a > 0 and every f , αf/(αa) ∈ F if and
only if f/a ∈ F , so that A0,αf,F = αA0,f,F for all f . Hence tF (αf) = αtF (f).

Part (v): Let f1, f2 ∈ FF , α1, α2 ∈ IR. Let

f ′j =

{
fj if αj ≥ 0,
−fj if αj < 0.
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Then α1f1 +α2f2 = |α1|f ′1 + |α2|f ′2. By part (iv), |αj |f ′j ∈ FF for j = 1, 2, and
by part (iii), |α1|f ′1 + |α2|f ′2 ∈ FF . So α1f1 + α2f2 ∈ FF . That FF contains
all bounded functions is immediate from the fact that 0 is an internal point.

Lemma 15 Let F be a convex set with 0 as an internal point. Suppose that,
for every f ∈ F , every g ≥ f is in F . If f1 ≤ f2, then tF (f1) ≥ tF (f2).

Proof Let f1 ≤ f2. We prove that tF (f1) ≥ tF (f2) in cases. Case 1: Let f2 6∈ F .
Then AC0,f2,F 6= ∅. Let a ∈ AC0,f2,F be such that f2/a 6∈ F . If f1/a ∈ F , f1/a ≤
f2/a would contradict f2/a 6∈ F . So f1/a 6∈ F , and AC0,f2,F ⊆ AC0,f1,F . Then
A0,f1,F ⊆ A0,f2,F , which means inf A0,f1,F ≥ inf A0,f2,F and tF (f1) ≥ tF (f2).
Case 2: Let f2 ∈ F with f1 6∈ F . Then tF (f1) ≥ 1 ≥ tF (f2). Case 3: Let f2 ∈ F
with f1 ∈ F . Then A0,f1,F 6= ∅. For each a ∈ A0,f1,F we have f1/a ≤ f2/a ∈ F ,
which implies f2/a ∈ F . So A0,f1,F ⊆ A0,f2,F and inf A0,f1,F ≥ inf A0,f2,F , so
that tF (f1) ≥ tF (f2).

Lemma 16 Let G be a closed convex subset of ÎR
Z

consisting of non-negative
functions. Let G′ be a superset of G such that for each h ∈ G′ \G there exists
g ∈ G with h ≥ g. Then ∂LG

′ = ∂LG.

Proof Clearly, G ⊆ G′ so G ⊆ G′, and ∂LG ⊆ G′. Note that every h ∈ G′\G is
dominated by an element of G. Let h ∈ G′\G. Then there is a net f = {fη}η∈D
in G′ such that limη fη = h. Clearly, every tail of f must contain elements of
G′ \ G, otherwise f would have a cluster point (hence its limit) in G. Let
g = {gγ}γ∈Γ be a subnet consisting of elements of G′ \ G. Then g converges
to h. For each γ ∈ Γ , let kγ ∈ G be such that kγ dominates gγ . Since G is
compact, k = {kγ}γ∈Γ has a convergent subnet whose limit we call `. The
corresponding subnet of g converges to h, and ` ≤ h by Proposition 2. Since
` ∈ G and h 6∈ G, it must be that ` 6= h, so ` dominates h. Hence, every
element of G′ \ G is dominated by an element of G. Hence, no element of
G′ \G can dominate an element of ∂LG, which makes ∂LG = ∂LG

′.

Lemma 17 Let G be a closed convex subset of ÎR
Z

consisting of non-negative
functions such that g ∈ G and f ≥ g implies f ∈ G. Let k be a real-valued
function, and define

Hk = {h ∈MZ : h(z) < k(z), for each z}.

Suppose that Hk ∩G = ∅. Then there exists λk ∈ ΛZ such that λk(k) ≤ λk(g)
for all g ∈ G.

Proof Note that Hk is convex. Every element of F = G − Hk − 1 is a well-
defined function. Note that −1 6∈ F because Hk ∩ G = ∅. However, for each
c > −1, the constant function c = k − (k − c − 1) − 1 is in F . In particular,
0 ∈ F .

