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SUMMARY

The degree of incoherence, when previsions are not made in accordance

with a probability measure, is measured by the rate at which an incoher-

ent bookie can be made a sure loser. We consider each bet from three

points of view: that of the gambler, that of the bookie, and a neutral

viewpoint. From each viewpoint, we de�ne an normalization for each

bet, and the sure loss for incoherent previsions is divided by the normal-

ization to determine the rate of incoherence. Several di�erent de�nitions

of normalization are considered in order to determine plausible ranges

for the degree of incoherence. We give examples of the measurement of

incoherence of of some classical statistical procedures.
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1. INTRODUCTION

de Finetti (1974) describes the criterion of coherence for probabilities as-

signed to events and previsions assigned to general random variables. The idea

is that, if one were to use these previsions as fair prices to pay for gambles on

the random quantities, then the previsions are incoherent if and only if there

exists a �nite combination of the gambles that is guaranteed to lose at least

some positive amount. To put this in mathematically precise language, let

X1; : : : ; Xn be bounded random variables, that is bounded functions from a

set of states of nature S to the reals. For i = 1; : : : ; n, let pi be the prevision

of Xi, so that �i(Xi � pi) is a fair gamble for all suÆciently small j�ij values.
The previsions are incoherent if there exist values �1; : : : ; �n such that

sup
s

�i(Xi(s)� pi) < 0: (1.1)

The previsions are coherent if they are not incoherent. If (1.1) holds, we say

that Dutch book has been made against the person who o�ered the previsions.

de Finetti (1974) merely partitions all prevision assignments into two classes:

coherent and incoherent. It seems reasonable, however, to expect that some

collections of previsions are more incoherent than others. It is our goal in

this paper to set up a framework in which one can attempt to measure how

incoherent is a collection of incoherent previsions.
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We begin by considering a slightly more general situation than that de-

scribed above, both because it strengthens the results and because the most

interesting examples are of the more general form. Think of previsions being

assigned to random variables by a bookie who is then going to take bets from

one or more gamblers. Suppose that the bookie chooses the prevision p for a

bounded random variable X . The gain to the bookie when the state of nature

is s and the bookie accepts the gamble �(X�p) from a gambler is �(X(s)�p).

It is common in some gambling situations (horse racing is a common example)

for bookies to o�er only one-sided previsions. That is, the bookie o�ers a pre-

vision p for X , but accepts only gambles of the form �(X � p) for � > 0. Such

a prevision p will be called a lower prevision. Similarly, if the bookie accepts

only gambles of the form �(X� p) for � < 0, we shall call p an upper prevision

for X . It should be easy to see that, if a bookie is willing to accept the gamble

�(X � p) with � > 0, then the bookie should also be willing to accept the

gamble �(X � x) for every x < p, since the payment to the bookie from this

second gamble is greater than that of the �rst by p � x no matter what state

of nature occurs. Similarly, if p is an upper prevision, the bookie should be

willing to accept the gamble �(X � x) for all x > p when � < 0. In the future

when we refer to a coeÆcient of the appropriate sign, we shall mean a positive

� for a gamble based on a lower prevision and a negative � for a gamble based

on an upper prevision.

Example 1. A simple example of incoherence occurs when a lower previ-

sion is greater than an upper prevision. Suppose that p > q where p is a lower

prevision for X and q is an upper prevision for X . Then the bookie is willing

to accept the following two gambles, �(X � p) and ��(X � q) for � > 0. The

sum of these two gambles is �(q�p) < 0 no matter what state of nature occurs.

There is a sense in which, the larger p�q is, the more the bookie stands to lose

from such gambles. Of course, the bookie loses more the larger � is, regardless

of how large p� q is. However, � is more a measure of how much the gambler

wishes to bet than it is a measure of the bookie's incoherence.

We would like to try to measure the incoherence of the bookie's previsions by

looking at how much the bookie can be forced to lose relative to how much the

gambler needs to bet in order to force the loss. As we noted in Example 1,

if the gambler bets twice as much (double �) the bookie loses twice as much,

even though the previsions have not changed. We need to be able to normalize

the combinations of bets that a bookie is willing to accept in order to extract

the degree of incoherence from the size of the loss that the bookie incurs.

In summary, incoherence arises when a bookie o�ers previsions such that

there exists a combination of gambles for which the bookie is guaranteed to

lose at least some positive amount. A gambler can increase the guaranteed

loss by increasing the sizes of his/her bets with the bookie. We shall try to

measure the incoherence of incoherent previsions by looking at how large the

guaranteed loss can be made relative to some normalization for the collection

of gambles that the gambler chooses.
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2. NORMALIZATION

As we noted earlier, we need normalizations to measure the sizes of gam-

bles. There are two important aspects of normalization that we have chosen

to separate. The �rst is the normalization of a single gamble, and the second

is the normalization of sums of gambles. Treating a sum of gambles as a single

gamble obscures the fact that the coeÆcients can be chosen individually and

that the previsions are given individually. For a single gamble, there are several

possible ways to measure the size. Let X be a random quantity with prevision

p, and let � be a constant with the appropriate sign. The normalization for

�(X � p) will be allowed to depend on all three of �, X , and p. (When we say

that the normalization depends on X , we mean that it depends on the function

X from states of nature to the real numbers, not on the unknown value X(s).

For example, the normalization can depend on the maximum and/or minimum

value of X , etc.) Some examples of normalizations include the following three:

1. The bookie's escrow: maxf0;� infs �[X(s)� p].

2. The gambler's escrow: maxf0; sup
s
�[X(s)� p].

3. The neutral normalization: j�j.

The two escrows have interpretations in terms of betting. If the bookie requires

each gambler to show that they have suÆcient funds to pay o� any bets they

might lose, then the gambler's escrow, being the most the gambler can lose,

will cover the bet. Similarly, the bookie's escrow will cover the the bookie's

largest possible loss. Notice that all three of the normalizations listed above

have the following two properties:

� The normalization is always nonnegative.

� If � is changed to c� for c > 0, the normalization gets multiplied by c as

well.

These are the important properties that we require of a normalization. Al-

though there are many normalizations that satisfy these two conditions, we

shall only consider the three above in this paper.

When we combine several gambles, we need to be able to normalize the

combination. We have chosen to require the normalization of a combination

of gambles to depend solely on the normalizations of the individual gambles

that go into the combination. The reason for this is that, once we start to

combine gains and losses, we are starting to do some of the work of measuring

incoherence. For example, consider X1 = IA, the indicator of an event with

prevision p and X2 = IAC , the indicator of the complement with prevision q.

If we combine (IA � p) + (IAC � q), we get 1 � p � q, which already tells us

whether or not the previsions are coherent. Our assumption is designed to help

us separate the normalization from the measurment of incoherence.

Schervish, Seidenfeld & Kadane (2002b) give a list of criteria that a normal-

ization should satisfy, including the assumption just mentioned. We summarize

3



these here. Let fn(x1; : : : ; xn) denote the normalization for a combination of

n gambles whose individual normalizations are x1; : : : ; xn.

1. fn is homogeneous of degree 1, that is, fn(cx1; : : : ; cxn) = cfn(x1; : : : ; xn)

for all c > 0.

2. fn is invariant under permutations of its arguments.

3. fn is nondecreasing in each argument.

4. fn+1(x1; : : : ; xn; 0) = fn(x1; : : : ; xn).

5. The normalization is no larger than the sum of the individual normaliza-

tions.

6. fn is continous.

7. f1(x) = x.

The �rst condition implies that scaling up a collection of gambles by the same

amount will not change the rate of incoherence. The second condition expresses

the fact that we do not care in what order the gambles are written. The

third condition expresses the idea that bigger gambles should require larger

normalization. The fourth condition says that if a gamble does not require

any normalization, then the other gambles should determine the normalization

for the combination. The �fth condition is like the triangle inequality for

norms, saying that the whole is no greater than the sum of the parts. It

makes particular sense if the normalization is thought of as an escrow. The

sixth condition says that small changes in individual normalizations should

produce small changes in the overall normalization. The seventh condition

merely expresses the fact that the individual normalizations are just that.

Based on these criteria, Schervish, Seidenfeld & Kadane (2002b) charac-

terize the collection of functions fn that can be used for normalization. In

particular, they �nd that the largest and smallest normalizations arise from

the following two functions:

f0;n(x1; : : : ; xn) = maxfx1; : : : ; xng;

f1;n(x1; : : : ; xn) =

nX
i=1

xi:

In this paper, we shall consider only normalizations based on these two func-

tions, which we call the max and sum normalizations.

In summary, a normalization is de�ned by two choices. One is a choice of

normalization for individual gambles, and the other is a choice of normalization

function for combining individual normalizations. We have given speci�c ex-

amples of three individual normalizations and two combination functions. By

pairing these arbitrarily, we produce six di�erent examples of how to normalize

combinations of gambles. We shall refer to these pairings with names such as

neutral/sum, gambler's escrow/max, etc. We shall assume throughout this pa-

per that the same individual normalization is chosen for all individual gambles

when they are being combined.
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3. RATE OF INCOHERENCE

We are now in position to say how we will measure incoherence. Consider

a �nite collection of gambles Yi = �i(Xi � pi) for i = 1; : : : ; n. The guaranteed

loss from the combination Y =
P

n

i=1 Yi is

G(Y ) = �min

�
0; sup

s

Y (s)

�
:

Dutch book has been made with this combination if and only if G(Y ) > 0.