The first step in the proof is to show that F satisfies the conditions of
Lemma 15. Let g1−h1−1 and g2−h2−1 be in F . Then h′ = αh1+(1−α)h2 ∈
Hk and g′ = αg1 + (1 − α)g2 ∈ G. It follows that F is convex. Next, since



21

k − 1 is internal to Hk, k − (k − 1) = 1 is internal to G −Hk by Lemma 13.
Hence 0 is internal to F . Let f ∈ F so that f = g − h − 1 for some h ∈ Hk

and some g ∈ G. If f ′ ≥ f , we need to show f ′ ∈ F . Let ` ≥ 0 be such that
f ′ = f + `. (If f(z) = f ′(z) = ∞ for some z, `(z) can be any non-negative
number.) Then, g + ` ∈ G and f ′ = g + ` − h − 1 ∈ F . This completes the
proof that F satisfies the conditions of Lemma 15.

It is easy to show that

tF (c) =

{
0 if c > 0,
−c if c ≤ 0.

(14)

The next step in the proof is to perform a construction similar to the
construction of a separating hyperplane between Hk and G. Specifically, we

attempt to find a finitely-additive expectation λ on a linear space L ⊆ ÎR
Z

such that

−λ(f) ≤ tF (f), for all f ∈ L. (15)

The importance of satisfying (15) is that, if L contains F ∪{−1}, then λ(f) ≥
−1 for all f ∈ F , which implies that λ(h) ≤ λ(g) for all h ∈ Hk and all g ∈ G.

We start with a finitely-additive expectation λ0 on the space L0 of constant
functions and which satisfies (15). We then extend it to a finitely-additive

expectation λ1 on the set of all bounded functions in ÎR
Z

, while satifying (15).
We then follow the proof of the Hahn-Banach theorem. We cannot apply the
Hahn-Banach theorem directly because not all linear functionals are finitely-
additive expectations. Let L0 be the set of all constant real-valued functions

in ÎR
Z

. Define λ0(f) = c if f is the constant function f(z) = c for all z. Then
λ0 is trivially a finitely-additive prevision on L0. Also, −λ0(c) ≤ tF (c) by (14).
Next, partially order all extensions that satisfy (15) of λ0 to finitely-additive
expectations on linear spaces of bounded functions. That is, we denote an
extension λ of λ0 that satisfies (15) on a linear space L of bounded functions
that contains L0 by (λ,L), and we define the partial order (λa,La) � (λb,Lb)
to mean that La ⊆ Lb. Since every chain in this partial order has the union
of its domains as an upper bound, Zorn’s lemma says that there is a maximal
element, (λ1,L1).

The next step is to show that L1 contains all bounded functions. Assume
to the contrary that there is a bounded h 6∈ L1. Then there is a bounded h
that satisfies h ≥ 0, tF (h) < ∞, and tF (−h) < ∞. (Every bounded function
is the difference between two bounded non-negative functions.) Let F1 be the
linear span of L1 ∪ {h} so that

F1 = {f + αh : α ∈ IR, f ∈ L1},

and for each g ∈ F1 there is a unique αg ∈ IR and fg ∈ L1 such that g =
fg + αgh. Define

λc1(g) = λ1(fg) + αgc,
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for each real c. We need to show that there exists c > 0 such that −λc1(g) ≤
tF (g) for all g ∈ F1. Let f, ` ∈ L1. Then

λ1(f)− λ1(`) = λ1(f − `)
≥ −tF (f − `)
= −tF (f + h− h− `)
≥ −tF (f + h)− tF (−`− h),

λ1(f) + tF (f + h) ≥ λ1(`)− tF (−h− `).

(Note that all quantities involved in the above equations are finite.) It follows
that

sup
`∈L1

[λ1(`)− tF (−h− `)] ≤ inf
f∈L1

[λ1(f) + tF (f + h)]. (16)

Because h ≥ 0, λ1(`) = −λ1(−`) ≤ tF (−`) ≤ tF (−h − `) for all f ∈ L1. So
the left-hand side of (16) is at most 0. Let c ≥ 0 be such that −c is in the
closed interval between the two sides of (16). If αg > 0, let f = fg/αg on the
right-hand side of (16), so that

−c ≤ λ1(fg/αg) + tF (fg/αg + h),

−αgc ≤ λ1(fg) + tF (fg + αgh),

−λ1(fg)− αgc ≤ tF (fg + αgh),

−λc1(g) ≤ tF (g).