It is clear that if each Yi is changed to cYi for c > 0, then Y changes to

cY and G(cY ) = cG(Y ). We shall measure the rate of incoherence of Y by

�rst dividing G(Y ) by a normalization. If e(Yi) is our chosen normalization

for individual gamble Yi, then our normalization for Y is fn(e(Y1); : : : ; e(Yn)),

for some function fn satisfying the conditions mentioned earlier. The rate of

guaranteed loss for Y is then

H(Y ) =
G(Y )

fn(e(Y1); : : : ; e(Yn))
:

For a �xed collection of random variables X1; : : : ; Xn and previsions p1; : : : ; pn,

the rate of incoherence is the maximal value ofH(Y ) over all choices of �1; : : : ; �n
that have the appropriate signs.

Example 2. Consider an event A and its complement AC . Suppose that a

bookie o�ers lower previsions of 0:6 for both of these events. These are clearly

incoherent, and there are many combinations of gambles that make Dutch book.

All such combinations must be of the form Y = �1(IA � 0:6) + �2(IAC � 0:6)

for �1; �2 > 0. In this case, Y only takes two values, 0:4�1 � 0:6�2 and

0:4�2 � 0:6�1. Hence,

G(Y ) =

�
0 if �1 � 1:5�2 or �2 � 1:5�1,

0:6minf�1; �2g � 0:4maxf�1; �2g otherwise.

That is, Dutch book is made if and only if both �1=�2 and �2=� are less than

1.5. For the neutral/sum normalization, the normalization equals �1+�2. So,

when Dutch book can be made,

H(Y ) =
0:6minf�1; �2g � 0:4maxf�1; �2g

�1 + �2
= r � 0:4;

where r = minf�1; �2g=(�1 + �2) can be any number between 0.4 and 0.5.

Clearly, we maximize H(Y ) by choosing r = 0:5. This makes the rate of

incoherence 0.1 in this example. We can achieve this rate by choosing �1 = �2.

If, instead of neutral/sum, we had used neutral/max, then the normalization

would have been maxf�1; �2g and then H(Y ) = 0:6 r

1�r
� 0:4, where r is the
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same as before. This is also maximized with r = 0:5, and the rate of incoherence

is then 0.2. This illustrates a fact that is quite general. Since f0;n and f1;n are

respectively the smallest and largest normalizations, they lead respectively to

the largest and smallest rates of incoherence when combined with a common

individual normalization. In the case of events, the neutral normalization is the

sum of the gambler's escrow and the bookie's escrow whenever the prevision is

between 0 and 1. Hence, rates of incoherence based on the two escrows will be

larger than those based on the neutral normalization.

4. CHOOSING BETWEEN NORMALIZATIONS

We have introduced at least six ways to normalize sums of gambles when

computing rates of incoherence. Each has its advantages and disadvantages.

There are, however, some properties that we have been able to determine for

some of them. The two escrows have interpretations in terms of amounts needed

to cover the bets. We have not yet found any operational interpretation for

the neutral normalization. The escrows have the property that a prevision of

p for X and a prevision of cp for cX (with c > 0) will have equivalent e�ects

on any rate of incoherence. This is not true of the neutral normalization.

For example, suppose that we wish to include �(X � p) in a combination

of gambles, where p is a coherent lower prevision for X and � > 0. The

three individual normalizations for (�=c)(cX� cp) are �(supX�p) (gambler's

escrow), ��(inf X � p) (bookie's escrow) and �=c (neutral). Notice that the

�rst two are the same as they would be for the gamble �(X � p), whereas the

third is di�erent. One consequence of this is the following. If it turns out that

�(X � p) is included in a combination of gambles Y that is incoherent, and if

c > 1, then H(Y ) based on the neutral normalization will be larger if one uses

(�=c)(cX�cp) instead, because this version requires smaller normalization and

produces the same payo�s as �(X � p). We don't �nd this to be a troubling

feature of the neutral normalization because incoherent agents are free to choose

previsions other than cp for cX even after they have chosen p as the prevision

of X . From this point of view, X and cX are di�erent random variables, and

there is no compelling reason that their e�ects on the rate of incoherence need

be related.