If αg < 0, let ` = fg/αg on the left-hand side of (16), so that

λ1(fg/αg)− tF (−h− fg/αg) ≤ −c,
−λ1(fg)− tF (fg + αgh) ≤ αgc,

−λ1(fg)− αgc ≤ tF (fg + αgh),

−λc1(g) ≤ tF (g).

Hence, we have extended λ1 to a finitely-additive expectation on a larger
domain while satisfying (15), which contradicts L1 being maximal. It follows
that L1 contains all bounded functions.

Next, we extend λ1 to a domain that includes all functions that are bounded
below. Let λk be the minimum extension of λ1, namely

λk(f) = sup
bounded g ≤ f

λ1(g).

It follows that, for every f that is bounded below, and every bounded g ≤ f

λk(f) ≥ λ1(g),

−λk(f) ≤ −λ1(g)

≤ tF (g)

≤ tF (f),
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where the third inequality follows from what we proved for bounded g, and
the fourth inequality follows from Lemma 15.

Next, we prove that λk provides the desired separation between G and Hk.
We know that λk(f) ≥ −1 for each f ∈ F that is bounded below. For each
g ∈ G and bounded h ∈ Hk, f = g−h− 1 ∈ F and f is bounded below, hence
λk(f) ≥ −1. If h is bounded, so is h+ 1 and

λk(g) ≥ λk(h+ 1)− 1 = λk(h), (17)

for all g ∈ G and all bounded h ∈ Hk. For each ε > 0 and m > 0, (k− ε)∧m ∈
Hk, is bounded, and is no greater than k − ε. So

λk(k − ε) = lim
m→∞

λk((k − ε) ∧m) ≤ sup
h∈Hk

λk(h) ≤ λk(g),

for all g ∈ G. So

λk(k) ≤ ε+ sup
h∈Hk

λk(h) ≤ ε+ λk(g),

for all g ∈ G, and λk(g) ≥ λk(k)− ε for every g ∈ G and ε > 0. It follows that
λk(g) ≥ λk(k) for all g ∈ G.

Lemma 18 Let G be a closed convex subset of IRZ consisting of non-negative
functions such that g ∈ G and f ≥ g implies f ∈ G. Let k ∈ ∂LG. Then there
exists a finitely-additive expectation λk ∈ ΛZ such that λk(k) ≤ λk(g) for all
g ∈ G.

Proof If k is real-valued, Lemma 17 implies the conclusion. If k(z) = ∞ for
all z, then G is the singleton {k}, and every λ can be λk. If k takes the value
∞ and at least one finite value, let Zk = Z \ {z : k(z) = ∞}. Let Gk be the
restrictions of all elements of G to the sub-domain Zk. Let k′ be the restriction
of k to Zk. Then Gk is a convex set of non-negative functions such that g ∈ Gk
and f ≥ g implies f ∈ Gk. Also k′ ∈ Gk is real-valued.

First, we show that k′ ∈ ∂LGk. Assume to the contrary that there is g ∈ Gk
such that g(z) ≤ k′(z) for all z ∈ Zk and g(z0) < k′(z0) for some z0 ∈ Zk. Let
g′ = {gη}η∈D be a net in Gk that converges to g. Each gη is the restriction to
Zk of hη ∈ G. Let h be a cluster point of h′ = {hη}η∈D. Let h′′ be a subnet
that converges to h, and let g′′ be the corresponding subnet of g′, which still
converges to g. It follows that g is the restriction of h to Zk. Since k(z) =∞
for all z ∈ Z \ Zk, h(z) ≤ k(z) for all z and h(z0) < k(z0), contradicting
k ∈ ∂LG.

Apply Lemma 17 with k replaced by k′ and G replaced by Gk to get a
finitely-additive expectation λ′ ∈ ΛZk such that λ′(k′) ≤ λ′(g) for all g ∈ Gk.

For each g ∈ ÎR
Z

, define λk(g) to be λ′ of the restriction of g to Zk. Then,
λk(k) ≤ λk(g) for all g ∈ G, and λk ∈ ΛZ .
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4 Countably-Additive General Randomizations

In this section, we prove that the risk functions of the form

R(θ, δ) = Pθ

[∫
A
L(θ, a)δ(·)(da)

]
, (18)

with all probabilities countably additive, are included in the set R.

Lemma 19 Assume that each Pθ is countably-additive and a minimum ex-
tension. Also, assume that every randomization included in each randomized
rule δ is countably-additive and a minimum extension. Then every function of
the form (18) is in R.