Schervish, Seidenfeld & Kadane (2002b) have established some additional

properties of the various normalizations. They have established conditions un-

der which the rate of incoherence is continuous as a function of the random

variables and their previsions. Continuity of the rate of incoherence means

(loosely) if sup
s
jX1(s) � X2(s)j < � and jp1 � p2j < �, then substituting X2

with prevision p2 for X1 with prevision p1 should make a small change to the

rate of incoherence. Schervish, Seidenfeld & Kadane (2002b) show that the

neutral/sum normalization gives a continuous rate of incoherence and all neu-

tral normalizations give continuous rates of incoherence if we have only �nitely

many gambles from with to choose. Normalizations based on the escrows give

continuous rates of incoherence only under the assumption that each individ-
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ual prevision is coherent by itself (and not just barely so). That is, if p is a

lower prevision for X , then p < sup
s
X(s) and if p is an upper prevision for X ,

then infsX(s) < p. Equality in either of these would lead to 0 normalization

for an individual gamble, and rates of incoherence are not continuous when 0

normalizations occur.

Example 3. Consider a constant random variable X = c. Suppose that

an incoherent bookie speci�es a lower prevision p > c. The gambler's escrow

will be 0, since the gambler cannot lose a bet of the form �(X � p) with � > 0.

The rate of incoherence is 1 in this case. The bookie's escrow is �(p� c) and

so is G(Y ), hence the rate of incoherence is 1 no matter how far p is from c.

If p = c, the rate of incoherence drops to 0 for both escrows. For the neutral

normalization, the normalization is � and G(Y ) = �(p � c), so the rate of

incoherence is p� c, which increases as p increases, as intuition might suggest.

Another property considered by Schervish, Seidenfeld & Kadane (2002b) is

dominance. Suppose that two di�erent bookies o�er previsions for the same

random variables. Suppose that for a speci�c set of coeÆcients for the gambles

that makes a Dutch book, the second bookie's losses are always larger than the

�rst's. Then we say that the �rst bookie dominates the second with respect to

those coeÆcients. Intutively, one might expect the function H computed for

the �rst bookie to be smaller than the function H computed for the second

bookie. This will be true whenever the normalization is neutral. For the

bookie's escrow, we need to assume that none of the individual gambles be a

sure winner for the bookie. For the gambler's escrow, we need to assume that

none of the individual gambles be a sure winner for the gambler.

On balance, it might appear that the neutral normalizations have better

mathematical properties than the others, but we shall continue to work with

all of them for the remainder of this paper.

5. CLASSICAL INFERENCE

Inference techniques used by non-Bayesians have sometimes been criticized

on the grounds that they are incoherent. If they are indeed incoherent, then

we should be able to make Dutch book and measure the rate of incoherence.

For example, suppose that one chooses to test all null hypotheses at level 0.05

regardless of how the data arose or how many observations are available. It

is well-known (see Cox, 1958 and Lindley, 1972 for examples) that there are

cases in which such behavior runs afoul of admissibility if not coherence. Two

obvious stumbling blocks stand in the way of applying the concept of coherence

to classical inferences. First, classical inferences do not provide previsions. In

particular, they do not provide probabilities or expected values for unknown

quantities. They are often based upon probabilities and expectations for ran-

dom variables that used to be unknown, but have since been observed. The

unknown quantities never become the subject of a probabilistic calculation.
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Secondly, classical statisticians are not prepared to gamble based on their in-

ferences.

This last point suggests a fruitful avenue to pursue. If nothing is at stake,

who cares what inference is made? So, suppose that there is a decision problem

with a loss function. Classical statisticians are willing to talk about decision

theory. Indeed, they have developed a theory of risk functions, admissibility,

minimaxity, etc. When statisticians choose one decision rule Æ0 over another

Æ1, they express a preference for su�ering the risk function R(�; Æ0) to R(�; Æ1).

We choose to interpret such a preference by saying that R(�; Æ1) � R(�; Æ0) is

a favorable gamble. If inferences are incoherent we should be able to combine

such favorable gambles to make Dutch book.

5.1 Simple Hypothesis Testing

Consider �rst the case of testing a simple null hypothesis against a simple

alternative hypothesis. (Schervish, Seidenfeld & Kadane, 2002a consider this

situation in more detail.) Suppose that the loss function is has the simple 0{1

form. That is, the loss is 0 if the correct hypothesis is chosen, and the loss is

1 of the incorrect hypothesis is chosen.

Example 4. Suppose that X has a normal distribution with mean � and

variance �2, where �2 is known, but we want to test the null hypothesisH0 : � =

0 versus the alternativeH1 : � = 1. Suppose that our classical statistician wants

to use the most powerful level 0.05 test no matter what �2 is. For example,

if �2 = 1, the most powerful level 0.05 test is to reject H0 if X > 1:645. In

general, we can write the risk function of the most powerful level �0 test Æ�0
as

R(�; Æ�0) =

�
�0 if � = 0,

�(��1(1� �0)� 1=�) if � = 1,

= [�0 ��(��1(1� �0)� 1=�)]If0g(�) + �(��1(1� �0)� 1=�):

So, if the statistician prefers the level 0.05 test to the level 0.1 test when � = 1,

the di�erence in risk functions is

R(�; Æ0:1)�R(�; Æ0:05) = 0:1796[If0g(�) � 0:7217];

indicating that 0:7217 is a lower prevision for the event f� = 0g. (Technically,
all we can really say is that (0:7217�0:1796) is a lower prevision for 0:1796If0g.)
Suppose also that the statistician prefers the level 0.05 test to the level 0.01

test when � = 2. Then the di�erence of the risk functions is

R(�; Æ0:01)�R(�; Æ0:05) = �0:1322[If0g(�)� 0:6975];

making it appear as if 0.6975 is an upper prevision for f� = 0g. An upper

prevision that is lower than a lower prevision ought to be incoherent. If we

combine the �rst gamble with �1 = 1=0:1796 and the second gamble with
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�2 = 1=0:1322, we get the combination with constant value �0:0242. Hence,
we have made Dutch book. For the two gambles being discussed, the rate of

incoherence using bookie's escrow/sum normalization is

0:0242

0:7217+ (1� :6975)
= 0:02363:

In Example 4, we could have chosen di�erent risk functions to trade with

the classical statistician. For example, when � = 1, we could trade the risk

function of the level 0.06 test instead of the risk function of the level 0.1 test.

Similarly, when � = 2, we could trade the risk function of the level 0.04 test

instead of the level 0.01 test. Each of these alternative trades leads to two

di�erent gambles that provide di�erent Dutch books, and di�erent rates of

incoherence. We might ask which trades, if any, lead to the largest rate of

incoherence. Schervish, Seidenfeld & Kadane (2002a) presents a theorem that

says essentially the following. Use bookie's escrow/sum normalization. For

each �, the level most powerful �0 test is a Bayes rule with respect to a unique

prior p(�) = Pr(� = 0). Let �0 and �1 be two di�erent possible variances. Let

pi (i = 0; 1) be the two priors pi = p(�i) for i = 0; 1. Assume that p0 > p1.

For each i = 0; 1, consider all possible trades of the risk function for some

test Æ for the risk function of the most powerful level �0 test. The largest

possible rate of incoherence from combining two such risk function trades is

(p0 � p1)=(1 � p1 + p0). A precise statement and proof of this result can be

found in Schervish, Seidenfeld & Kadane (1997).

Example 5. We can return to Example 4 and ask what is the largest rate

of incoherence. In that example, each of the two level 0.05 tests is the Bayes

rule with respect to a unique prior. When � = 1, the level 0.05 test is the Bayes

rule with respect to the prior p0 = 0:7586, and when � = 2, the level 0.05 test

is the Bayes rule with respect to the prior p1 = 0:6676. The theorem quoted

above says that the maximum rate of incoherence for bookie's escrow/sum

normalization is (0:7586� 0:6676)=(1 + 0:7586� 0:6676) = 0:08341.

5.2 Minimax Estimation

Hypothesis testing at a �xed level is not the only incoherent classical in-

ference. Minimax estimation also su�ers from the same malady. Consider a

binomial random variable X with parameters n and �. The minimax estimator

of � is

Æn(X) =

p
n=2 +X
p
n+ n

:

For each sample size n, Æn is the Bayes rule with respect to some (actually

several) prior distribution, but the prior must change as n changes. If indeed

it is incoherent to use the minimax rule for di�erent sample sizes, we should

be able to make Dutch book by trading risk functions.
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Example 6. Suppose that we o�er to trade the risk function of a Bayes

rule with respect to a di�erent beta distribution prior for the risk function of

the minimax rule. The risk function of the the Bayes rule �n;
 with respect to

a beta distribution with parameters 
 and 
 is

R(�; �n;
) =
n�(1� �) + 
2(1� 2�)2

(n+ 2
)2
:

If n = 1, the minimax rule is Æ1(X) = (0:5 + X)=2 and the minimax risk is

1=16. Suppose that we o�er to trade the risk function of the Bayes rule with

respect to the beta distribution prior with parameters 1.3 and 1.3, �1;1:3(X) =

(1:3+X)=3:6. If n = 4, the minimax rule is Æ4(X) = (1 +X)=5 with minimax

risk 1=36. In this decision problem, we might o�er to trade the risk function

of the rule �4;0:8. If we make these two trades, we can then combine the two

favorable gambles as follows:

�1[R(�; �4;0:8)�R(�; Æ4)] + �2[R(�; �1;1:3)�R(�; Æ1)]: (5.1)

As a function of �, (5.1) is a quadratic that is symmetric around � = 1=2. The

maximum value can be minimized by choosing �1 and �2 so that the function

is constant. Using neutral/sum normalization, the rate of incoherence in this

case is 0.00032, and it is achieved with �1 = 9:679 and �2 = 1.

As in Example 5, we can replace the two trades in Example 6 by di�erent

trades that might achieve higher rates of incoherence. In general, to make

�1[R(�; �n1;
1)�R(�; Æn1)] + �2[R(�; �n2;
2)�R(�; Æn2)]

constant, we need one of 
i to be less than
p
ni=2 and the other to be larger.

Then, we can choose

�3�i =

���� 4
2
i
� ni

(ni + 2
i)2

���� ;
for i = 1; 2. The constant value of the combination of gambles is then

�1

�

21

(n1 + 2
1)2
�

1

4 + 8
p
n1 + 4n1

�
+�2

�

22

(n2 + 2
2)2
�

1

4 + 8
p
n2 + 4n2

�
:

(5.2)

Take the negative of this, normalize it, and then maximize the ratio by choice

of 
1 and 
2. In Example 6, with neutral/sum normalization, the choices that

provide the maximum are 
1 = 
2 = 0:653, and the rate of incoherence for

these choices is 0.0011.

We have not yet solved the general problem of �nding the combination of

risk function trades that leads to the largest rate of incoherence. To do that,

we would have to consider the risk functions of all possible Bayes rules. Since

every Bayes rule is the posterior mean of �, we can write each Bayes rule as

Æ(x) =

R
[0;1]

�x+1(1� �)n�xd�(�)R
[0;1]

�x(1� �)n�xd�(�)
; (5.3)
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where � is an arbitrary prior on [0; 1]. Notice that (5.3) depends only on the

�rst n+1 moments of the prior distribution �. Feller (1972, Sec. VII.3) shows

that, for every possible set of �rst n+1 moments, there is a prior concentrated

on the points k=(n+ 1), for k = 0; : : : ; n+ 1 that has those moments. Hence,

the collection of all Bayes rules can be parameterized by the �nite-dimensional

collection of all prior distributions concentrated on n+2 equally spaced points.

Although the resulting maximization problem is not likely to have a closed-form

solution, a numerical algorithm should be possible to solve it.

5.3 Testing a Sharp Null Hypothesis

Suppose that X has a normal distribution with unknown mean � and known

variance �2, and we wish to test the null hypothesis H0 : � = 0 versus the

alternative H1 : � 6= 0. Several authors have highlighted sharp di�erences

between Bayesian methods and testing such hypotheses at �xed levels. (See

Berger & Sellke, 1987 and Schervish, 1996 for two examples.) We can ask

whether such testing strategies are incoherent. For example, suppose again

that the loss function is of the following type

L(�; a) =

8<
:

c if � = 0 and a = 1,

1 if � 6= 0 and a = 0,

0 otherwise.

(5.4)

Then, the risk function of the uniformly most powerful unbiased (UMPU) level

�0 test Æ�0 has the following property for every �0 < 1:

lim
j�j!1

R(�; Æ�0) = 0:

It follows that, for every test Æ,

lim sup
j�j!1

R(�; Æ)�R(�; Æ�0) � 0:

Hence, if we combine �nitely many such risk function trades, the combination

will also have nonnegative lim sup as j�j ! 1. It follows that we cannot make

Dutch book by trading risk functions.

One could argue that, in practical problems, j�j is bounded. Since UMPU

tests remain UMPU when extreme portions of the parameter space are removed

(as long as an interval around the null remains), we could try to make Dutch

book with a bounded parameter space. Even this is not possible. The power

function of every test is continuous, hence, for every test Æ,

lim
�!0

R(�; Æ)�R(�; Æ�0) = �
1

c
[R(0; Æ)�R(0; Æ�0)]:

It follows that, for every �nite combination of risk function trades, the value

at 0 will have magnitude c times as big as but the opposite sign of the limit of

11



the values as � ! 0. Hence, these two values cannot both be negative, and we

still cannot make Dutch book. The arguments given here apply regardless of

how one chooses the level �0 as a function of �2. One could use the same level

for all values of �2 or one could arbitrarily choose di�erent values of �0 as �
2

changes.