Proof Let H be the set of all functions of the form (18) with all probabil-
ities countably-additive. We will show that every neighborhood V of every
element h ∈ H contains an element of R. In particular, we will find a simple
randomization δ∗ ∈ SH0

such that R(·, δ∗) ∈ V .

For a general element of ÎR
Θ

, a neighborhood in the product topology is
the union of arbitrarily many basic open sets, hence we can restrict attention
to basic open sets. A basic open set is the intersection of finitely many one-
dimensional open sets, each of which has one of the following two forms:

– {f : |f(θ)− c| < ε} for some ε > 0, some θ, and some real c, or
– {f : f(θ) > c} for some θ and some real c.

Let h = R(·, δ) ∈ H so that δ becomes fixed for the remainder of the proof.
The neighborhoods of an element h ∈ H that we need to show intersect R
have the form

V = {f : f(θj) ∈ Nj , for j = 1, . . . ,m}, (19)

for some m and some θ1, . . . , θm with

Nj =

{
(h(θj)− εj , h(θj) + εj) for some εj > 0 if h(θj) <∞,
(cj ,∞] for some finite cj if h(θj) =∞.

Let V have the form (19). We need to find an element of R that is in
V . The rule δ∗ ∈ R that we find will have the following form. There will be
finitely many elements of A, a0, . . . , aM and a partition of X , D1, . . . , DR such
that δ∗ =

∑
v∈V rvδv, where V is a finite set and for each v ∈ V, (i) δv is

constant on each Dt, t = 1, . . . , R and (ii) δv takes values only from the set
{a0, a1, . . . , aM}. There are (M + 1)R possible δv. The remainder of the proof
is devoted to finding an appropriate a0, . . . , aM along with an appropriate
partition D1, . . . , DR and the corresponding weights {rv}v∈V .

For each j = 1, . . . ,m, let Qj be the (countably-additive) expectation on
MA defined by Qj(f) =

∫
X
∫
A f(a)δ(x)(da)Pθj (dx) for f ∈ MA. This makes
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h(θj) = Qj [L(θj , ·)]. For j = 1, . . . ,m, let

Bj = {a : L(θj , a) =∞},
J3 = {j : Qj(Bj) > 0}},
J2 = {j 6∈ J3 : h(θj) =∞} , and

J1 = {j : h(θj) <∞}.

Note that h(θj) = ∞ if and only if j ∈ J2 ∪ J3. Let ε = min{εj : j ∈ J1},
let c = max{cj : j ∈ J2 ∪ J3}. By construction, Qj(Bj) = 0 for j ∈ J1, and
Qj(Bj) > 0 for j ∈ J3. For each j ∈ J3, let bj ∈ Bj be such that L(θj , bj) =∞.
Let w be the number of distinct bj for j ∈ J3.

Define

E∞ =

m⋃
j=1

Bj ,

En = E∞ ∪ {a : L(θj , a) < n, for j = 1, . . . ,m}.

Then
⋃∞
n=1En = A. For each j ∈ J1, there exists nj such that∣∣∣h(θj)−Qj

[
IEnjL(θj , ·)

]∣∣∣ < ε

4
. (20)

For each j ∈ J2, there exists nj such that

Qj

[
IEnjL(θj , ·)

]
> c+ ε

Let n = maxj∈J1∪J2
nj .

Next, we select M and the M + 1 elements of A, a0, . . . , aM . For each
j ∈ J1 ∪ J2, partition

⋃
j∈J1∪J2

{a : L(θj , a) ≤ n} into sets of the form
{a : L(θj , a) ∈ [(k − 1)ε/4, kε/4)}, for 1 ≤ k ≤ b1 + 4n/εc. Then form the
common refinement of these partitions. Let the non-empty sets in that common
refinement be A1, . . . , AK . For each ` ≥ 1 and each j ∈ J1 ∪J2, L(θj , a) (as a
function of a) varies by less than ε/4 on A`. Let a` ∈ A` for each ` = 1, . . . ,K.
Let a0 = a1. If w > 0, let aK+1, . . . , aK+w be the distinct values of bj for
j ∈ J3 in some order. Then M = K + w. Let

A0 =

 ⋃
j∈J1∪J2

{a : L(θj , a) > n}

 \ E∞,
AK+1 = E∞.