If it is coherent to choose the level of the test as an arbitrary function of

�2, one would expect that there must be at least one prior distribution such

that these choices would be Bayes rules (or formal Bayes rules) with respect to

each such prior. Indeed, we have been able to identify those prior distributions

that have this property when the level is chosen to be the same value �0 for

all values of �2.

Theorem 1. Let � be a prior such that, for every test Æ the trade of the

risk function of Æ for the risk function of the UMPU level �0 test has non-

negative expected value for all �. Then � is �nitely additive and has the fol-

lowing properties. Let p0 = �(f0g), q = infa>0 �(f� : 0 < j�j < ag) and

r = infb>0 �(f� : j�j > bg). Then q = cp0 and p0 + q + r = 1.

Proof. Suppose that we trade the risk function of the UMPU level �1 test for

the risk function of the UMPU level �0 test. The trade has the value c(�1��0)

for � = 0 and for � 6= 0, the value is

�

�
��1

�
1�

�0

2

�
�

�

�

�
��

�
���1

�
1�

�0

2

�
�

�

�

�

��
�
��1

�
1�

�1

2

�
�

�

�

�
+�

�
���1

�
1�

�1

2

�
�

�

�

�
: (5.5)

For each � 6= 0, the value in (5.5) goes to 0 as � ! 0 and it goes to �0 � �1 as

� ! 1. From these facts, it follows that the limit as � ! 0 of the expected

value of (5.5) is (�1��0)(cp0�q). Unless q = cp0, this can be made negative by

appropriate choice of �1. Hence, q = cp0 is necessary in order for the expected

value to be nonnegative.

Next, notice that every prior as described in the theorem has the property

that the expected value of (5.5) is 0. Finally, suppose that p0 + q + r < 1.

Then there exists a bounded interval [a; b] such that �([a; b]) > 0. Let �1 > �0.

Then (5.5) is negative for all � 6= 0 and the expected value is strictly negative.

Hence 1 = p0 + q + r. 2

Although the prior in Theorem 1 gives nonnegative expected value to every

risk function trade of the form (5.5), it also gives expected value 0 to every risk

function trade between any two UMPU test regardless of what their levels are.

That is, all UMPU tests are equally good.

5.4 The Signi�cance Level Depends on the Loss Function

When asked \How should I choose the size of a test?" the classical statisti-

cian sometimes responds by saying that the size should depend on the costs of
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type I and/or type II errors. For example, the more serious is a type I error,

the smaller the size should be. Consider loss functions of the form (5.4). The

larger c gets, the smaller should be the signi�cance level (size) of the preferred

test. Theorem 1 suggests that even this interpretation will not stand up to

Dutch book, if the parameter space is bounded. Notice that Theorem 1, when

applied to decision problems with di�erent loss functions (di�erent values of c)

says that the only prior distributions that support letting the size of the test

depend only on c are the ones for which Pr(j�j > b) = 1. If the parameter space

is bounded, no prior will support such preferences.

Example 7. Suppose that we have two di�erent decision problems both

with loss functions of the form (5.4) but with two di�erent values of c, c0
and c1. Call these problem 0 and problem 1 respectively. Suppose that the

parameter space is bounded, that is, we know that j�j < b. Suppose that our

classical statistician prefers the UMPU level �i test in problem i for i = 0; 1,

where �0 is not necessarily the same as �1. We can make Dutch book against

such preferences. Without loss of generality, assume that c1 > c0. Suppose

that we trade the risk function of a UMPU level �i test for the risk function of

the UMPU level �i test in problem i. Then the values of these trades at � = 0

are ci(�i � �i) for i = 0; 1. The values of such trades for � 6= 0 will depend on

�, and they will have a form similar to (5.5). The rate of incoherence depends

on many factors, including the bound on the parameter space. Here, we shall

merely illustrate how Dutch book can be made. Suppose that �0 = 0:1 and

�1 = 0:05 while c0 = 1 and c1 = 2. In problem 0, our classical statistician

prefers the level 0.1 test to all others regardless of �, and in problem 1, he/she

prefers the level 0.05 test to all others regardless of �. Consider problem 0 with

� = 1:234 and �0 = 0:11 and problem 1 with � = 1 and �1 = 0:045. Suppose

that the parameter space is bounded at 4, that is j�j � 4. If we combine the

two trades, described in this example with coeÆcients 
 and 1 � 
, the value

at � = 0 is 0:01
 � 0:01(1 � 
) = 0:02
 � 0:01. This will be negative for all


 2 [0; :5). With 
 = 0:49223, the value at � = 0 is �1:55 � 10�4, and the

max for 0 < j�j < 4 is also �1:55� 10�4. The value 
 = 0:49223 achieves the

rate of incoherence for these two trades for all parameters spaces of the form

f� : j�j � bg for b 2 [2; 5:4]. For b outside of this range, a di�erent rate of

incoherence occurs.

6. GENERAL RESULTS

Schervish, Seidenfeld & Kadane (1997, 2002a) prove several general results

about incoherent previsions for elements of a partition. To summarize these, let

A1; : : : ; An be a partition. That is events A1; : : : ; An must occur and no two of

them can occur simultaneously. If upper previsions for these events add up to

q < 1, then the rate of incoherence is (1�q)=(n�q), (1�q)=q and (1�q)=n for

bookie's escrow/sum, gambler's escrow/sum and neutral/sum normalizations

respectively. If lower previsions for these events add to p > 1, the rate of
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incoherence for bookie's escrow/sum normalization is (p� 1)=p. For the other

two normalizations based on sum, the rate of incoherence depends on whether

any partial sums of the lower previsions are strictly more than 1.

Example 8. Let A1; A2; A3 form a partition. Suppose that the lower pre-

visions of 0.1, 0.8 and 0.7 are given for these events respectively. Suppose that

we use neutral/sum normalization. The rate of guaranteed loss for the combi-

nation of gambles (IA2
� 0:8)+ (IA3

� 0:7) is 0.25. If we use all three gambles,

the rate is 0.2. Hence, the maximal rate is achieved by combining fewer than

three gambles.

Additional results concern a partition together with a simple random vari-

able X measurable with respect to that partition. That is, X =
P

n

i=1 xiIAi
.

Let pi be both an upper prevision and a lower prevision for Ai for i = 1; : : : ; n.

Let pX be both an upper prevision and a lower prevision for X . Let � =P
n

i=1 xipi and Æ = pX ��. Schervish, Seidenfeld & Kadane (1997) address the

question of how much, if any, the added prevision for X increases the rate of

incoherence already computed for the previsions of the partition elements. Not

surprisingly, the degree to which the added prevision increases the rate of inco-

herence depends on both Æ and how incoherent the previsions are for the events

in the partition. Indeed, there are cases in which the previsions of the events in

the partition are suÆciently incoherent that the additional prevision might not

increase the rate of incoherence at all if Æ is small enough. To summarize these

results, for bookie's escrow/sum normalization, let q =
P

n

i=1 pi, and assume

that x1 < x2 < � � � < xn. Then the values of pX that do not increase the rate

of incoherence above what it was for the previsions of the partition elements

are as follows:

�+
1� q

n� 1

n�1X
i=1

xi � pX � �+
1� q

n� 1

nX
i=2

xi if q < 1,

maxfx1; �� (q � 1)xng � pX � minfxn; �� (q � 1)x1g if q > 1,

pX = � if q = 1.

For the gambler's escrow/sum normalization, when q < 1, the corresponding

set of pX is � + (1 � q)x1 � pX � � + (1 � q)xn. This last range has an

interesting interpretation. The pX values that do not increase the rate of

incoherence are those formed by computing the \expected value" of X using

the incoherent previsions and then placing the remaining probability 1 � q

anywhere else between the smallest and largest possible values of X . Schervish,

Seidenfeld & Kadane (2000) describe how the incoherent previsions that add

up to q < 1 are related to lower probabilities from �-contamination models. In

particular, the lower and upper expectation of the simple random variable X

discussed above turn out to be �+ (1� q)x1 and �+ (1� q)xn.
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7. DISCUSSION

In this article we introduce several indices of incoherence of previsions, based

on the gambling framework of de Finetti (1974). When a bookie is incoherent,

a gambler can choose a collection of gambles acceptable to the bookie that

result in a sure loss to the bookie (and a sure gain to the gambler). That is,

the gambler can make a Dutch book against the bookie. Each of our indices of

incoherence in the bookie's previsions is the maximum guaranteed rate of loss

to the bookie that the gambler creates through his/her choice of coeÆcients,

relative to a normalization. We introduced some properties that we want a

normalization to have, and we identi�ed largest and smallest normalizations

amongst special classes of normalizations.

We then illustrated the methods for measuring incoherence with several

examples of incoherent inferences. These included testing simple hypotheses at

�xed levels, minimax estimation, and choosing the size of a test based solely

on the loss function.
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