It follows that {A0, . . . , AK+1} is a partiton of A. For j ∈ J1,∣∣∣∣∣∣Qj
[
IEnjL(θj , ·)

]
−

M∑
j=1

L(θj , aj)Qj(Aj)

∣∣∣∣∣∣ < ε

4
, (21)
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and
ε

4
≥ Qj

[
IECnj

L(θj , ·)
]
≥ L(θj , a0)Qj(A0).

Next, we form the partition D1, . . . , DR. Let γ = 1/d4n/εe, and for each
` = 0, . . . ,K + 1, partition ΛA into sets of the form {P : P (A`) = 0} and
{P : P (A`) ∈ ([k − 1]γ, kγ]} for 1 ≤ k ≤ b1 + 1/γc. Then form the common
refinement of these partitions for ` = 0, . . . ,K + 1. Let the non-empty sets
in that refinement be C1, . . . , CR. Then, as a function of P for fixed ` and t,
P (A`) varies less than ε/(4n) as P varies over Ct. For each x, δ(x)(·) lies in
one and only one Ct. For t = 1, . . . , R, let Dt = {x : δ(x) ∈ Ct}.

Next, we construct the set of non-randomized rules {δv}v∈V . Let V be the
set of functions from the set {1, . . . , R} to {0, . . . ,M}, which has (M + 1)R

elements. For each v ∈ V, define δv to be the function defined by

δv(x) =

R∑
t=1

av(t)IDt(x).

That is, δv is the non-randomized rule such that, for each t, δv(x) = av(t) for
all x ∈ Dt.

Next, we construct the weights for each δv in the convex combination that
defines δ∗. For each t = 1, . . . , R, let µt ∈ Ct. Let st,` = µt(A`) for ` = 0, . . . ,K.

If w > 0, let st,` = µt(AK+1)/w for ` = K + 1, . . . ,M . Clearly,
∑M
`=0 st,` = 1

for each t = 1, . . . , R. The weights are rv =
∏R
t=1 st,v(t). It is straightforward

to show that for each ` = 0, . . . ,M and each t = 1, . . . , R,∑
{v:v(t)=`}

rv =
∑

{v:v(t)=`}

R∏
t=1

µt(A`) = st,`, (22)

by induction on R. (The case R = 1 is trivial, and for R > 1, {v : v(t) = `}
looks just like the R− 1 case with each weight having an extra factor of st,`.)
It then follows that

∑
v∈V rv = 1.

Finally, we define δ∗ =
∑
v∈V rvδv ∈ V and show that R(·, δ∗) ∈ V . The

risk function of δ∗ is

R(θ, δ∗) =

R∑
t=1

Pθ(Dt)

[∑
v∈V

rvL(θ, av(t))

]

=

R∑
t=1

Pθ(Dt)

M∑
`=0

 ∑
v:v(t)=`

rvL(θ, a`)


=

R∑
t=1

Pθ(Dt)

M∑
`=0

st,`L(θ, a`),

by (22). For j ∈ J1 ∪ J2 and each x ∈ Dt,∣∣∣∣∣
∫
{a:L(θj ,a)≤n}

L(θj , a)δ(x)(da)−
M−w∑
`=0

st,`L(θj , a`)

∣∣∣∣∣ ≤ ε

4
. (23)
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Integrate both sides of (23) with respect to Pθj to see that∣∣∣∣∣Qj [I{L(θj ,·)≤n}L(θj , ·)
]
−

R∑
t=1

Pθj (Dt)

M−w∑
`=0

st,`L(θj , a`)

∣∣∣∣∣ < ε

4
. (24)

For j ∈ J1, combine (24) with (20) and the fact that Pθj (Dt) = 0 for each
j ∈ J1 and each t such that Dt ⊆ AK+1 to get

|h(θj)−R(θj , δ∗)| <
ε

2
.

For j ∈ J2, we get R(θj , δ∗) > c. For j ∈ J3, R(θj , δ∗) ≥ ε/(8w)L(θj , bj) =∞.
So, δ∗ ∈ V .

5 A Sore Point About Pointwise Convergence

The pointwise topology allows convergence of nets to occur where one might
not expect it.

Lemma 20 Let Z be a set. Let f and g be elements of ÎR
Z

. There exists a
net {fη}η∈D that converges pointwise to g such that for each η, fη(z) = f(z)
for all but finitely many z.

Proof Let D be the directed set of all finite subsets of Z, as in Example 1.
Define the net

fη(z) =

{
g(z) if z ∈ η,
f(z) if z 6∈ η.

Clearly, fη(z) = f(z) for all but finitely many z, namely those in the set η. To
see that fη → g, let N be a neighborhood of g. Then N contains a set of the
form

N ′ = {h : h(zj) ∈ Nj , for j = 1, . . . , n},

where n is a finite integer, z1, . . . , zn ∈ Z, N1, . . . , Nn are open sets in ÎR, and
g ∈ N ′. The proof will be complete if we can show that there exists ηN such
that ηN ≤D η implies fη ∈ N ′. Because g ∈ N ′, g(zj) ∈ Nj for j = 1, . . . , n.
Let ηN = {z1, . . . , zn}. Then ηN ≤ η implies fη(zj) = g(zj) for j = 1, . . . , n,
and fη ∈ N ′.

For c ∈ ÎR, let

Hλ,c = {f : λ(f) = c}.

When trying to find a Bayes rule with respect to a finitely-additive expectation
λ on MΘ, we seek functions that lie in Hλ,c ∩ R, for c = inff∈R λ(f). A
consequence of Lemma 20 is the following result that makes it difficult to find
Bayes rules in the pointwise topology.
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Lemma 21 Let λ be a finitely-additive expectation on ÎR
Θ

such that λ(f) =
λ(g) whenever f and g differ at only finitely many values. (That is, λ(A) = 0

for each finite subset of Θ.) For each pair (c, d) of elements of ÎR and each
g ∈ Hλ,d, there exists a net contained in Hλ,c that converges to g.

Proof Let f ∈ Hλ,c and g ∈ Hλ,d, and apply Lemma 20.

Lemma 21 says that, if λ assigns 0 probability to each finite set, then each Hλ,c

is dense in ÎR
Θ

. No matter where you look in the risk set, you will find risk
functions “in the neighborhood” that have every possible Bayes risk. Lemma 21
applies to both finitely-additive and countably-additive previsions.

There is one set of prior distributions for which Bayes rules can be found.

Lemma 22 Let Z be a set. A finitely-additive expectation λ on MZ is con-
tinuous in the pointwise topology if and only if λ is simple and is a minimum
extension.

Proof For the “if” direction, note that all evaluation functionals are continuous
in the pointwise topology, so every convex combination is continuous. A simple
prevision that is a minimum extension is a convex combination of evaluation
functionals. For the “only if” direction, we show that all other finitely-additive
expectations are discontinuous. First, let λ be a simple finitely-additive expec-
tation that is not a minimum extension. Then there exists a function f such
that limm→∞ λ(f ∧ m) < λ(f) while limm→∞(f ∧ m) = f pointwise. Next,
assume that the restriction of λ to indicators of events takes infinitely many
different values. Then there is a countable partition Z =

⋃∞
n=1Zn such that

λ(Zn) > 0 for all n. Let fn(z) = IZn(z)/λ(Zn) for each n. Then fn converges
pointwise to 0, but λ(fn) = 1 for all n. Next, assume that the restriction of λ to
indicator functions takes only finitely many different values. Then there exist
finitely many distinct ultrafilters U1, . . . ,Un such that λ =

∑n
j=1 αjPj where

each Pj is the probability associated with Uj , each αj > 0 and
∑n
j=1 αj = 1.

Then there is a partion Z =
⋃n
j=1Zj where Zj ∈ Uj for each j. If each Uj

is principal, then λ is simple. Finally, assume that there is j such that Uj is
non-principal. Then Pj is not countably-additive. Since Pj takes only the val-
ues 0 and 1, there must be a partition of Zj =

⋃∞
k=1Ak such that Pj(Ak) = 0

for all k. Define gm(z) = I⋃∞
i=m

Ai
(z). Then gm converges pointwise to 0, but

λ(gm) = αj for all m.

As a purely mathematical aside, the proof of Lemma 22 could be modified
to prove the following.

Proposition 4 Let Z be a set. The set of continuous linear functionals on
IRZ with the pointwise topology is the linear span of the evaluation functionals.
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